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Abstract: Aiming to address the limitations of traditional resource allocation algorithms in the
Internet of Vehicles (IoV), whereby they cannot meet the stringent demands for ultra-low latency and
high reliability in vehicle-to-vehicle (V2V) communication, this paper proposes a wireless resource
allocation algorithm for V2V communication based on the multi-agent deep Q-network (MDQN).
The system model utilizes 5G network slicing technology as its fundamental feature and maximizes
the weighted spectrum–energy efficiency (SEE) while satisfying reliability and latency constraints.
In this approach, each V2V link is treated as an agent, and the state space, action, and reward
function of MDQN are specifically designed. Through centralized training, the neural network
parameters of MDQN are determined, and the optimal resource allocation strategy is achieved
through distributed execution. Simulation results demonstrate the effectiveness of the proposed
scheme in significantly improving the SEE of the network while maintaining a certain success rate for
V2V link load transmission.

Keywords: vehicular networking; resource allocation; 5G network slicing; multi-agent deep Q learning

1. Introduction

Among the fundamental technologies in intelligent transportation systems (ITS), the
Internet of Vehicles (IoV) serves as a platform for information transmission, facilitating
the creation of a vast network for the exchange and sharing of information among vehicle-
to-everything (V2X) entities. Through real-time sensing and collaboration among various
functional entities, such as people, vehicles, roads, and clouds, IoV has become a crucial
tool, reducing traffic congestion, enhancing operational efficiency, and promoting safe and
eco-friendly travel in modern cities [1–3].

With the advent of the 5G era, the number of IoV users and services is expected to
increase substantially. In-vehicle mobile terminal communication devices will be required to
not only process massive volumes of service data but also ensure the quality requirements of
differentiated and diverse services. Networked technologies are essential to realize L3 level
conditional autonomous driving and L4 advanced autonomous driving [4], compensating
for the limited sensing capability of local sensors and enabling the fusion decision making
of global sensing information in complex environments.

L3 and L4 level autonomous driving systems impose significant demands for quality
of service (QoS). However, several challenges exist in ensuring QoS through resource
allocation. On one hand, autonomous driving relies on immediate and reliable traffic
information, requiring 99.999% reliability and ultra-low latency of less than 5 ms end-to-
end [5]. Hence, it is crucial to allocate limited network resources appropriately to guarantee
QoS for users. On the other hand, the proliferation of IoV applications and the densification
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of communication node deployments have led to a substantial increase in the variety and
volume of services in next-generation traffic information networks. The exponential growth
of data further exacerbates resource constraints. Wireless resource allocation methods for
IoV can be categorized into three types: those based on traditional convex optimization
theory, game theory, and machine learning-based approaches.

Resource allocation optimization is a challenging problem, commonly formulated
as a mixed-integer nonlinear programming model, known for its nonconvexity and NP-
hardness [6]. Previous studies [7–9] have primarily addressed resource allocation using
traditional convex optimization principles. In [7], a mixed-integer nonlinear programming
problem is formulated to maximize the sum ergodic capacity of vehicle-to-infrastructure
(V2I) links while ensuring a specified probability of delayed outages in vehicle-to-vehicle
(V2V) links. The problem is decomposed into two subproblems: power allocation and
spectrum allocation. For dynamic resource allocation [8], a two-stage algorithm named
DRA and DRA-Pre is introduced, which utilizes a multi-valued discrete particle swarm
optimization technique to solve the resource allocation problem in the first stage, while di-
viding the precoding design problem into rate maximization and total power consumption
minimization subproblems in the second stage. In [9], whale optimization algorithms are
applied to address resource allocation problems in wireless networks. This involves power
allocation strategies to achieve a balance between energy and spectral efficiency, power
allocation to maximize throughput, and mobile edge computing shunting. Alternatively,
certain studies [10–12] treat the resource allocation problem as a game and utilize game
theory techniques to solve it.

One study [10] proposes an innovative auction-matching-based spectrum allocation
scheme that considers interference constraints and user satisfaction. This approach effec-
tively improves the spectrum efficiency for users, addressing the limitations of traditional
mechanisms. In a different study [11], the resource allocation problem is modeled as a
multi-user game, and the existence of Nash equilibrium is proven through a potential
game. To optimize the computational and communication resources and maximize the
system utility, a multi-user offloading algorithm based on better response is proposed.
In yet another study [12], a resource allocation scheme is designed for unmanned aerial
vehicle (UAV)-assisted vehicle communication scenarios. The study introduces a two-stage
resource allocation algorithm based on Stackelberg game principles. In the first stage, a clus-
tering algorithm matches users with different blocks of spectrum resources. Subsequently,
in the second stage, the Stackelberg game is employed to solve the power optimization
problem for each cluster, achieving the dual objectives of maximizing the sum rate of V2I
users while ensuring the reliability of V2V users.

Deep learning has emerged as a powerful data-driven approach addressing resource
allocation challenges by learning efficient data representations with multiple levels of
abstraction from unstructured sources [13]. In [14], a deep learning-based damped 3D
messaging algorithm is proposed, considering tradeoffs between energy efficiency and
spectral efficiency as the optimization objective. This algorithm takes into account quality
of service, power consumption, and data rate constraints. In [15], a binarized neural
network is utilized for resource allocation. The primary objective of this scheme is to
maximize the classification accuracy at the server while adhering to a total transmit power
constraint. Another study [16] introduces a distributed resource allocation mechanism
where agents, such as V2V links or vehicles, can make decisions without waiting for global
state information. Each agent efficiently learns to satisfy strict delay constraints on V2V
links while minimizing interference with V2I communication. Considering the bandwidth
and low latency requirements in vehicular communication applications, one study [17]
proposes a framework and optimization scheme for the slicing pf networks based on device-
to-device communication. The slicing resource allocation problem is modeled as a Markov
decision process, and a deep reinforcement learning (RL) algorithm is employed to solve
the problem, leading to improved resource utilization, slice satisfaction, and throughput
gain. In the integration of communication mode selection and resource allocation, one
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study [18] formulates a Markov decision process problem and solves it using a deep
deterministic policy gradient algorithm. This approach effectively improves the long-
term energy efficiency. For joint computation offloading and resource allocation decisions,
another study [19] proposes two distinct methods: a value iteration-based RL method
and a double deep Q-network (DDQN)-based method. These methods aim to optimize
resource allocation decisions while considering computation offloading. Additionally,
in [20], a novel fuzzy-logic-assisted Q-learning model (FAQ) is proposed, leveraging the
advantages of the centralized allocation mode. The FAQ model aims to maximize network
throughput while minimizing interference caused by concurrent transmissions during
resource allocation.

Additionally, 5G New Radio V2X (NR V2X) [21] is considered a promising technology
after LTE V2X, proposing new goals for air interface selection, interface enhancement, and
quality management to support advanced V2X applications with varying levels of latency,
reliability, and throughput requirements. The application of network slicing technology [22]
provides a novel idea for telematics resource allocation. V2I and V2V communication aim to
facilitate information exchange, promoting enhanced mobile broadband and ultra-reliable
low-latency communication for widespread usage. Activities such as cloud access, video
streaming, and in-vehicle social networking entail large data exchanges, necessitating
frequent access to wireless access points and core web servers, requiring high-speed com-
munication links for efficient data transmission. Similarly, safety-critical information, such
as collaboration-aware content, dispersed environmental notification information, and
autonomous driving data in vehicle networks, demand exceptionally stringent ultra-low la-
tency and high reliability. Consequently, V2V communication needs to offer communication
services with improved spectrum and energy efficiency and higher communication rates
and meet more stringent reliability and latency requirements by accessing ultra-reliable
and low-latency communications (URLLC) slices.

Traditional resource allocation methods can no longer meet the delay and reliability
demands of V2V communication. In recent years, with the development of artificial intelli-
gence, researchers have found reinforcement learning [23] to be effective for decision making
in situations with uncertainty conditions. It provides a robust and principled approach to
making a series of decisions in dynamically changing environments, making it a considerable
approach to address specific highly dynamic problems in vehicular networking.

Hence, studying the V2V resource allocation problem with the ultra-low latency and
high reliability constraints of V2V communication holds significant research significance.
The main work and innovations of this paper are as follows.

• We explore the application of mixed spectrum access for V2V links and V2I links
under the 5G New Radio V2X standard and network slicing technology. To maximize
the spectrum–energy efficiency (SEE) of the network, we incorporate the reliable
transmission and delay constraints of URLLC slicing into the optimization problem.

• We use the multi-agent deep Q-network (MDQN) to handle the resource allocation
problem by setting up state, action, and reward functions rationally.

• Simulation results demonstrate that the proposed algorithm improves the SEE of the
network while guaranteeing the success rate of V2V link load transmission. When
compared to three other resource allocation schemes, the MDQN algorithm allows for
distributed resource allocation in response to environmental variations, promoting
collaboration among V2V links to achieve global optimization.

2. System Model

Based on 5G NR V2X, in order to improve the network transmission rate and enhance
the spectrum utilization at the same time, a hybrid spectrum access technology is proposed
to be used for transmission, i.e., the PC5 interface and the Uu interface share spectrum
resources. Vehicles can be divided into two types: cellular users (CUEs), who communicate
with the base station for V2I and access the vehicular network through the Uu interface to
request high-speed communication services from the base station, and V2V users (VUEs),
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who communicate with adjacent vehicles for side-chain communication and access the
vehicular network through the PC5 interface to achieve low latency and high reliability.
To cater to diverse vehicle requirements, we establish two logical slices within a shared
infrastructure: the eMBB slice and the URLLC slice. Within the 5G network, vehicles have
the option to access either the eMBB slice or the URLLC slice. The eMBB slice is designed for
regular internet access and remote server connectivity, involving substantial data exchange.
It serves CUEs that require frequent and reliable internet access. On the other hand, the
URLLC slice is intended for the transmission of safety-critical information and is primarily
utilized by VUEs.

Since V2V and V2I communications utilize different slices, the resource allocation for
V2V links must be independent of the resource allocation for V2I links. Figure 1 illustrates
a V2X communications scenario based on the 5G network, where K pairs of V2V links
are present. For V2V links, we assume that there is an authorized bandwidth of B, which
is evenly divided into M subchannels. Denote the subchannel set and the V2V link set
as M = {1, 2, ..., M} and K = {1, 2..., K}, respectively. At the same time, the channel
transmission in the model uses Orthogonal Frequency Division Multiplexing (OFDM)
technology, and the subchannels are orthogonal to each other without interference, but the
same subchannel can be shared by more than one user and interference will occur between
the VUEs sharing the same subchannel, thus affecting the channel capacity.

Figure 1. Schematic diagram of 5G telematics V2X communication.

The signal to interference plus noise ratio (SINR) of the kth V2V link at the mth
subchannel can be expressed as

γv
k [m] =

Pv
k [m]gk[m]

Ik[m] + σ2 . (1)

where gk[m] represents the channel gain of the kth V2V link at the mth subchannel; it com-
prises two components: the large-scale fading component and the small-scale component.
Additionally, the large-scale fading component includes two factors, namely shadowing
and path loss. The channel capacity of the kth V2V link on the mth subchannel can be
expressed as

Cv
k [m] = W log

(
1 + γ

v

k [m]
)

. (2)

Among them,
Ik[m] = ∑

k′∈K,k′ 6=k
ρk′ [m]Pv

k′ [m]g̃k′ ,k[m], (3)

Ik[m] is the total interference power of all V2V links sharing the same subchannel. Pv
k [m]

denotes the transmit power of the kth VUE. σ2 denotes the noise power, and g̃k′ ,k[m] is the
interference gain of the k′th V2V link to the kth V2V link. ρk[m] indicates the subchannel
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allocation indicator, and ρk[m] = 1 indicates that the kth V2V link occupies the subchannel
m; otherwise, ρk[m] = 0. It is specified that each V2V link can select only one subchannel
for transmission at the same moment, i.e., ∑M

m=1 ρk[m] = 1, ∀1 ≤ k ≤ K.
In addition, the reliability requirement of V2V communication is expressed by the

following equation.
M

∑
m=1

ρk[m]γv
k [m] > γTH , ∀1 ≤ k ≤ K, (4)

where γTH is the signal-to-noise ratio threshold for the VUE receiver on the kth V2V link.
Assume that the packet arrival process of the kth V2V link is independently and

identically distributed and obeys a Poisson distribution with an arrival rate of λk. Nk(x)
denotes the size of the first n packets and obeys an exponential distribution with an average
packet size of Nk(x), and Qk(t) is the number of packets cached by the kth V2V link in the
time slot t. Moreover, Wk(x) is the packet waiting time in the cache to be served, and δk(x)
denotes the packet transmission time, so the time delay of the xth packet in the V2V user’s
k cache is

Dk(x) = Wk(x) + δk(x). (5)

The packet of the kth V2V link must be guaranteed to be transmitted within a finite
time, dmax denotes the maximum tolerable delay in packet transmission, δ is the maximum
violation probability, and the delay interruption probability of V2V communication is
bounded by

P{Dk(x) > dmax} ≤ δ, ∀k = 1, 2, · · · , K. (6)

The constraints on the physical layer metrics of V2V include the spectral efficiency and
energy efficiency, defined as the channel capacity that can be obtained per unit frequency
and per unit energy consumption. Thus, the spectrum–energy efficiency (SEE) of V2V links
can be expressed as

ζV2V =

K
∑

k=1

M
∑

m=1
Cv

k [m]

M
∑

m=1
W × (

K
∑

k=1

M
∑

m=1
Pv

k [m] + KPc)

, (7)

where Pc is the circuit power.
The objective of V2V resource allocation is to allocate the V2V link transmission power

and subchannels to maximize the SEE of the V2V links while satisfying the delay and
reliability constraints. Therefore, the following objective function and constraints can
be established.

max ζV2V

s.t. C1 :
M

∑
m=1

ρk[m]γv
k [m] > γTH , ∀1 ≤ k ≤ K

C2 : P{Dk(x) > dmax} ≤ δ, k = 1, 2, . . . , K

C3 :
M

∑
m=1

pv
k [m] ≤ pmax, ∀k = 1, 2, . . . , K

C4 : ρk[m] ∈ {0, 1}, ∀m = 1, 2, . . . , M, ∀k = 1, 2, . . . , K

C5 :
M

∑
m=1

ρk[m] = 1, ∀k = 1, 2, . . . , K

, (8)

where the objective function is to maximize the SEE of the V2V links, constraints C1 and
C2 are reliability and delay constraints on the V2V links, constraint C3 states that the
transmission power is within the reachable maximum transmission power, and constraints
C4 and C5 imply that each V2V link can be assigned to only one subchannel, but the same
subchannel can access multiple V2V links.
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3. Resource Allocation Algorithm

Reinforcement learning is a powerful technique that can be used to solve optimization
problems. In the field of resource management for V2V communication, the conventional
Q-learning approach has been observed to encounter difficulties in achieving convergence
of the Q-function due to the limited accessibility of states and infrequent updates of corre-
sponding Q-values. This limitation has led to the development of a more efficient method
known as the deep Q-network (DQN), which combines the Q-learning algorithm with deep
neural networks. We leverage DQN to train the multiple V2V agents, namely multi-agent
DQN (MDQN). Motivated by the literature [24], the MDQN algorithm comprises two
distinct phases: the MDQN training phase and the MDQN testing phase, as depicted in
Figure 2. During the training phase, each V2V link operates as an independent agent,
engaging in interactions with the simulation environment to obtain rewards. In order
to ensure consistency in network performance, all agents are assigned the same reward.
Moreover, the reward and subsequent state are solely dependent on the current state and
the joint actions taken by all agents [25]. This information, which is introduced as follows,
encompassing the current state, action, reward, and subsequent state, is then utilized to
update the network of each agent. In the MDQN testing phase, each V2V agent receives
local observations of the environment and, based on its trained network model, selects an
action to execute.

Figure 2. Flowchart of the MDQN algorithm.

3.1. Status, Action, Reward

The high mobility of vehicles can result in incomplete access to channel state informa-
tion for the central controller, which necessitates the use of a distributed resource allocation
scheme. This framework considers each V2V link as an agent, with all other V2V links being
regarded as the environment. At any given moment t, the state of an agent is represented
by the information that it senses, denoted as St. Agents interact with the environment
by selecting subchannels and transmission power based on their local observations. This
interaction results in the agent receiving a reward rt and a new state st+1, as shown in
Figure 3.

State information Sk includes the local instantaneous channel information of the
subchannel m, denoted as Gk[m], the remaining V2V payload Bk, and the remaining time
budget Tk.

Gk[m] = {gk[m], {g̃k′ ,k[m]}k′ 6=k}, (9)

Sk = {{Gk[m]}m∈M, Bk, Tk}, (10)

where gk[m] is the channel power gain of the kth V2V link, and g̃k′ ,k[m] is the interference
of the k′th V2V link with the kth V2V link.

Action space A includes the selection subchannel and the transmit power, and the
selection subchannel is denoted by ρk[m]. ρk[m] = 1 denotes the kth V2V link using the
mth channel. In existing resource allocation schemes, most of the transmission power is
set to a continuous reading value, but considering the model training and actual vehicle



Sensors 2023, 23, 6796 7 of 16

limitations, the transmission power is set to [23,18,10,5,−100] dBm, and when the V2V link
selection transmission power level is −100 dBm, it indicates that the V2V link transmission
power level is 0. Thus, the action space dimension is 5×M, and each action corresponds
to a particular combination of subchannel and power selection.

Figure 3. Deep reinforcement learning model for vehicle network resource allocation.

The flexibility of the reward function is a key strength of deep reinforcement learning,
as it enables the agent to learn and adapt its behavior by receiving feedback in the form of
rewards from its environment. This process of learning through trial and error can lead to
significant improvements in performance, as the agent becomes better equipped to achieve
its objectives.

The objective of V2V resource allocation is to maximize the SEE of the network while
ensuring that the V2V link load is transmitted within the maximum tolerable delay and
considering the SINR threshold value of the link. Therefore, the design of the reward
function needs to consider these three components and the expression is as follows.

rt =
K
∑

k=1
rt(k)/K,

rt(k) =

 ζV2V + λ3G(γv
k − γd) + λ4G(

M
∑

m=1
ρk[m]Cv

k [m]− Bk/Tk), i f Bk > 0,

A1, oherwise.

(11)

Among them,

G(x) =
{

A2, i f x > 0,
x, otherwise.

(12)

where A1 is a fixed large constant, A2 is also a constant, and λ3 and λ4 are weights, both of
which are empirically adjusted hyperparameters.

3.2. MDQN Algorithm

The Q-value, denoted by Q(s, a), represents the expected long-term reward for taking
an action a in a given state s. The classical Q-learning approach involves constructing a
table of state–action pairs to store the Q-values and selecting actions based on these values
to obtain larger gains. The algorithm works by initializing a table of values, setting the
initial state, selecting the current state action with the highest reward based on the table,
executing the action a, and observing the resulting return r and next state s′. The algorithm
then updates the Q-value table for each step by calculating Q(s, a) and storing it in the
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table. The Q-value can be considered as the expectation of the long-term payoff and the
update formula can be expressed as

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (13)

where α is the learning rate that controls the step size of the updates and γ is the discount
factor that determines the importance of future rewards.

DQN leverages the approximation of the optimal Q-values by the network with
parameters denoted by θ through the following equation.

f (s, a, θ) = Q∗(s, a) (14)

In training neural networks, DQN proposes two unique mechanisms.

1. Experience replay is a technique whereby the agent stores its experiences in a replay
buffer, which is a data structure that contains a collection of transitions (s, a, r, s′).
The agent then samples a batch of transitions from the replay buffer and uses them
to update its Q-network. This approach leads to a reduction in the correlations
between successive updates, allowing for the more efficient use of data and improving
the stability.

2. The target network involves using a separate network to estimate the target Q-values,
i.e., the DQN uses two neural networks with different parameters but the same
structure, as shown in Figure 4. This helps to stabilize the learning process by reducing
the variance in the target values used to update the Q-network.

Figure 4. Block diagram of MDQN algorithm based on deep reinforcement learning.

3.2.1. MDQN Training Phase

The MDQN training process in this paper involves the interaction between the agent
and the environment simulator, which generates training data. A double network structure
is employed, consisting of a Q-network and a target Q-network with identical initial
parameters. The agent generates experience by taking actions in the environment and
storing the resulting state, action, reward, and next state in a memory pool. To train the
neural network, a small batch of data is randomly selected from the experience pool, and a
small batch gradient descent method is used to optimize the loss function. This method
is less volatile than the random gradient method, reduces variance, and ensures stability.
Additionally, small batch training has faster learning speeds and consumes less memory.
In this paper, small batches of 50 data points are extracted for training.
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The loss function is defined as the deviation of the target network from the current
output as follows, which is optimized during training.

L(θ) = E
[(

Qtarget −Q(s, a, θ)
)2
]

(15)

Qtarget = r + γmaxaQ(s′, a′, θ) (16)

The DQN algorithm uses a target Q-value network that is separate from the Q-value
network. The target network is kept fixed for a certain number of iterations, while the
primary Q-value network is updated using backpropagation. Every C iterations, the
weights of the primary network are then copied over to the target network, which is used
to compute the Q-value targets for the next batch of experiences. This delayed update
strategy helps to reduce the risk of oscillations and divergence in the learning process.

The specific training phase is shown in Algorithm 1.

Algorithm 1 MDQN training phase for V2V resource allocation

1: Input: V2V link settings Bk = B and Tk = T for all k ∈ K
2: Output: Trained Q-value function Q(s, a, θ) and target Q-value network
3: Activate environmental simulator and generate vehicles
4: For each V2V link k ∈ K:
5: For each step:
6: Select subchannels and transmit power based on policy
7: Receive feedback on status and rewards of actions from ambient simulators
8: Collect and store data quadruplet state, reward, action, previous state in

memory bank
9: Select a small batch of data from experience pool to train neural network

10: Perform gradient descent according to Equation (20)
11: If step is a multiple of C:
12: Copy Q-value network weights to target Q-value network
13: End For
14: End For
15: Return: Trained Q-value function Q(s, a, θ) and target Q-value network

3.2.2. MDQN Testing Phase

In the testing phase, the trained neural network model is loaded. Then, the algorithm’s
performance is evaluated by changing the load or noise power of the V2V link in an
environmental simulator, which generates vehicles and V2V links.

Each V2V link is selected as an agent, and the action with the largest Q-value is
chosen by the agent. The environment is updated according to the chosen action, which
results in a change in the state information provided by the environment simulator. The
simulator returns a reward value to the agent, and the evaluation results, including the total
transmission rate of V2V and the V2V link load transmission success rate, are provided by
the environment simulator.

Since the agents select actions independently based on local information, simultaneous
action updates can cause the agents to be unaware of the actions taken by other V2V links.
This means that the state observed by each V2V link may not fully capture the environment.
To address this issue, the agents update their actions asynchronously, meaning that only
one or a small fraction of the V2V agents update their actions at each time period. This
allows the changes in the environment caused by the actions of other agents to be observed.
The specific MDQN testing phase is shown in Algorithm 2.
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Algorithm 2 MDQN testing phase for V2V resource allocation

1: Load the trained network model.
2: Activate the environmental simulator and generate vehicles.
3: Iteratively select V2V links in the system.
4: for each V2V link k ∈ K:
5: select the action with the largest value.
6: Update the environment simulator based on the selected action.
7: Update the evaluation results, including the total transmission rate of V2V and the
V2V link load transmission success rate.
8: Return the evaluation results.

4. Simulation Analysis
4.1. Simulation Parameter Setting

In this paper, the environment simulator is established based on the environment simula-
tion approach proposed in the literature [24], employing the city case evaluation method of
the Manhattan model. The simulated environment has dimensions of 1299 m (length) and
750 m (width). A total of M vehicles and the base station constitute M V2I links. Additionally,
each vehicle can establish communication with one neighboring vehicle, resulting in M V2V
links. These V2V links share M subchannels, each with a bandwidth of 0.9 MHz. To model
the vehicle load and time delay, the TR 37.885 [26] low-density communication model is
employed, specifically the traffic model presented in Section 6.1.5 of TR 37.885 [26]. Table 1
provides an overview of the key simulation parameters utilized in the study.

Table 1. Simulation parameters.

Parameters Value

Number of subchannels M 4
Number of V2V links 4

Carrier frequency 4.7 GHz
Bandwidth 0.9 MHz

Noise power of vehicle receivers 9 dB
Vehicle movement speed v 36 km/h
V2V transmission power [23,15,10,5,−100] dBm

Noise power −114 dBm
Circuit power 16 dBm

V2V link load transmission tolerance delay T 100 ms
V2V Load B [1 , 2, ...] × 1060 Bytes

Signal-to-noise ratio threshold 1 dB

The link channel model includes path loss, shadow fading, and fast fading. TR
38.901 [27] 7.4.1-1 for V2I links uses the town macrocellular model, considering only the
line-of-sight (LOS) case; the V2V link uses the TR 37.885 6.2.1-1 model for path fading,
including LOS and non-line-of-sight (NLOS) cases. The model’s large-scale fading is
updated at each round, i.e., every 100 ms, while the small-scale fading is updated at each
step, i.e., every 1 ms. The specific parameters are shown in Table 2.

Table 2. Channel model.

Parameter V2I Link V2V Link

Path loss 28 + 22 log10(d) + 20 log10( fc)
LOS: 38.77 + 16.7 log10(d) + 18.2 log10( fc)
NLOS: 36.85 + 30 log10(d) + 18.9 log10( fc)

LOS probability 1 VUE pairs on the same path
Shadow decay distribution Log-normal distribution Log-normal distribution

Standard deviation of shadow decay LOS: 4 dB
NLOS: 6 dB

LOS: 3 dB
NLOS: 3 dB

Go to the relevant distance 50 m 10 m
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4.2. Analysis of Simulation Results

Figure 5 shows the average reward and loss values per round as the number of training
iterations increases, to show the convergence of the MDQN algorithm. It can be seen from
the figure that the cumulative discounted reward per round is increasing and the loss
value is decreasing as the training proceeds, which demonstrates the effectiveness of the
proposed training algorithm. When the number of training rounds is around 800, despite
some fluctuations due to dynamic channel fading in the vehicular network environment,
convergence is reached overall with a cumulative discount return of around 92 and a loss
value reduced to the order of 0.01.

The proposed 5G slice-based deep learning model is compared with the following
three resource allocation schemes.

1. A random resource allocation scheme that randomly selects the spectrum subchannels
and transmission power for each V2V link at each time step.

2. A single-agent DQN (SDQN)-based algorithm [28], where, at each moment, only one
agent updates its actions based on local observations, while the sub-bands and power
of the other agents remain unchanged and all agents are trained together and use the
same DQN.

3. The Deep Deterministic Policy Gradient (DDPG) algorithm [29], where the resource
allocation problem is solved via the DDPG method.

It can be seen in Figure 6 that the transmission success probability of all algorithms
decreases as the load on the V2V link increases, but the curve of the MDQN algorithm
proposed in this paper decreases more gently, indicating that the algorithm can better slow
down the performance degradation for high load communication demands. The success
rate of the MDQN algorithm is greater than that of the other three algorithms for all load
sizes tested. The success rate of the MDQN algorithm is greater than 95% under small loads,
and the transmission success rate of this algorithm is also greater than 89% under large
loads, while the DDPG algorithm, SDQN algorithm, and random assignment algorithm
yield values of only 88%, 87%, and 75%.

It can be seen from Figure 7 that the transmission success probability of all algorithms
decreases as the noise power increases, and the transmission success rate probability of
the other three resource allocation methods is significantly lower than that of the MDQN
algorithm. In addition, even though the MDQN algorithm is trained with a fixed noise
power of−114 dB, it achieves a higher load transfer success probability than the other three
benchmark schemes at different noise powers, reflecting its robustness to noise variations.

Table 3 shows the SEE of the different resource allocation schemes under different V2V
loads. It can be seen that the SEE of the proposed MDQN method is greater than that of the
other three schemes.

The performance variation of the network SEE when the V2V link load varies is shown
in Figure 8. As the load increases, the V2V link is more likely to choose a large transmit
power in order to improve the transmission success rate and the transmission time will be
prolonged, resulting in an increase in the intensity and time of interference with other links,
so the performance of all schemes degrades. However, the network SEE of the MDQN
algorithm proposed in this paper is always higher than that of the other three resource
allocation schemes.

The performance of the network SEE of the algorithms for different noise powers
is shown in Figure 9. As the noise power increases, the network SEE of all algorithms
decreases, but the network SEE of the proposed deep learning is always larger than that
of the other two algorithms. The SEE of the MDQN algorithm is 7.21 Mbps/Hz/J under
the noise power −114 dB, while the DDPG algorithm, the SDQN algorithm, and the
random assignment algorithm yield values of only 5.91 Mbps/Hz/J, 4.31 Mbps/Hz/J, and
3.05 Mbps/Hz/J.
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(a)

(b)

Figure 5. Relationship between reward and loss functions and number of iterations in MDQN
algorithm. (a) Relationship between reward and number of iterations. (b) Loss function versus
number of iterations.
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Figure 6. Load transmission success rate versus V2V link load.

Figure 7. Load transmission success versus noise power.

Table 3. SEE (Mbps/Hz/J) of different resource allocation schemes under different V2V loads.

V2V Load
Scheme

MDQN DDPG SDQN Random

1060 Bytes 7.21 5.91 4.31 3.05
2120 Bytes 6.72 5.49 3.73 2.90
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Figure 8. Network SEE versus V2V link load.

Figure 9. Network SEE versus noise power.

5. Conclusions

This paper mainly investigates the wireless resources of 5G networks based on V2V
communication under 5G NR V2X standard and network slicing technology. V2V links and
V2I links use hybrid spectrum access, with maximizing the network SEE as the optimization
objective, incorporating reliable transmission and delay constraints of URLLC slicing into
the optimization problem and using a deep reinforcement learning approach with multiple
agents to seek a V2V communication resource allocation strategy. The simulation results
demonstrate that the proposed MDQN algorithm significantly enhances the network SEE
while maintaining a high success rate for V2V link transmissions. Specifically, when the
noise power is set at −114 dB, the MDQN algorithm achieves SEE of 7.21 Mbps/Hz/J
and a transmission success probability of 0.98. In contrast, the SEE values for the com-
parative algorithms, namely the DDPG algorithm, the SDQN algorithm, and the random
allocation algorithm, are only 5.91 Mbps/Hz/J, 4.31 Mbps/Hz/J, and 3.05 Mbps/Hz/J,
respectively. Compared with the three mentioned comparative algorithms, the MDQN
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learning training model studied in this paper enables V2V links to learn to select transmit
power and subchannels to achieve better performance when the environment changes. Fur-
thermore, the extension of the MDQN algorithm to address the joint computation offload
and resource allocation problem represents a promising avenue for further investigation in
future research.
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