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Abstract: Additive manufacturing (AM) has emerged as a transformative technology for various
industries, enabling the production of complex and customized parts. However, ensuring the quality
and reliability of AM parts remains a critical challenge. Thus, image-based fault monitoring has
gained significant attention as an efficient approach for detecting and classifying faults in AM
processes. This paper presents a comprehensive survey of image-based fault monitoring in AM,
focusing on recent developments and future directions. Specifically, the proponents garnered relevant
papers from 2019 to 2023, gathering a total of 53 papers. This paper discusses the essential techniques,
methodologies, and algorithms employed in image-based fault monitoring. Furthermore, recent
developments are explored such as the use of novel image acquisition techniques, algorithms, and
methods. In this paper, insights into future directions are provided, such as the need for more
robust image processing algorithms, efficient data acquisition and analysis methods, standardized
benchmarks and datasets, and more research in fault monitoring. By addressing these challenges and
pursuing future directions, image-based fault monitoring in AM can be enhanced, improving quality
control, process optimization, and overall manufacturing reliability.

Keywords: additive manufacturing; fault monitoring; machine learning; image-based

1. Introduction

The use of additive manufacturing (AM) in various manufacturing fields is expanding
quickly due to its ability to create parts with complex features. It is a process of developing
physical objects from a geometrical representation by fusing materials in discrete planar
layers, but non-planar processes also exist [1]. Other terminologies used to describe AM
processes include 3D printing (3DP), rapid prototyping (RP), direct digital manufacturing
(DDM), rapid manufacturing (RM), and solid freeform fabrication (SFF) [2]. The whole AM
process involves 3D computer-aided design (CAD) models to build parts in a layer-wise
pattern. Some examples of software that create CAD are SolidWorks, Inventor, Google
SketchUp, and Autodesk Revit [3]. Materials used in AM include metals and alloys,
ceramics, polymers, composites, smart materials, concrete, and biomaterials [4]. Overall,
this process allows individuals to fabricate structures with complex geometric parts that
cannot be achieved through traditional methods [5–7]. Consequently, it caused a paradigm
shift in product design and manufacturing [8].

The 1984 invention of 3D printers by Charles Hull has the potential to revolutionize
industries and alter the production line. Over the years, this technology has experienced
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a phenomenal expansion [9]. AM has applications in electronics, electrochemistry and
energy storage, catalysts, thermal management, aerospace, healthcare monitoring, food,
sensors, and robotics. For example, AM is used in medical modeling for clinician training
and clinician preparation, such as impact planning and pre- and post-operative planning.
AM enables surgeons to create operative models for planning and surgical simulations by
using imaging datasets as the geometric definitions to model 3D shapes by a variety of
software for specific applications. The models are useful for education, but they can also be
used to describe risky and difficult surgical procedures to patients and their families [10].
In construction, AM is used to enable automation. Doing so can lower labor for safety
reasons, reduce construction onsite, reduce production costs, address sustainability issues,
and increase architectural freedom [3]. In general, freedom of design, mass customization,
waste minimization, fast prototyping, and the ability to manufacture complex structures
are the main benefits of AM [11]. In addition, compared to conventional manufacturing
techniques, AM has more controllable process parameters and more vital interaction
between the material properties and process parameters [2].

The AM process involves three main phases: (1) the preprocessing phase, (2) the
manufacturing phase, and (3) the post-processing phase. Each of these phases is further
divided into sub-phases. Several phases, especially post-processing, depend on which AM
technology is used. The preprocessing phase has two sub-phases: 3D model creation and
data preparation. The 3D model creation sub-phase involves the creation of a 3D model of
the object using CAD software or a 3D object scanner. Generally, the data preparation sub-
phase converts a CAD model into a format for data handling in AM such as the standard
tessellation language (STL) file. This file is then processed by a slicer program, which creates
a job file that is saved in the format for the specifically designed machine. Furthermore,
the manufacturing phase has two sub-phases: machine setup and building. During the
machine setup, the material that will be used is loaded, and the process parameters in the
printer are set. Afterward, the printer builds the model by depositing material layer by layer
(building sub-phase). Lastly, the post-processing phase identifies the following sub-phases:
part removal, support structures, heat treatment, shot-peening, and finishing [12].

The most popular way to classify AM processes is based on the product formation
method. According to the American Society for Testing and Materials (ASTM F42), AM
processes can be classified into seven categories, namely, material jetting (a drop by drop of
build material is selectively deposited), binder jetting (a liquid binding agent is selectively
deposited to join powder particles), vat photopolymerization (curing of photo-reactive
polymers by the use of a laser, light or ultraviolet), powder bed fusion (uses an electron
beam or laser to melt or fuse the material powder), material extrusion (material is extruded
through a heated nozzle), energy deposition (similar to material extrusion but the nozzle
is not fixed to a specific axis and can move in multiple directions), and sheet lamination
(sheets of materials are bonded together to produce a part of the object) [7,13]. Table 1
shows an updated comprehensive overview of the advantages and drawbacks of each
process [14–16]. Furthermore, these processes are subdivided into a few more related AM
technologies. Another way to classify AM technologies is by the type of material used and
the medium used for its processing (laser beam, ultraviolet rays, thermal means). Three
main types of materials are used in AM: liquid-based, solid-based, and powder-based, as
shown in Figure 1 [17]. Other ways to classify AM process are the material preparation,
layer generation technique, phase change phenomenon, material type, and application
requirements [2].

Despite the advantages of AM, such as design freedom, customization, waste reduc-
tion, and the ability to print complex structures, a few disadvantages require additional
research and technological development. These particular difficulties include porosity
brought on by inadequate material fusion, the anisotropic nature of the materials, and
warping due to residual stress brought on by the rapid cooling nature of AM processes.
Cracks, delamination, distortion, rough surfaces, lack of fusion, porosity, foreign inclusions,
and process instability (keyhole, balling) are specific processing-related faults or defects
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in AM. These faults are frequently the result of the layer-by-layer material deposition
process. In this process, some faults may propagate from one layer to the subsequent layers,
causing the entire build to fail [18]. These faults become the cause for high costs and limited
applications in large structures and mass production in AM.

Table 1. The seven AM processes, according to ASTM F42, with their advantages, drawbacks, and
related AM technologies.

The Seven AM Processes

AMProcess Advantages Drawbacks Related Technologies

Material Jetting

High accuracy
Low waste
Multiple material parts and
colors under one process

Support often required
Limited materials
Nozzle blockage is common
Low viscosity and strength

NanoParticle Jetting (NPJ)
Drop On Demand (DOD)

Binder Jetting

Different colors
High range of materials
Fast process
Allows two materials

Not always suitable for
structural parts due to the use
of binder material
Long time post-processing
High porosity, low surface
quality

Powder Bed and Inkjet Head
(PBIH)
Plaster-Based 3D Printing
(PB3D)

Vat Photopolymerization

High level of accuracy and
good finish
Allows transparent material
Relatively quick process
Typically, large build areas

Relatively expensive
Long post-processing time
Limited materials
Requires support structures

Stereolithography (SLA)
Digital Light Processing (DLP)
Continuous Liquid Interface
Production (CLIP)
Daylight Polymer Printing
(DPP)

Powder Bed Fusion

Relatively inexpensive
Ability to integrate technology
into small scale
Large material options
Wide range of materials

Relatively slow speed
Lack of structural properties in
materials
Size limitations
High power usage
Finish dependent on powder
grain size
Thermal stress and degradation
is common

Selective Laser Sintering (SLS)
Selective Laser Melting (SLM)
Electron Beam Melting (EBM)
Multi Jet Fusion (MJF)
Direct Metal Laser Sintering
(DMLS)

Material Extrusion

Widespread, inexpensive
Good material properties
Low material waste
Fairly high fabrication speed

Nozzle radius limited
Low accuracy and speed
Required constant pressure of
material
Delamination is common

Fused Deposition Modeling
(FDM)
Fused Filament Fabrication
(FFF)

Energy Deposition
High quality, functional parts
Speed often sacrificed for high
accuracy

May require post-processing for
desired effect
Limited material
Thermal stress, requirement for
atmosphere control

Laser Engineering Net Shape
(LENS),
Electron Beam Additive
Manufacturing (EBAM)
Laser Deposition Modeling
(LDM)
Wire Arc Additive
Manufacturing (WAAM)

Sheet Lamination High speed, low cost
Ease of material handling

Shrinkage, significant amount
of waste
Delamination is common

Laminated Object
Manufacturing (LOM)
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Figure 1. The AM process can be classified in many ways. One of which is the classification based on
materials used: liquid, solid, and powder.

The AM output is affected by various essential parameters, including layer thickness,
printing speed, printing temperature, and material properties. A detailed understanding
of the AM process—from the ability of materials to be processed to the relationship be-
tween the process–structure–properties of the AM parts—is crucial to ensure high product
quality [5,8,18]. The first step in mitigating faults in AM is understanding the defects and
their causes. Listed below are some of the common faults and their definitions. These
can be categorized according to how AM affects the by-product, e.g., whether it affects
the geometry and dimensions, surface quality, microstructure, or mechanical properties as
shown in Figure 2 [19].

• Geometrical Inaccuracy: the deviation of a printed object’s shape or geometry from its
intended design due to issues in the printing process, such as incorrect bed leveling,
insufficient cooling, or buildup of residual stress [20].

• Warping: occurs when the edges of a printed object curl up or lift from the print bed
due to uneven cooling, poor adhesion to the bed, low bed temperature, or residual
thermal strain accumulated during the printing [21].

• Balling: occurs when excess material collects and forms a ball or blob on the printed
object during the printing process [22].

• Splatter: the unintentional extrusion of material during printing, resulting in excess
material or a messy print [23].

• Anisotropy the variation in the mechanical or physical properties of a printed object
in different directions, resulting from the layered nature of 3D printing [24].

• Porosity: the presence of voids or holes within a printed object, which can result from
incomplete or insufficient printing [25].

• Cracking: occurs when a printed object develops cracks or fractures due to sudden
changes in temperature during printing or other issues [25].

• Delamination: the separation or detachment of layers in a printed object due to poor
adhesion between layers caused by the improper gap between the nozzle height and
print [21].

• Over-Extrusion and Under-Extrusion: Over-extrusion occurs when the 3D printer
deposits more material than necessary for each layer of the printed object. On the
other hand, under-extrusion occurs when the 3D printer does not deposit enough
material for each layer, resulting in incomplete or weak prints. It is caused by too
much or a lack of filament flow, respectively [26].
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Figure 2. The common errors or faults in AM can be categorized in four ways, according to how it
affects the by-product.

Hence, several types of research have been conducted to monitor faults during print-
ing in the past several years. Fault monitoring in AM is crucial for ensuring the quality
and reliability of printed parts. It enables manufacturers to deliver high-quality compo-
nents, reduce rework and wasted materials costs, optimize printing processes, and drive
continuous improvement in the AM industry. By monitoring defects, manufacturers can
identify issues early, take corrective actions, and enhance printed parts’ overall quality
and integrity, making AM a more viable and trustworthy manufacturing method across
various industries. There are two main approaches to monitoring faults during the AM
process. The first approach uses analytical models to predict the values of the process
parameters. Mathematical and statistical models are applied to the AM process to avoid
failures, enhance part quality, and create flawless products to understand its behavior
further. A significant computational burden is associated with the current investigations
because they all relied on complex simulation and physics-based Finite Element Analysis
(FEA). Real-time control requires effective analytical and data-driven models to process
large data streams. These issues prompted researchers to consider a second strategy [11].

The second approach is to monitor faults through in-process monitoring. During the
AM process, sensors can be incorporated into the printing equipment to monitor critical
parameters such as temperature, pressure, laser power, or material flow [18]. The most
significant benefit of this method is that it allows for early fault detection and real-time
process control. In-process monitoring enables the early detection of defects or anomalies
by continuously monitoring key printing process parameters. This permitted immediate
intervention prior to the escalation of defects, resulting in improved part quality and a
decreased need for costly rework or reprinting. In-process monitoring also provides real-
time feedback on the printing process, enabling operators to promptly adjust and control
critical parameters. This improves process control and decreases the probability of defects,
ensuring consistent part quality throughout the production run. Two subcategories of in-
process monitoring exist: image-based monitoring and sensor-based monitoring. The latter
entails integrating multiple sensors into the AM system to collect and analyze real-time
data on crucial parameters. These sensors provide quantitative measurements of critical
printing process variables. The paper focuses on image-based monitoring, which involves
capturing visual data during the printing process to analyze and monitor various aspects
of the AM process. This technique employs cameras or imaging systems to capture images
or videos of the printing area. Using computer vision techniques, the images or videos are
then analyzed to extract pertinent information.

In this paper, the researchers conducted an extensive literature review on the topic
of “Image-Based Fault Monitoring in AM”. Two major academic databases were utilized:
Google Scholar and Mendeley. The main objective of the study was to gather papers from
January 2019 to July 2023 specifically related to the application of image-based approaches
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for fault monitoring in the field of AM. The researchers focused on identifying relevant
literature that discussed the use of visual data and image analysis techniques to detect
and monitor faults and errors in 3D printers and the AM process. To conduct their search
effectively, the authors employed a set of targeted keywords related to the subject matter.
The keywords used in the search included: AM, 3D Printers, Fault Monitoring, Defect
Monitoring, Anomaly Monitoring, Quality Control, Defect Detection, Anomaly Detection,
Image-based, and Vision-based. By using these specific keywords, the researchers aimed
to narrow down their search results to papers that addressed the intersection of additive
manufacturing and image-based fault monitoring techniques. To perform a more compre-
hensive search, the researchers utilized Boolean operators such as “AND”, “OR” and “NOT”
to combine search terms in metadata effectively. Specifically, statements such as ““Additive
Manufacturing” AND (Fault Detection OR Fault Monitoring OR Defect Detection OR
Anomaly Detection) AND (Vision-based OR Image-based)” were used. Excluded from the
search were papers not related to image-based fault monitoring in AM and papers that
did not involve the use of visual data and image analysis techniques. Review papers and
papers that excluded the use of any AM processes were excluded.

After the initial search and removal of duplication, a total of 53 papers met the inclusion
criteria and were selected to be part of the survey. Table 2 shows the number of publications
collected, sorted per year. This table offers insights into the research trends and the volume
of work published during each period. Based on the data, it is observed here that 2020
and 2021 offered the most published research. The year 2020 was when image-based fault
monitoring in AM gained traction. The decline in 2022 may be attributed to the reduced
research productivity due to the COVID-19 pandemic [27]. This paper was written in the
first half of 2023 when many papers were still undergoing the publication process; thus, a
low publication count was found in this year.

This article is organized as follows: Section 2 introduces the concept of image-based
fault monitoring, which will be the basis for the preceding sections. Section 3 discusses and
reviews ML algorithms for image-based fault monitoring. Section 4 tackles the insights and
trends observed from the reviewed studies. Lastly, Section 5 concludes this survey.

Table 2. List of Publications in Image-Based Fault Monitoring for AM.

Publication Year Publication Count References

2019 8 [26,28–34]

2020 17 [21,35–50]

2021 11 [51–60]

2022 8 [61–64,64–67]

2023 9 [68–76]

Total 53

2. Image-Based Fault Monitoring

Fault monitoring in AM refers to the systematic process of monitoring and detect-
ing deviations, anomalies, or faults during printing to ensure the printed parts’ quality,
integrity, and reliability. It involves continuously monitoring the AM process’s critical
parameters, variables, or characteristics and comparing them against predetermined thresh-
olds or expected values. The goal is to identify and address any faults or anomalies that
may compromise the final part’s quality or performance. It involves using various tech-
niques, such as in-process monitoring, real-time data analysis, and automated systems, to
identify faults or deviations from desired specifications. By monitoring parameters such as
temperature, pressure, laser power, material flow, layer deposition, or surface quality, fault
monitoring allows for the early detection of defects, material inconsistencies, structural
irregularities, or printing errors [77].
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One approach to fault monitoring is image-based fault monitoring. During printing,
image-based fault monitoring in AM involves capturing visual data using cameras or
imaging systems to analyze and detect faults or defects. Using computer vision techniques,
this method analyzes captured images or videos and extracts relevant information for
fault detection. Image-based monitoring focuses on the visual aspects of the printed
part and its printing process, providing valuable information regarding surface quality,
layer deposition, feature accuracy, and overall print integrity [78,79]. In image-based fault
monitoring, captured images or video frames are examined for irregularities, deviations,
or anomalies that may indicate printing defects. Combining multiple techniques, such
as using different imaging modalities (e.g., visible light, infrared, X-ray) or employing
advanced ML algorithms for automated defect classification, can improve image-based
fault detection. The goal is to accurately and efficiently identify defects, ensuring high-
quality and reliable AM outcomes. The images can also be used to inspect the surface
quality of the printed part, detecting surface defects, warping, or roughness. Additionally,
image-based monitoring can detect and analyze specific features or geometries on the
printed part to ensure accurate reproduction. By continuously analyzing the visual data in
real time, image-based fault monitoring enables operators or quality control personnel to
identify and address faults early in the printing process, reducing the risk of producing
defective or non-conforming parts [8,80]. Figure 3 illustrates the process of image-based
fault monitoring in AM. Each step is further discussed in the following subsections [81].

Figure 3. The image-based fault detection process is divided into five main steps: image acquisition,
preprocessing, image analysis, defect identification, real-time monitoring and analysis, and decision
making and quality control.

2.1. Image Acquisition

High-resolution cameras or imaging systems capture images of the manufactured
parts at various stages of the AM process. These images can be obtained either during the
printing process or after its completion. In this step, cameras are strategically positioned
to capture the printing area or specific regions of interest. The number and placement of
cameras depend on factors such as the size of the printing setup, the complexity of the
part, and the desired level of coverage. Multiple cameras may provide different views or
angles for comprehensive monitoring. The camera settings and parameters are configured
to optimize image acquisition. This includes adjusting parameters such as exposure time,
aperture, ISO sensitivity, white balance, focus, and frame rate. These settings are adjusted
to ensure clear and correctly exposed images or video frames [82].

The images are captured at appropriate intervals based on the specific requirements
of the AM process. Factors including layer deposition time, cooling periods, or critical
stages of the printing process can determine this. The camera is also calibrated to ensure
accurate and reliable measurements from the captured images. This involves determining
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the camera’s intrinsic parameters, such as focal length, lens distortion, and pixel size.
It helps correct geometric distortions and ensure accurate measurements in subsequent
image analysis steps. Two types of cameras are used in image acquisition, namely, optical
and thermal.

2.1.1. Optical Camera

Optical cameras capture images within the visible light spectrum. These cameras
function similarly to conventional cameras and can capture images with high resolution and
color accuracy. Versatile and widely used in AM for monitoring the printing process and
detecting visible flaws or inconsistencies, they are adaptable and versatile. Optical cameras
can provide visual data on the printed object, such as layer deposition, surface quality, and
geometry. They can capture images of each layer or specific regions of interest, enabling
real-time monitoring and detection of flaws such as surface roughness, delamination,
warping, or missing layers. Optical cameras are beneficial for detecting visible anomalies
that may compromise the printed part’s structural integrity or final quality.

Other notable types of optical cameras are high-speed cameras, charge-coupled device
(CCD) cameras, and complementary metal oxide semiconductor (CMOS) cameras. High-
speed cameras capture images at a rapid frame rate, allowing for the detection of fast
dynamic events during the printing process. These cameras can capture fine details and be
used to monitor the deposition of each layer or detect defects in real time. CCD cameras
offer several advantages regarding image quality, sensitivity, and dynamic range. They
can capture high-resolution images with low noise, making them suitable for detailed
imaging and analysis. CCD cameras are often used in scientific and industrial applications
where image quality and accuracy are crucial [83]. CMOS cameras, on the other hand, have
become popular alternatives to CCD cameras due to their lower power consumption, faster
readout speeds, and cost-effectiveness. CMOS cameras are also widely used in AM and
often provide comparable image quality [82].

2.1.2. Thermographic Camera

Thermographic cameras, also called infrared cameras, capture images based on objects’
heat or thermal radiation. These cameras operate in the non-visible infrared spectrum and
are sensitive to temperature differences. By detecting variations in thermal patterns, thermo-
graphic cameras can identify areas of heat generation or dissipation, enabling the detection
of thermal anomalies during the AM process [84]. Thermographic cameras help monitor
AM-related issues, such as overheating, cooling inconsistencies, or thermal gradients. These
anomalies may indicate faults such as improper material fusion, insufficient cooling, or
insufficient energy input. By detecting these thermal irregularities, thermographic cameras
can help ensure the integrity and quality of the printed part.

2.2. Preprocessing

The acquired images may undergo preprocessing steps to enhance the quality and
extract relevant information [85]. Preprocessing aims to improve the clarity and consistency
of the images for subsequent analysis. This includes steps such as image cleaning to remove
unwanted artifacts, image filtering to reduce noise, contrast enhancement to improve
the visibility of details, image registration to align multiple views, calibration to correct
geometric distortions, image resampling for specific requirements, illumination correction
to equalize lighting conditions, and image segmentation to isolate relevant regions or
objects. These preprocessing steps ensure the captured images are high quality, free from
disturbances, and adequately prepared for subsequent fault detection and analysis. This
enables accurate and reliable identification of faults or defects in the AM process.
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2.3. Image Analysis

Image analysis techniques are then applied to examine the preprocessed images. This
involves extracting meaningful features from the images that can be used to identify defects.
Different methods may be employed, including:

• Image segmentation: This process involves partitioning the image into meaningful
regions or objects. It separates the defects from the background or surrounding
structures, making them easier to analyze separately [86].

• Feature extraction: Relevant features are extracted from the segmented regions or the
entire image. These features can include geometric characteristics (e.g., shape, size, or
aspect ratio), texture patterns, intensity profiles, or statistical measures [87,88].

• Classification: ML algorithms or pattern recognition techniques can classify the ex-
tracted features and distinguish between normal and defective parts. This may involve
training a classifier on labeled data, where the defects are identified and associated
with specific feature patterns [82].

2.4. Defect Identification

After classifying the features, the presence and type of defects can be determined.
Surface irregularities, cracks, voids, porosity, warping, and other flaws may constitute
defects. The analysis can provide information regarding the defects’ location, size, severity,
and nature. Listed below are the steps involved in the process of identifying defects:

1. Fault localization: The first step in defect identification is to determine the precise
location of the detected fault within the captured images or video frames. This
involves mapping the identified features or anomalies to the corresponding regions
of the AM process. Localization helps pinpoint the specific area where the fault or
defect has occurred [82].

2. Categorization and classification: Once the fault is localized, it is categorized and
classified based on its nature and characteristics. This step involves assigning a specific
category or type to the detected fault, such as missing layers, surface irregularities,
dimensional deviations, or structural defects. Classification helps understand the
fault’s nature and facilitates subsequent analysis and decision making [82].

3. Severity assessment: The severity of the detected fault is assessed to determine its
impact on the quality and functionality of the printed part. This involves evaluating
the extent of the defect, its potential to compromise structural integrity, or its effect on
critical dimensions or functional properties. Severity assessment helps prioritize the
detected faults and guides subsequent actions for mitigation or correction.

4. Reference comparison: In some cases, a reference comparison is performed to assess
the detected fault against a known reference standard. This involves comparing the
features or characteristics of the faulty part with those of a defect-free reference part
or an ideal model. Reference comparison provides a basis for evaluating deviations
or abnormalities and determining the acceptability of the printed part.

2.5. Real-Time Monitoring and Decision Making

The defect detection and classification process is performed in real time as new images
are acquired during the AM process. The system continuously monitors the images and
provides immediate feedback on defects or anomalies. Real-time monitoring allows for
timely intervention and adjustment of the manufacturing process to prevent further defects.
The system generates alerts or notifications to inform the operators or control systems based
on the detected defects or anomalies [89]. The alerts can trigger actions such as pausing
the process, adjusting parameters, or initiating corrective measures. The decision-making
process relies on predefined criteria or quality standards to determine the acceptability of
the manufactured part. Data collected, including images, extracted features, and defect
classifications, can be logged for further analysis and quality control. These data can be
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used for process optimization, defect trend analysis, and continuous improvement of the
AM process.

3. Machine Learning Algorithms

According to [90], ML is a set of methodologies and algorithms capable of extracting
knowledge from data, and they continuously improve their capabilities by learning from
experience. ML is a subfield of artificial intelligence (AI) that focuses on developing
algorithms and models that enable computers and systems to learn from data and make
predictions or decisions without being explicitly programmed. It involves constructing and
analyzing mathematical models and algorithms that allow computers to learn and improve
from experience, iteratively adapting their performance based on available data. In other
words, it involves designing and implementing algorithms that can automatically learn and
improve based on experience or data without explicit instructions for each specific task. The
fundamental premise of ML is to enable computers to automatically discover patterns or
relationships in data and make intelligent predictions or decisions. Training the ML model
on a large dataset enables it to recognize patterns, extract pertinent features, and generalize
from the provided examples. The model learns from the data by iteratively adjusting its
internal parameters or structure to reduce errors and enhance performance on the given
task. ML techniques are broadly classified as supervised, unsupervised, semi-supervised,
and reinforcement learning [91].

• Supervised learning: In supervised learning, the model is trained on labeled data,
where each example is associated with a corresponding target or output value. The
model learns to map inputs to outputs based on the provided labeled examples,
enabling it to make predictions on new, unseen data [92].

• Unsupervised learning: Unsupervised learning involves training the model on un-
labeled data. The goal is to uncover hidden patterns or structures within the data
without explicit guidance. Clustering, dimensionality reduction, and anomaly detec-
tion are common tasks in unsupervised learning [92].

• Semi-supervised learning: Semi-supervised learning combines supervised and un-
supervised learning. It uses a small amount of labeled data and a larger amount of
unlabeled data to improve the learning process. This can be useful when obtaining
labeled data is expensive or time-consuming [92,93].

• Reinforcement learning: Reinforcement learning focuses on training an agent to
interact with an environment and learn optimal actions to maximize a reward signal.
The agent explores the environment, receives feedback through rewards or penalties,
and adjusts actions to achieve the desired goal [94,95].

According to [96], the generic model of ML consists of six components, independent
of the algorithm adopted. Figure 4 shows the primary components of ML with each
component having a specific task to accomplish:

1. Collection and preparation of data: This involves the gathering of relevant data that
will be used to train and test the model. The data should represent the problem
domain accurately and have sufficient quantity and quality. Data collection may
involve the use of sensors, web scraping, database queries, surveys, or other means.
After gathering the data, they need to be preprocessed and prepared for training.
Data preprocessing includes tasks such as handling missing values, normalization,
feature scaling, handling outliers, and converting categorical variables into numerical
representations.

2. Feature selection: In this step, the most relevant and informative features are cho-
sen from the prepared dataset. Feature selection is essential because irrelevant or
redundant features can lead to overfitting and increase the model’s complexity with-
out improving its performance. Various techniques such as correlation analysis,
forward/backward selection, and feature importance from models can be used for
feature selection.
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3. Choice of algorithm: Selecting an appropriate machine learning algorithm is critical
to the success of the model. The choice of algorithm depends on the type of problem
(e.g., classification, regression, clustering), the nature of the data (e.g., structured or
unstructured), the size of the dataset, and other factors. Some common algorithms
used in AM are discussed in the latter part of the paper.

4. Selection of models and parameters: Once the algorithm is chosen, the next step is to
select the specific model and parameters. Most machine learning algorithms require
some initial manual intervention for setting the most appropriate values of various
parameters.

5. Training: Training is the process of feeding the prepared data into the selected ma-
chine learning model and adjusting its parameters based on the input to improve its
performance. During training, the model learns patterns and relationships in the data
to make predictions or decisions. The model is trained on a portion of the data known
as the training set, while the remaining data are reserved for evaluation (testing).

6. Performance evaluation: After the model is trained, its performance needs to be
evaluated to determine how well it generalizes to new, unseen data. Performance
evaluation is performed using metrics suitable for the specific problem type. For
instance, accuracy, precision, recall, and F1-score are common metrics for classification
problems, while mean squared error (MSE) and R-squared are used for regression
problems. Performance evaluation helps in assessing the model’s effectiveness and
identifying potential issues such as overfitting or underfitting.

Figure 4. The generic ML model consists of six components: collection and preparation of
data/dataset, feature selection, choice of algorithm, selection of model and parameters, training, and
performance evaluation.

In AM, ML can be used for the real-time detection and monitoring of faults. ML
algorithms can analyze real-time images or video streams captured during printing. By
training models on a large dataset of defect images, the algorithms can learn to identify and
classify defects, such as surface roughness, voids, cracks, or warping. Additionally, these
algorithms can analyze sensor data such as temperature, humidity, gas emissions, and
vibrations in real time to identify patterns or anomalies associated with defect formation.
Other applications are 3D printing design, process optimization, and security [8,18]. The
most common ML algorithms used in image-based fault detection in AM are the following:

3.1. Neural Network (NN)

The NN algorithm, also known as Artificial Neural Network (ANN), is a class of
machine learning techniques that emulates the functionality of interconnected neurons in
the human brain. Its architecture consists of three fundamental types of layers: the input
layer, hidden layers, and output layer as shown in Figure 5 [97]. Each layer comprises
interconnected nodes or neurons, which borrow the idea from neurological sciences. These
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neurons receive input data, perform computations on that data, and produce outputs that
are passed to subsequent layers. The connections between neurons are associated with
weights, which represent the magnitudes of influence one neuron has on another within
adjacent layers. The weights play a critical role in determining the behavior and effective-
ness of the neural network. The training process of a neural network involves iteratively
adjusting these weights to minimize the loss function, which measures the discrepancy
between the predicted outputs and the actual outputs in the training data. The objective
is to find the optimal configuration of weights that allows the neural network to make
accurate predictions on unseen data. To achieve this, a variety of optimization techniques
are employed, with one of the most famous and widely used being backpropagation.
Backpropagation is a mathematical algorithm that uses the chain rule from calculus to
compute the gradients of the loss function with respect to each weight in the network.
These gradients indicate the direction and magnitude of the change required to minimize
the loss. By iteratively updating the weights in the opposite direction of the gradients, the
neural network learns to adjust its connections in a way that reduces prediction errors.
This process is typically performed over multiple iterations, referred to as epochs, until the
neural network converges to a state where the loss is minimized [98]. Once the training
phase is completed successfully, the neural network is capable of inferring outputs based on
previously unseen inputs. This ability to generalize from the training data to unseen data is
one of the key strengths of neural networks, making them highly effective in tasks such
as image recognition, natural language processing, speech recognition, and more. Over
the decades of its development, researchers have proposed various specific types of neural
networks to address different tasks and challenges. Some of these include feedforward
neural networks, convolutional neural networks (CNNs) for image processing, recurrent
neural networks (RNNs) for sequential data, and generative adversarial networks (GANs)
for generating realistic data [99].

Figure 5. The NN algorithm consists of three types of layers: the input layer, hidden layers, and
output layer [100].



Sensors 2023, 23, 6821 13 of 30

3.2. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a specialized type of feedforward neural
network capable of automatically extracting features from data using convolutional struc-
tures. Although CNNs have been successfully employed for image-based tasks such as
detection, segmentation, and recognition since the early 2000s, their prominence soared
following the introduction of the AlexNet architecture during the ImageNet competition in
2012 [101,102]. This event marked a turning point in the adoption and popularity of CNNs
in the field of computer vision.

In a CNN, each artificial neuron corresponds to a biological neuron, and the CNN
kernels represent receptors that can respond to various features, akin to how neurons in
the visual cortex are sensitive to specific patterns [103]. CNNs employ activation functions,
such as the rectified linear unit (ReLU), to simulate the thresholding mechanism of neurons,
ensuring that only electric signals exceeding a certain threshold are transmitted to the next
layer. The training process of a CNN involves the use of loss functions and optimizers
to teach the network to learn the desired patterns and relationships from the data. The
fundamental components of a CNN model include the following. These layers work
together to extract hierarchical representations from input data and perform the final
classification or regression task [6].

1. Convolutional layers: Convolutional layers employ a set of learnable filters, also
known as a filter bank, to scan the input data in a localized manner, capturing local
features and patterns [102]. The filters, represented by weights, are trained during the
learning process to detect specific features relevant to the task at hand, such as edges,
corners, or textures. This localized scanning and feature extraction process is repeated
across the input data, generating feature maps that highlight relevant patterns.

2. Pooling layers: Following the convolutional layers, pooling layers are utilized to
reduce the spatial dimensions of the feature maps while retaining the most salient
information. Pooling involves applying aggregation functions (e.g., max pooling
or average pooling) within localized regions of the feature maps, effectively reduc-
ing their size and computational complexity. This downsampling step helps make
the network more robust to small variations in the input data and reduces the risk
of overfitting.

3. Fully connected layers: The output of the convolutional and pooling layers is then
fed into fully connected layers. In these layers, each neuron is connected to every
neuron from the previous layer, forming a dense connectivity pattern. These fully
connected layers are responsible for making the final decision or prediction based on
the extracted features. For image classification tasks, the last fully connected layer
often produces the probabilities or scores for each class, and the highest-scoring class
is considered the predicted label.

CNNs have proven highly effective in computer vision tasks, including image classi-
fication, object detection, and segmentation, owing to their ability to automatically learn
intricate features and their advantage of local connections, weight sharing, and down-
sampling dimension reduction. The combination of these appealing characteristics makes
CNNs a prominent algorithm in the field of deep learning, revolutionizing image-based
machine learning and artificial intelligence research [104].

3.3. Support Vector Machine (SVM)

Support Vector Machine (SVM) is primarily used for categorization and binary classi-
fication tasks. It operates on the concept of calculating margins, aiming to find an optimal
decision boundary, represented as a hyperplane, that effectively separates different groups
of data [105]. The main objective of SVM is to maximize the margin between the decision
boundary and the closest data points of each class, known as support vectors. This ensures
that the classification error is minimized and enhances the algorithm’s ability to generalize
well to new, unseen data. To achieve this, SVM selects the hyperplane that maintains the
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maximum distance between the support vectors of different classes. These support vectors
play a crucial role in defining the decision boundary and are instrumental in constructing
the classification model [106]. Given a labeled dataset with samples from different classes,
SVM’s architecture involves finding the optimal hyperplane that best separates the data
points. This process ensures that the margin between the decision boundary and the labeled
classes is maximized, resulting in an effective reduction in the classification error. During
the classification phase, when new data are presented, SVM assigns the data point to the
class corresponding to the side of the decision boundary on which it lies. The ability of
SVM to draw a line or hyperplane to separate data points makes it highly suitable for
binary classification problems. In AM, this algorithm is successfully used for detecting part
defects, diagnosing faults in 3D printers, and generating process maps [107]

3.4. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a non-parametric and instance-based machine learning
algorithm used for classification tasks. The algorithm operates by identifying the K most
similar data points (neighbors) from the labeled dataset to a given query example [108].
These neighbors are then utilized to determine the class label of the query through sim-
ple majority voting or distance-weighted voting. During the training phase, the labeled
dataset is fed into the KNN classifier or learner. The training data consist of input samples
along with their corresponding class labels. This step enables the algorithm to learn the
underlying patterns and relationships in the data. In the classification phase, when a new
query example is presented for prediction, the KNN algorithm searches for the K most
similar data points from the training set. The similarity between data points is typically
measured using distance metrics, such as Euclidean distance or Manhattan distance. Once
the K-nearest neighbors are identified, the class label for the query example is determined
based on a voting scheme. In the case of simple majority voting, the class that appears
most frequently among the K neighbors is assigned to the query example. This means that
the class label with the highest number of occurrences among the neighbors becomes the
predicted class for the query. Alternatively, KNN can use distance-weighted voting, where
the contribution of each neighbor to the prediction is weighted based on its proximity to
the query example. Closer neighbors have a stronger influence on the prediction, while
more distant neighbors have a weaker impact.

3.5. Decision Tree (DT)

A decision tree (DT) is a hierarchical, tree-like structure used for classification purposes.
It organizes and categorizes data by recursively sorting attributes based on their values
and grouping them together to make decisions. The decision tree consists of nodes and
branches, where each node represents an attribute that requires classification, and each
branch represents a specific value taken by that attribute. The process of constructing the
tree involves partitioning the data at each node based on the attribute values, leading to the
formation of distinct branches corresponding to different attribute value ranges. Ultimately,
the leaves of the DT represent the classification outcomes or the predicted classes for the
data instances based on the attribute conditions defined by the path from the root to the
respective leaf [109].

3.6. Random Forest (RF)

Random Forest (RF) is an ensemble learning method used for classification and re-
gression tasks. It consists of a large number of individual decision trees that operate as an
ensemble. In this method, each decision tree in the forest independently classifies the input
data, and the class with the most votes from the individual trees becomes the final output
of the model. During the training phase, the Random Forest algorithm builds multiple
decision trees using a technique called bootstrapped aggregation (or bagging). It randomly
samples the training data with replacements to create different subsets of the dataset for
each tree. This process introduces diversity among the individual trees, as they are trained
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on different subsets of the data. Each decision tree in the Random Forest independently
makes predictions based on the features of the input data. The decision-making process
involves splitting the data at each node based on the features that best separate the samples
belonging to different classes or, in the case of regression tasks, predict the target values ef-
fectively. Once all the decision trees are trained, during the prediction phase, the input data
are passed through each tree. Each tree in the ensemble classifies the data independently,
and the class label with the highest frequency among the individual trees is chosen as the
final output of the RF model [110].

3.7. Naive Bayes (NB)

Naive Bayes (NB) is a probabilistic machine learning algorithm primarily used for
clustering and classification tasks. It is based on the concept of Bayesian networks, which
are graphical models representing the probability relationships among a set of random
variables. These graphical models combine graph theoretic approaches with probability
theory. In a Bayesian network, the relationships between variables are represented using
directed acyclic graphs. Each node in the graph corresponds to a random variable, and
the connecting arcs between nodes indicate the probabilistic dependencies between the
variables. The conditional probability distribution is used in the underlying architecture
of Naive Bayes. The Naive Bayes algorithm assumes that the features (variables) are
conditionally independent given the class label. This is known as the “naive” assumption,
which simplifies the calculation of probabilities. Despite this simplification, Naive Bayes has
shown effective performance in many real-world applications. During the training phase,
Naive Bayes estimates the conditional probabilities of each feature given each class label
from the labeled training data. It computes the likelihood of each feature occurring in each
class. During classification, when a new instance with an unobserved class label is given,
the Naive Bayes algorithm utilizes the computed conditional probabilities to calculate
the posterior probability of each class. The class with the highest posterior probability is
assigned to the new instance as the predicted class label [111].

4. Discussion

This section provides a concise summary of the main findings and key points of the
research garnered. The advancements and current state of image-based fault monitoring in
AM are highlighted here. Furthermore, the recent developments and future directions are
discussed in this section.

4.1. Summary of Findings

Image-based monitoring is a promising approach for improving the quality and
reliability of AM processes. It can be used to detect a variety of defects, including porosity,
cracks, surface roughness, and dimensional inaccuracy. This subsection gives an overview
of the different types of image-based fault monitoring methods developed for AM. Table 3
shows the research summary collected in this paper. This table is categorized according
to the year, AM process, camera used, ML algorithm, and errors detected. These details
were included to consider the variations in equipment, approaches, and techniques that
may be introduced in future experimentation. “AM process” shows the type of AM
process or 3D printer used in the research as part of what was previously discussed in
this paper. “Camera Used” includes the type of camera used and its model (if provided).
"Proposed Algorithm" and “Accuracy” present the novel or optimized algorithm used
in the research for image classification for defect detection and its accuracy. Accuracy
is a common indicator of accuracy, along with recall, precision, and F1-score. The most
common definition of accuracy is Accuracy = TP+TN

TP+TN+FP+FN wherein TP represents the
number of true positive predictions, TN represents the number of true negative predictions,
FP represents the number of false positive predictions, and FN represents the number of
false negative predictions [112]. Finally, “Errors Detected” lists the error/s detected or
mitigated in the experiment.



Sensors 2023, 23, 6821 16 of 30

Table 3. Summary of papers that use image-based monitoring in AM.

Ref Year AM Process Camera Used Proposed
Algorithm

Errors
Detected Accuracy

[67] 2023 FFF Optical and IR Camera N/A Point and Line Defects N/A

[73] 2023 FDM
Thermographic
Camera (FLIR®

System model A40)

Static Thermographic
Method

Porosity, Micro
delamination, and

Micro-cracks
N/A

[33] 2019 L-PBF Visible-light Camera Bayesian Classifier Geometric Errors and
Porosity N/A

[39] 2020 SLM Machcam 71 MP
Camera CNN

Critical Stripes,
Scanning Surface,

Upraising Areas, and
Recoating Defect

79.21–97%

[50] 2020 N/A CCD Camera (Lumens
DC125) CNN Extrusion Speed and

Extrusion Temperature 94%

[35] 2020 L-PBF

Thermographic
Camera (PYROVIEW
640 G/50 Hz/25° ×

19°/compact)

CNN Splatter and
Delamination 96.8%

[51] 2021 FDM Overhead Webcam
NN
GBC
SVM

N/A
95%
93%
60%

[75] 2023 SLM CCD Camera Digital Image
Processing Powder Bed Spreading N/A

[36] 2020 FFF CCD Camera KM Porosity and Cracking N/A

[32] 2019 SLM 24.2 MP Single-Lens
Reflex Digital Camera CNN

Defects Induced by
Process

Non-conformities
(Trace discontinuity,

insufficient layer
densification, etc.)

99.4%

[70] 2023 L-PBF High-speed Camera YOLOv4 Spatter N/A

[59] 2021 DED Dual-camera

KNN
RF
GP

Other algorithms
(SVM, DT, NB, ANN,

AB)

Surface Defects
93.15%
69.86%
67.12%

[72] 2023 PP Optical Camera
(Samsung Galaxy S7) CNN Surface Defects 98%

[61] 2022 N/A Optical Camera CNN
Bending Deformation

in the Printed
Concrete Layers

90.5% (in concrete and
non-concrete layers)

97.5% (in defected and
non-defected layers)

[54] 2021 L-PBF High-speed Camera CAE Melt Pool Defects 95.38%

[41] 2020 N/A

USB Camera (13 MP,
FOV 75Degree
Autofocus USB

Camera with
Non-Distortion Lens)

MobileNet-SSD Surface Defects N/A

[58] 2021 L-PBF Area-Scan
Hyperspectral Camera CNN Surface Roughness N/A
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Table 3. Cont.

Ref Year AM Process Camera Used Proposed
Algorithm

Errors
Detected Accuracy

[74] 2023 FDM IR Thermocouple
KNN, RF, ANN,

Multinomial Logistic
Regression, and SVM

Print Regime, Strand
Width, Strand Height,

and Fusion Ratio
90%

[66] 2022 WAAM Laser Profilometer
Sensor SVM Surface Defects 99.8%

[21] 2020 FDM Optical Camera
(Logitech C270) CNN Delamination and

Predict Warping
Validation: 97.8%

Testing: 91%

[26] 2019 FDM Optical Camera
(Logitech C270) CNN Under-extrusion and

Over-extrusion 98%

[56] 2021 FDM Optical Camera
(Raspberry-pi Camera)

SVM
KNN

RF
DT
NB

Warping, Blistering,
Porosity, Cracking,

Residual Stresses, Poor
Surface Finish,

Stringing, Material
Shrinkage

99.7%
99.4%
97.2%
96.6%
85.9%

[44] 2020 N/A Webcam CNN
Filament Tangling
(spaghetti-shape

errors)
~90%

[37] 2020 TPL Optical Camera Seq CNN-LSTM Part Quality 95.1%

[68] 2023 FDM

Digital microscope
(Aomekie USB

Microscope) and IR
Camera

Swin Transformer
algorithm and 1DCNN N/A 0.979

[57] 2021 FFF Digital Camera or 3D
Scanner

Z-difference
Bagging

GB
RF

L-SVM
KNN

Geometrical Defects

0.9737–0.9886
0.9978–0.9992
0.9978–0.9997
0.9978–0.9992
0.9956–0.9959
0.9923–0.9979

[48] 2020 N/A Optical Camera R-CNN, SSD, and
YOLOv4

Misalignment and
Abrasion N/A

[71] 2023 N/A Video Camera

Semi-supervised
Identification

Consistency-based
Method

Surface Roughness 25.9–74.1%

[29] 2019 FFF Optical Camera 3D Model
Reconstruction Layer-by-layer Defects N/A

[62] 2022 FDM N/A Autoencoder and
GAN Warping N/A

[45] 2020 L-PBF Multispectral
Photodetector Sensor

Graph Theoretic
Approach Porosity N/A

[69] 2023 FFF Optical Camera
(SVCAM exo264CGE) N/A Surface Errors 86.5%

[34] 2019 L-PBF Visible-light
High-speed Camera SVM

Keyholing Porosity
and Balling
Instabilities

85.1%
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Table 3. Cont.

Ref Year AM Process Camera Used Proposed
Algorithm

Errors
Detected Accuracy

[46] 2020 L-PBF, EB-PBF, BJ
Visible-light Camera,

NIR Camera, and
MWIR Camera

DSCNN

Surface-visible
Defects (recoated

blade impacts, binder
deposition issues,
spatter generation,

porosity)

N/A

[28] 2019 N/A 3D Scanning CMM
and Computer Vision DNN

Translation, Scaling
Up, Scaling Down,

and Rotation
N/A

[38] 2020 FFF Thermographic
Camera DNN and AI-TSR Delamination

Delamination
Thickness: 95.4%

Unacceptable
Condition: 98.6%

[60] 2021 N/A DSLR Camera
(Nikon D800E) CNN Lack of fusion and

Spatter
Same Build: 93.5%

Unseen Build: 87.3%

[63] 2022 N/A Scanning Electron
Microscope

Semi-supervised
Spectral Clustering

Method
Porosity N/A

[55] 2021 ABS 3D Printing Thermal Imaging
Camera IRT and CNN Surface Breaking

Holes 90%

[30] 2019 SLS Thermal Camera
CNN-based

Encoder-Decoder
Network

Temperature N/A

[40] 2020 LBAM Thermal Camera and
Pyrometer CNN and IRNet Porosity 90%

[53] 2021 WAAM Vision Sensing
System EPNet and ADRC Melt Pool Width 94.18%

[52] 2021 SLS HD Webcam CNN and Complex
TL Powder Bed Defects 0.958

[65] 2022 N/A

High-speed Camera
(5F04M monochrome

CMOS high-speed
camera)

IDW-KNN N/A 94–100%

[64] 2022 WAAM Laser Scanner
ANFIS

SVR
ELM

Surface Roughness N/A

[43] 2020 SLS Digital Camera TS-CNN
Warpage, Part

Shifting, and Short
Feed

94–96%

[76] 2023 FDM Sony a7 III Camera TL Surface Quality 90%

[42] 2020 L-PBF Infrared Camera SC with K-SVD Porosity N/A

[31] 2019 L-PBF High-speed Camera CNN Porosity 91.2%

[47] 2020 L-PBF High-speed Camera Hybrid CNN

Overheating,
Irregularity in

Process Conditions,
and Balling

0.997

[49] 2020 FDM CMOS Camera VCSS and FPFH N/A N/A
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The types of cameras usually used for image acquisition fall into two categories:
optical (digital) cameras and thermographic (thermal or infrared) cameras, as discussed in
the previous sections. There are other vision-based methods such as 3D scanners, area-scan
hyperspectral cameras, 3D scanning coordinate-measuring machines, and multispectral
photodetector sensors. Three-dimensional scanners capture geometric data from the surface
of an object, generating a three-dimensional representation of the scanned object. They
are utilized for surface defect detection, layer inspection, or dimensional analysis [57].
The area-scan hyperspectral camera is an advanced imaging device that combines the
capabilities of an area-scan camera with hyperspectral imaging technology. It captures
images across multiple spectral bands, allowing for detailed analysis and characterization
of materials based on their spectral properties. It was used by [58] to inspect the surface
roughness of printed materials. A 3D scanning coordinate-measuring machine (CMM) is a
specialized device that combines the capabilities of a traditional CMM with 3D scanning
technology. It is used for precise dimensional measurement and surface scanning of objects,
such as in [28]. The multispectral photodetector sensor is an imaging device that captures
images across multiple spectral bands or wavelengths. It was used by [45] to estimate
porosity in real-time in an L-PBF process.

The most commonly used algorithm in image-based fault detection in AM is CNN.
CNNs have demonstrated remarkable performance in identifying various types of faults,
including voids, porosity, cracks, and surface irregularities. Specifically, [21,26,30–32,35,37,
39–41,43,44,46,47,50,52,55,58,60,61,71,72] used CNN or a CNN-based algorithm. CNN is
commonly used in this application due to its ability to learn spatial hierarchies of features.
This is important for fault detection in AM because many faults can be identified by the
presence of specific patterns of features in the images. Additionally, it is able to learn
invariant features. Lastly, it is able to learn from a large amount of data. CNNs are able to
learn from these data to improve their accuracy at identifying faults. In addition to these
reasons, CNNs are also relatively easy to train and deploy. For instance, in the SLM process,
Ref. [32] shows that CNN has an accuracy of 99.4%. In the aforementioned research, deep
CNN (DCNN) is able to automatically extract multi-level image features and discover the
embedded patterns that are most relevant to the given problem via supervised learning. A
bi-stream DCNN structure is created to analyze SLM part slices and powder layer images
for defects brought on by unfavorable SLM process conditions. The next powder layer’s
surface pattern may be affected by the part slices’ surface pattern deviation brought on by
the varying process conditions. In turn, the irregularity in the powder layer may affect the
surface pattern of the next part slice. The bi-stream DCNN can combine the patterns found
in both layers of images to jointly classify the defects resulting from non-conformities in
the SLM process. In the L-PBF process, CNN also shows a favorable accuracy of 96.8%.
In this work, in situ off-axis thermographic imaging serves as the foundation for the ML
architecture. For automatic defect detection, a CNN was trained and assessed. Specifically,
their network architecture consists of three blocks of CNN and batch-normalization layers
as the depthwise separable convolutions were used in blocks 2 and 3.

Another algorithm used in AM is SVM, which was used in papers [34,51,56,59,66,74].
SVM is also commonly used in this application because it is able to learn non-linear
relationships between features. It is also able to handle high-dimensional data and is
relatively easy to train and deploy. However, there are some limitations to using SVMs
since they can be computationally expensive to train. In addition, they can be sensitive
to the choice of hyperparameters. Ref. [66] shows that SVM reaches an accuracy of 99.8%.
In this study, the surface points of the deposition region were first extracted from the
measured 3D surface profiles in the analysis frame, and after non-linear normalization,
they were transformed into 2D topography images. The topography image’s pixels were
divided into categories for normal and defective pixels using SVM in order to identify the
defects. In [74], six supervised machine learning models (with SVM as one of them) were
optimized and deployed to classify or predict performance for each experiment (single
strand and strand fusion) based on in situ IR thermocouple sensing features. It shows that
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SVM has the highest performance of >85% in terms of predicting the fusion ratio of various
interstrand gaps in bio-AM materials.

In summary, these papers have collectively demonstrated the efficacy of image-based
fault detection techniques in AM. The choice of image acquisition methods has played
a crucial role in capturing the necessary information for fault detection. Furthermore,
the papers explored how CNNs have emerged as a prominent approach, showcasing
their ability to accurately identify various types of faults such as voids, porosity, cracks,
and surface irregularities. It is worth noting that while CNNs are commonly used, other
machine learning algorithms such as SVM and KNN can also be effective depending on
the specific requirements and characteristics of the dataset. Moving beyond the existing
research, recent developments in this field have focused on tackling remaining challenges
and exploring novel approaches. These recent advancements pave the way for further
advancements in image-based fault detection in AM, indicating exciting directions for
future research and industry applications.

4.2. Recent Developments

Significant advancements have been made in image-based fault monitoring in AM in
recent years. The integration of imaging techniques, ML algorithms, and sensor technolo-
gies has revolutionized the detection and correction of flaws and defects during AM. This
section overviews the most recent advancements in image-based fault monitoring in AM,
highlighting the most significant hardware and software innovations and developments.
These advancements have brought us closer to real-time, automated, and dependable fault
detection, paving the way for improved quality control and process optimization.

4.2.1. Image Acquisition

Recent studies have shown that digital and IR cameras are still the dominant image
acquisition method; however, there is a trend in using multi-modal cameras and other
vision sensors such as digital microscopes and laser profilometer sensors. When only one
camera is used for sensing purposes during an experiment, the layer height is the primary
standard parameter that is monitored. As recent developments continue to shape the field,
significant progress has been made in refining image acquisition techniques to capture
high-resolution and comprehensive data for fault detection purposes. In this subsection,
the proponents delve into the advancements in image acquisition methods, focusing on the
innovative approaches that have emerged to improve the acquisition process.

In [70], the authors used an innovative L-PBF setup with an open cell and a fixed
laser to provide quality images for spatter monitoring and enable a large set of data
with numerous laser parameters. Two chamber windows enabled laser exposure and
the observation of laser–matter interaction. The laser–melt pool interaction could be
continuously monitored thanks to this setup. The observations revolved around a high-
speed camera (10 kfps frame rate) positioned at 90° because this study focused on spatter
analysis. Furthermore, this study used YOLOv4, which shows good performance and
application in near real-time conditions in other domains for multi-object detection. By
using this method, it showed how the state of the art deep learning object detection
techniques outperformed traditional computer vision techniques since the YOLOv4 object
detection technique greatly improved recall.

Ref. [66] aimed to address the inability of most existing defect detection methods for
3D monitoring to handle small-sized defects well or detect the defects on the irregular
and complex surface effectively. To overcome these difficulties, the authors proposed a
local detection strategy that divides the surface points into various groups based on the
pluralistic features one by one. The ability to detect defects of various scales and increase
the applicability for WAAMed surface is made possible by the combination of individual
classification and macro-level analysis of neighborhood characteristics. In order to track
the surface quality of the depositing objects in WAAM, the authors developed an in situ 3D
laser profilometer inspection (3D-LPI) system based on a laser profilometer. The captured
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3D point cloud was mapped to a 2D height topography image to increase processing
efficiency, which was confirmed as an efficient solution. Then, using a supervised classifier
to divide the pixels into categories of normal and abnormal based on the nearby features,
the surface defects were discovered and described.

4.2.2. Novel Algorithms and Methods

Although CNN remains the most commonly used algorithm, there is a trend that
shows that fewer papers have made use of it. In 2023, only [68,71,72] made use of CNN,
with two of them using it in combination with another algorithm. Only [61] used CNN in
2022. This is most likely due to the proliferation of the use of CNN in the prior years to avoid
repeatability and duplication. Thus, researchers and practitioners have explored innovative
approaches and novel algorithms to enhance the accuracy, efficiency, and versatility of
fault detection systems. In this subsection, novel algorithms are focused on, highlighting
the cutting-edge techniques that have emerged as promising solutions for fault detection
in AM. These novel algorithms and methods encompass a wide range of methodologies,
including deep learning architectures, graph-based models, and hybrid approaches.

According to [75], existing approaches in SLM powder bed monitoring require high-
performance systems. However, the industry is prevented from modifying the original
machine to develop a setup that is specifically designed for the purpose of acquisition by
warranty issues, manufacturer restrictions, or local laws. This work addresses the identified
industrial need to put the Digital Image Processing (DIP) for layerwise monitoring into
practice without changing the system or impeding production activities at the level of the
machine shop floor. In this method, powder bed monitoring includes two approaches: a 2D
analysis concerning single layer anomaly detection and 3D volumetric analysis. The former
can allow a process intervention during the fabrication. The latter requires the process to
be complete and provides a 3D visualization of the object. The performance evaluation
highlighted 82.6% and 95.4% for the overall precision and recall, respectively. These values
indicate a good result if compared with other methods, especially since a low-cost and
embedded system is adopted for monitoring the whole building platform area.

In a recent study by [73], the authors used the Static Thermographic Method (STM) to
obtain fatigue life information of scaffold-like structures produced with different printing
parameters. Here, static tensile tests were carried out on complete and scaffold specimens
using a constant crosshead speed, and an infrared camera was used to track the evolution
of the surface temperature. STM is a non-destructive testing technique that uses infrared
thermography to measure the surface temperature of a material during a static tensile
test. The temperature distribution on the material’s surface is used to assess the material’s
fatigue limit. The STM is based on the principle that a material’s surface temperature
increases when subjected to a tensile load. This is because the tensile load causes the
material to deform, which generates heat. The heat generated is proportional to the stress
applied to the material. The advantage of using this approach is that it can severely reduce
the testing time to obtain reliable fatigue data for mechanical design.

A novel approach was proposed by [68] that developed two data-driven classifica-
tion prediction models that use machine learning algorithms to achieve computer-aided
defect detection during the FDM AM process. These models monitor sensing signals and
interlayer images to predict and classify processing defects, improving product quality
and consistency. In this paper, the interlayer surface images and sensing data (vibration
signals and infrared temperature) from the FDM process were acquired by arranging a
digital microscope and sensors (accelerometer and infrared thermometer) on the printer.
Then, two methods of defect classification were tested on the acquired dataset. The first
method classifies defects using a transfer learning model based on Swin Transformer and
interlayer surface images, and the second method diagnoses defects using a model based
on 1DCNN and sensing data. The results showed that the fusion of these two models was
more reliable than the prediction using a single ML model. In comparison to the Swin
Transformer model and the 1DCNN model alone, the prediction accuracy of the fusion
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model is more than 8.9% and 9.8% higher. Additionally, the method suggested in this
paper can accurately identify the relationship model between printing defects and process
parameters, facilitating later online corrections for printing-related defects.

In [65], an algorithm called Inverse Distance Weight K-Nearest Neighbor (IDW-KNN)
was proposed to address the imbalance between positive and negative samples. This algo-
rithm can satisfy online detection because it has strong interpretability, fewer parameters, a
faster operation speed, and greater flexibility than the commonly employed algorithms.
Furthermore, the online detection approach suggested in this paper mines image data to
identify relationships between process variables and quality features of interest, enabling
real-time process quality monitoring independent of offline analysis. In this work, the
image processing algorithm receives the collected images and determines how many of the
powder splatters are in a fully melted state. The proposed algorithm can precisely extract
the necessary features from a complex background. The quantity of powder spatters is
then output to the quality evaluation standard. To enable automatic labeling, the quality
corresponding to the powder spatters is divided into four levels based on porosity. In order
to address the issue of the imbalanced distribution of quality level samples, the IDW-KNN
algorithm is finally proposed. By using the inverse distance method to ensure that the
voting weight of the data with a short distance (good quality and normal quality) is high
and that of the data with a long distance (slight abnormality and serious abnormality), the
IDW-KNN algorithm assigns different weights to four different quality levels based on
Euclidean distance, a method that significantly increases the prediction accuracy of the four
quality levels.

In [63], the authors developed a semi-supervised clustering-based method to auto-
matically detect spectra patterns that are sensitive to a high density of pores, i.e., the high
number of microscopic pores within a unit space. This is equivalent to clustering the
spectra into two groups—one relates to high-quality products with a low pores density,
and the other relates to low-quality products with a high pores density. Among the existing
clustering methods (centroid-based clustering, hierarchical clustering, distribution-based
clustering, graph-based clustering), this graph-based clustering method, spectral clustering,
is chosen as it shows a good performance when the centroids of different clusters are not
separable. Based on the pretrained baseline models, the fundamental idea here is to project
an incoming window of spectra as a vector into the eigenspace of spectral clustering and
then calculate the distances between the projected vector and the cluster centers of the
projected vectors in the high- and low-quality groups, respectively. The quality group
whose cluster center is nearer the projected vector is given the same label as the window
of spectra.

4.3. Future Directions

As the field of image-based fault monitoring in AM continues to evolve, it is crucial to
explore and outline the potential future directions for research and development. Building
upon the recent advancements discussed earlier, this section delves into the key areas that
hold promise for further enhancing fault detection and monitoring in AM processes. Future
research endeavors can drive the field towards more robust, efficient, and comprehensive
fault monitoring techniques by addressing the existing challenges and gaps in the current
state of the art. This section analyzes these potential future directions and discusses their
impact on AM quality control, process optimization, and overall manufacturing reliability.

4.3.1. Robust and Accurate Image Processing Algorithms

One of the major obstacles is the need for more robust and precise image processing
algorithms. This is due to the complexity of AM processes, the low signal-to-noise ratio
(SNR) of AM images, and the high variability of AM components. The complexity of AM
processes presents image processing algorithms with unique challenges. AM entails the
intricate deposition of materials layer by layer, resulting in complex geometries, surface
textures, and internal structures. These variables can introduce various types of defects,
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such as surface roughness, geometric distortions, porosity, and voids. Advanced image
processing techniques are required to detect and differentiate these defects from intentional
features or natural variations in AM parts. In addition, AM images frequently have a low
signal-to-noise ratio (SNR) because of factors such as lighting conditions, reflections, and
image artifacts. Image-based fault detection algorithms can be significantly impacted by
noise and interference. Developing robust algorithms that can effectively handle noise and
improve signal quality is essential for precise fault detection. A second difficulty is the high
variability of AM parts. Each printed component may exhibit unique characteristics and
defects, making it challenging to develop image-processing algorithms that are universally
applicable. The algorithms must be adaptable and versatile to accommodate various AM
processes, materials, and part geometries. They must be capable of learning from diverse
datasets and generalizing effectively to unseen or unexpected flaws.

Researchers are examining various algorithm design approaches for image processing
to address these obstacles. This includes using sophisticated computer vision techniques
such as feature extraction, texture analysis, segmentation, and pattern recognition. Im-
proving the accuracy and robustness of image-based fault detection in AM using machine
learning algorithms, such as CNN-like deep learning architectures, has shown promise. Sev-
eral strategies can be implemented further to advance the current state of image processing
algorithms. Advanced feature extraction techniques, such as methods based on deep learn-
ing, can detect subtle flaws and variations. Enhancement and noise reduction techniques,
such as adaptive filtering and contrast enhancement, can enhance the visibility of flaws.
Adaptive and context-aware approaches considering particular AM process characteristics
can improve algorithm robustness. Multi-modal data fusion can provide complementary
information, and transfer learning can leverage domain-specific knowledge.

4.3.2. Efficient and Scalable Data Acquisition and Analysis Techniques

Further complicating image-based fault detection in AM requires more efficient and
scalable data acquisition and analysis techniques. Existing methods for image-based fault
detection are frequently expensive and time-consuming. The fault monitoring process can
be complex and resource-intensive, requiring specialized imaging systems, cameras, light-
ing setups, and image-capturing protocols. Acquiring high-quality images with sufficient
resolution, clarity, and accuracy is crucial for effective fault detection. However, the cost
and complexity associated with the equipment and procedures for data acquisition can
pose challenges, particularly when considering large-scale or high-volume AM production
scenarios. The need for specialized hardware and controlled imaging environments can
limit the scalability and practicality of image-based fault detection methods. These factors
may hinder the widespread adoption of such techniques in real-world manufacturing
settings. Moreover, analyzing acquired image data is another area that demands attention.
The data analysis often involves sophisticated algorithms and computational techniques
for image processing, feature extraction, and fault detection. These algorithms require
significant computational resources and can be time-consuming, mainly when dealing
with large datasets or complex AM parts. The time-consuming nature of data analysis can
hinder real-time or near-real-time fault detection in AM. In scenarios where quick feedback
and immediate action are necessary, the delays caused by lengthy analysis processes can
limit the effectiveness of image-based fault detection methods.

To address these challenges, there is a need for the development of more efficient and
scalable data acquisition and analysis techniques. This can involve advancements in hard-
ware, such as designing cost-effective imaging systems that can capture high-quality images
efficiently and in real time. Similarly, developing streamlined and optimized algorithms
for image processing and fault detection can help reduce computational requirements and
speed up the analysis process. Additionally, exploring novel approaches that leverage
parallel processing, cloud computing, or edge computing can enhance the scalability and
efficiency of data analysis in image-based fault detection. These techniques can distribute
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the computational workload and enable faster analysis, making real-time or near-real-time
fault detection feasible in practical manufacturing environments.

4.3.3. Standardized Methods and Datasets

The development of standardized methods for image-based fault detection is another
crucial aspect that requires attention. There currently need to be widely accepted and
standardized visual inspection methods for detecting and classifying defects in AM parts.
With standardized methods and datasets, reliability, repeatability, and comparability of
results across studies and applications are maintained. Evaluating and comparing the
performance of various fault detection algorithms, techniques, and systems with standard-
ized procedures and datasets becomes easier. In addition, there is a severe lack of publicly
accessible datasets intended for training and assessing fault detection algorithms in AM.

Researchers and practitioners can gain multiple benefits by addressing the lack of
datasets. First, having standard datasets tailored for AM fault detection would provide
a benchmark for comparing the performance of different algorithms. Researchers could
train their models using the same dataset, enabling insightful comparisons. In addition,
the availability of publicly accessible datasets would foster collaboration and accelerate the
development of new fault detection techniques. Standardized datasets would also enhance
the repeatability and reproducibility of experiments by permitting researchers to validate
and verify their methods using the same dataset. This would ensure that other researchers’
reported results are accurate and reproducible, thereby enhancing the credibility of the
field as a whole. To address the lack of datasets, collaborative efforts are required to
generate and curate datasets that represent the diverse range of AM process defects and
are accessible to the public. These datasets should consist of different types of materials,
printing technologies, and defect characteristics. They should be annotated with accurate
ground truth labels for supervised learning approaches.

4.3.4. Lack of Error Detection and Mitigation Research

Although significant progress has been made in image-based fault monitoring for AM,
error detection and mitigation research in AM still needs to be improved. Future research
should concentrate on developing innovative error detection and mitigation techniques and
methods in AM. This would require investigating the root causes of errors, comprehending
the underlying mechanisms contributing to their occurrence, and developing effective
strategies to detect and mitigate these errors at various stages of the AM process. In addition,
it is crucial to encourage and promote the publication of additional research papers that
focus on error detection and mitigation in AM. By increasing the number of papers devoted
to error detection and mitigation, researchers can share their insights, methodologies,
and findings, thereby contributing to a greater understanding of the field’s challenges
and potential solutions. This will promote collaboration, knowledge sharing, and the
development of innovative techniques that can significantly improve the dependability,
efficiency, and quality of AM processes.

5. Conclusions

Due to its capacity to produce parts with intricate features, AM is quickly becoming
more prevalent in a variety of manufacturing industries. The main advantages of AM
are generally design freedom, mass customization, waste reduction, quick prototyping,
and the capacity to produce intricate structures. Additionally, compared to conventional
manufacturing techniques, AM has more manageable process variables and a more signifi-
cant interaction between the material’s properties and the process variables. Despite the
advantages of AM, it poses some disadvantages such as the formation of faults or defects
as a result from the layer-by-layer deposition process. Faults in AM can be categorized
according to how it affects the geometry, surface quality, microstructure, or mechanical
properties of the by-product. Hence, heavy research has been conducted to monitor faults
in AM to ensure the quality and reliability of printed parts. In in-process monitoring,
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sensors and/or cameras are used to gather data and monitor critical parameters. This paper
only focuses on image-based monitoring wherein visual data are captured through a digital
camera, IR camera, or another form of camera or vision sensor. Overall, this paper presents
a comprehensive survey of image-based fault monitoring in AM. The researchers collected
relevant publications from 2019 to 2023, garnering a total of 53 papers. The search state-
ment ““Additive Manufacturing” AND (Fault Detection OR Fault Monitoring OR Defect
Detection OR Anomaly Detection) AND (Vision-based OR Image-based)” was used. These
papers were then categorized by the type of camera, ML algorithm, and errors detected.
An extensive literature review examined the fundamental techniques, methodologies, and
algorithms employed in image-based fault detection, highlighting their novelty.

An overview of the critical steps in image-based fault monitoring, such as image
acquisition, preprocessing, image analysis, defect identification, real-time monitoring and
analysis, and decision making and quality control, was provided. Image acquisition tech-
niques and ML algorithms for fault detection were also investigated. The most commonly
used types of camera broadly fall into two categories: optical (digital) and thermographic
(thermal or infrared) cameras. However, other cameras and vision sensors have been used
such as CMM and scanners. Different algorithms, including CNN, SVM, and KM, were
analyzed to demonstrate their efficacy in analyzing AM images and detecting errors. Based
on the existing papers, CNN is the most widely used algorithm, with an accuracy of 79.21%
to 96.8%, due to its ability to learn spatial hierarchies of features. It also has the ability to
learn from invariant features. Another common algorithm used in this area is SVM since it
can be used to identify defects in AM parts by classifying images as either “good” or “bad”.
Moreover, its accuracy ranges from 60% to 99.7%. Its unique features are its ability to learn
non-linear relationships between features and its ability to handle high-dimensional data.
Several techniques and methodologies were discussed, highlighting the progress made in
this field. These advancements have substantially improved the precision, effectiveness,
and scalability of image-based fault monitoring in AM.

This paper explores the significant advancements in image-based fault monitoring in
AM by providing an overview of the most significant hardware and software innovations
and developments in image-based fault monitoring in AM. These developments have
facilitated improved quality control and process optimization by bringing us closer to
real-time, automated, and reliable fault detection. There is a trend of CNN being used less
in current researches as practitioners are now investigating the use of hybrid and novel
approaches in fault detection. Furthermore, the proponents identified several challenges
and opportunities for future research, such as the need for more robust image processing
algorithms, efficient data acquisition and analysis methods, standardized benchmarks
and datasets, and more research in fault monitoring. Overall, this survey highlights the
significant advancements made in image-based fault monitoring in AM while identifying
the challenges that must be addressed. By pursuing the suggested future directions and
addressing the identified challenges, the field of image-based fault monitoring in AM can
continue to evolve and contribute to improved quality control, process optimization, and
overall manufacturing reliability in the AM industry.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Additive Manufacturing
3DP 3D Printing
RP Rapid Prototyping
DDM Direct Digital Manufacturing
SFF Solid Freeform Fabrication
CAD Computer-Aided Design
STL Standard Tessellation Language
ML Machine Learning
AI Artificial Intelligence
CCD Charge-Coupled Device
CMOS Complementary Metal Oxide Semiconductor
FDM Fused Deposition Modeling
L-PBF Laser-Powder Bed Fusion
SLM Sintering Laser Melting
CNN Convolutional Neural Network
FFF Fused Filament Fabrication
GBC Gaussian Bayes Classifier
NN Neural Network
SVM Support Vector Machine
KM K-Means
DED Directed Energy Deposition
RF Random Forest
GP Gaussian Process
DT Decision Tree
NB Naive Bayes
ANN Artificial Neural Network
AB AdaBoost
CAE Convolutional Auto-Encoder
LSTM Long Short-Term Memory Networks
KNN K-Nearest Neighbors
EBPBF Electron Beam Powder Bed Fusion
BJ Binder Jetting
DSCNN Dynamic Segmentation Convolutional Neural Network
DNN Deep Neural Network
AI-TSR Artificial Intelligence–Thermographic Signal Reconstruction
IRT Active Infrared Technology
LBAM Laser-Based Additive Manufacturing
ABS Acrylonitrile Butadiene Styrene
ADRC Active Disturbance Rejection Control
WAAM Wire Arc Additive Manufacturing
TL Transfer Learning
ANFIS Adaptive Neuro-Fuzzy Inference System
SVR Support Vector Regression
VCSS Voxel Cloud Connectivity Segmentation
FPFH Fast Point Feature Histogram
CMM Coordinate-Measuring Machine
STM Static Thermographic Method
GAN General Adversarial Network

References
1. Ahlers, D.; Wasserfall, F.; Hendrich, N.; Zhang, J. 3D printing of nonplanar layers for smooth surface generation. In Proceedings

of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26
August 2019; pp. 1737–1743.

2. Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv.
Mech. Eng. 2019, 11, 1687814018822880. [CrossRef]

http://doi.org/10.1177/1687814018822880


Sensors 2023, 23, 6821 27 of 30

3. El-Sayegh, S.; Romdhane, L.; Manjikian, S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch.
Civ. Mech. Eng. 2020, 20, 34. [CrossRef]

4. Ranjan, R.; Kumar, D.; Kundu, M.; Moi, S.C. A critical review on Classification of materials used in 3D printing process. Mater.
Today Proc. 2022, 61, 43–49. [CrossRef]

5. Mahmood, M.A.; Visan, A.I.; Ristoscu, C.; Mihailescu, I.N. Artificial Neural Network Algorithms for 3D Printing. Materials 2020,
14, 163. [CrossRef] [PubMed]

6. Valizadeh, M.; Wolff, S.J. Convolutional Neural Network applications in additive manufacturing: A review. Adv. Ind. Manuf. Eng.
2022, 4, 100072. [CrossRef]

7. Shahrubudin, N.; Lee, T.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications.
Procedia Manuf. 2019, 35, 1286–1296. [CrossRef]

8. Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif.
Intell. Rev. 2021, 54, 63–94. [CrossRef]

9. Ryan, K.R.; Down, M.P.; Banks, C.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced
materials and their applications. Chem. Eng. J. 2021, 403, 126162. [CrossRef]

10. Rezvani Ghomi, E.; Khosravi, F.; Neisiany, R.E.; Singh, S.; Ramakrishna, S. Future of additive manufacturing in healthcare. Curr.
Opin. Biomed. Eng. 2021, 17, 100255. [CrossRef]

11. Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials,
methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [CrossRef]

12. Calignano, F.; Galati, M.; Iuliano, L. A Metal Powder Bed Fusion Process in Industry: Qualification Considerations. Machines
2019, 7, 72. [CrossRef]

13. Sefene, E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022, 63. [CrossRef]
14. Bermudo, C.; Trujillo, F.J.; Martín, S.; Herrera, M.; Sevilla, L. Fatigue behaviour analysis of AISI 316-L parts obtained by machining

process and additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012101. [CrossRef]
15. Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The

status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015, 69, 65–89. [CrossRef]
16. Gibbs, D.M.; Vaezi, M.; Yang, S.; Oreffo, R. Hope versus hype: What can additive manufacturing realistically offer trauma and

orthopedic surgery? Regen. Med. 2014, 9, 535–549. [CrossRef]
17. Auriemma, G.; Tommasino, C.; Falcone, G.; Esposito, T.; Sardo, C.; Aquino, R.P. Additive Manufacturing Strategies for

Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. Molecules 2022,
27, 2784. [CrossRef] [PubMed]

18. Wang, C.; Tan, X.; Tor, S.; Lim, C. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit. Manuf.
2020, 36, 101538. [CrossRef]

19. Malekipour, E.; El-Mounayri, H. Defects, Process Parameters and Signatures for Online Monitoring and Control in Powder-Based
Additive Manufacturing. In Mechanics of Additive and Advanced Manufacturing, Volume 9; Conference Proceedings of the Society for
Experimental Mechanics Series; Wang, J., Antoun, B., Brown, E., Chen, W., Chasiotis, I., Huskins-Retzlaff, E., Kramer, S., Thakre,
P.R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 83–90. [CrossRef]

20. Francis, J.; Bian, L. Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing using Big Data. Manuf. Lett.
2019, 20, 10–14. [CrossRef]

21. Jin, Z.; Zhang, Z.; Gu, G.X. Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing
Processes Using Artificial Intelligence. Adv. Intell. Syst. 2020, 2, 1900130. [CrossRef]

22. Wang, W.; Ning, J.; Liang, S.Y. Analytical Prediction of Balling, Lack-of-Fusion and Keyholing Thresholds in Powder Bed Fusion.
Appl. Sci. 2021, 11, 12053. [CrossRef]

23. Young, Z.A.; Guo, Q.; Parab, N.D.; Zhao, C.; Qu, M.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Sun, T.; Chen, L. Types of spatter
and their features and formation mechanisms in laser powder bed fusion additive manufacturing process. Addit. Manuf. 2020,
36, 101438. [CrossRef]

24. Hmeidat, N.S.; Pack, R.C.; Talley, S.J.; Moore, R.B.; Compton, B.G. Mechanical anisotropy in polymer composites produced by
material extrusion additive manufacturing. Addit. Manuf. 2020, 34, 101385. [CrossRef]

25. Yuan, L. Solidification Defects in Additive Manufactured Materials. JOM 2019, 71, 3221–3222. [CrossRef]
26. Jin, Z.; Zhang, Z.; Gu, G.X. Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep

learning. Manuf. Lett. 2019, 22, 11–15. [CrossRef]
27. Shoukat, S.J.; Afzal, H.; Mufti, M.R.; Sohail, M.K.; Khan, D.M.; Akhtar, N.; Hussain, S.; Ahmed, M. Analyzing COVID-19 Impact

on the Researchers Productivity through Their Perceptions. Comput. Mater. Contin. 2021, 67, 1835–1847. [CrossRef]
28. Shen, Z.; Shang, X.; Zhao, M.; Dong, X.; Xiong, G.; Wang, F.Y. A Learning-Based Framework for Error Compensation in 3D

Printing. IEEE Trans. Cybern. 2019, 49, 4042–4050. [CrossRef]
29. Malik, A.; Lhachemi, H.; Ploennigs, J.; Ba, A.; Shorten, R. An Application of 3D Model Reconstruction and Augmented Reality

for Real-Time Monitoring of Additive Manufacturing. Procedia CIRP 2019, 81, 346–351. [CrossRef]

http://dx.doi.org/10.1007/s43452-020-00038-w
http://dx.doi.org/10.1016/j.matpr.2022.03.308
http://dx.doi.org/10.3390/ma14010163
http://www.ncbi.nlm.nih.gov/pubmed/33396434
http://dx.doi.org/10.1016/j.aime.2022.100072
http://dx.doi.org/10.1016/j.promfg.2019.06.089
http://dx.doi.org/10.1007/s10462-020-09876-9
http://dx.doi.org/10.1016/j.cej.2020.126162
http://dx.doi.org/10.1016/j.cobme.2020.100255
http://dx.doi.org/10.1016/j.compositesb.2018.02.012
http://dx.doi.org/10.3390/machines7040072
http://dx.doi.org/10.1016/j.jmsy.2022.04.002
http://dx.doi.org/10.1088/1757-899X/1193/1/012101
http://dx.doi.org/10.1016/j.cad.2015.04.001
http://dx.doi.org/10.2217/rme.14.20
http://dx.doi.org/10.3390/molecules27092784
http://www.ncbi.nlm.nih.gov/pubmed/35566146
http://dx.doi.org/10.1016/j.addma.2020.101538
http://dx.doi.org/10.1007/978-3-319-62834-9_12
http://dx.doi.org/10.1016/j.mfglet.2019.02.001
http://dx.doi.org/10.1002/aisy.201900130
http://dx.doi.org/10.3390/app112412053
http://dx.doi.org/10.1016/j.addma.2020.101438
http://dx.doi.org/10.1016/j.addma.2020.101385
http://dx.doi.org/10.1007/s11837-019-03662-x
http://dx.doi.org/10.1016/j.mfglet.2019.09.005
http://dx.doi.org/10.32604/cmc.2021.014397
http://dx.doi.org/10.1109/TCYB.2019.2898553
http://dx.doi.org/10.1016/j.procir.2019.03.060


Sensors 2023, 23, 6821 28 of 30

30. Tan, Y.; Jin, B.; Nettekoven, A.; Chen, Y.; Yue, Y.; Topcu, U.; Sangiovanni-Vincentelli, A. An Encoder-Decoder Based Approach for
Anomaly Detection with Application in Additive Manufacturing. In Proceedings of the 2019 18th IEEE International Conference
on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: Boca Raton, FL, USA, 2019;
pp. 1008–1015. [CrossRef]

31. Zhang, B.; Liu, S.; Shin, Y.C. In-Process monitoring of porosity during laser additive manufacturing process. Addit. Manuf. 2019,
28, 497–505. [CrossRef]

32. Caggiano, A.; Zhang, J.; Alfieri, V.; Caiazzo, F.; Gao, R.; Teti, R. Machine learning-based image processing for on-line defect
recognition in additive manufacturing. CIRP Ann. 2019, 68, 451–454. [CrossRef]

33. Aminzadeh, M.; Kurfess, T.R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing
from high-resolution visual camera images. J. Intell. Manuf. 2019, 30, 2505–2523. [CrossRef]

34. Scime, L.; Beuth, J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder
bed fusion additive manufacturing process. Addit. Manuf. 2019, 25, 151–165. [CrossRef]

35. Baumgartl, H.; Tomas, J.; Buettner, R.; Merkel, M. A deep learning-based model for defect detection in laser-powder bed fusion
using in-situ thermographic monitoring. Prog. Addit. Manuf. 2020, 5, 277–285. [CrossRef]

36. Bowoto, O.K.; Oladapo, B.I.; Zahedi, S.A.; Omigbodun, F.T.; Emenuvwe, O.P. Analytical modelling of in situ layer-wise defect
detection in 3D-printed parts: Additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 111, 2311–2321. [CrossRef]

37. Lee, X.Y.; Saha, S.K.; Sarkar, S.; Giera, B. Automated detection of part quality during two-photon lithography via deep learning.
Addit. Manuf. 2020, 36, 101444. [CrossRef]

38. Siegel, J.E.; Beemer, M.F.; Shepard, S.M. Automated non-destructive inspection of Fused Filament Fabrication components using
Thermographic Signal Reconstruction. Addit. Manuf. 2020, 31, 100923. [CrossRef]

39. Angelone, R.; Caggiano, A.; Teti, R.; Spierings, A.; Staub, A.; Wegener, K. Bio-Intelligent Selective Laser Melting System based on
Convolutional Neural Networks for In-Process Fault Identification. Procedia CIRP 2020, 88, 612–617. [CrossRef]

40. Tian, Q.; Guo, S.; Melder, E.; Bian, L.; Guo, W.G. Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in
Laser-Based Additive Manufacturing. J. Manuf. Sci. Eng. 2020, 143, 041011. [CrossRef]

41. Garfo, S.; Muktadir, M.; Yi, S. Defect Detection on 3D Print Products and in Concrete Structures Using Image Processing and
Convolution Neural Network. J. Mechatronics Robot. 2020, 4, 74–84. [CrossRef]

42. Zhang, X.; Saniie, J.; Heifetz, A. Detection of Defects in Additively Manufactured Stainless Steel 316L with Compact Infrared
Camera and Machine Learning Algorithms. JOM 2020, 72, 4244–4253. [CrossRef]

43. Xiao, L.; Lu, M.; Huang, H. Detection of powder bed defects in selective laser sintering using convolutional neural network. Int.
J. Adv. Manuf. Technol. 2020, 107, 2485–2496. [CrossRef]

44. Kim, H.; Lee, H.; Kim, J.S.; Ahn, S.H. Image-based failure detection for material extrusion process using a convolutional neural
network. Int. J. Adv. Manuf. Technol. 2020, 111, 1291–1302. [CrossRef]

45. Montazeri, M.; Nassar, A.R.; Dunbar, A.J.; Rao, P. In-process monitoring of porosity in additive manufacturing using optical
emission spectroscopy. IISE Trans. 2020, 52, 500–515. [CrossRef]

46. Scime, L.; Siddel, D.; Baird, S.; Paquit, V. Layer-wise anomaly detection and classification for powder bed additive manufacturing
processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation. Addit. Manuf. 2020, 36, 101453.
[CrossRef]

47. Zhang, Y.; Soon, H.G.; Ye, D.; Fuh, J.Y.H.; Zhu, K. Powder-Bed Fusion Process Monitoring by Machine Vision With Hybrid
Convolutional Neural Networks. IEEE Trans. Ind. Inform. 2020, 16, 5769–5779. [CrossRef]

48. Li, X.; Jia, X.; Yang, Q.; Lee, J. Quality analysis in metal additive manufacturing with deep learning. J. Intell. Manuf. 2020,
31, 2003–2017. [CrossRef]

49. Zhao, X.; Lian, Q.; He, Z.; Zhang, S. Region-based online flaw detection of 3D printing via fringe projection. Meas. Sci. Technol.
2020, 31, 035011. [CrossRef]

50. Banad, Y.; Razaviarab, N.; Fekrmandi, H.; Sharifi, S. Toward Enabling a Reliable Quality Monitoring System for Additive
Manufacturing Process using Deep Convolutional Neural Networks. arXiv 2020, arXiv:2003.08749.

51. Najjartabar Bisheh, M.; Chang, S.I.; Lei, S. A layer-by-layer quality monitoring framework for 3D printing. Comput. Ind. Eng.
2021, 157, 107314. [CrossRef]

52. Westphal, E.; Seitz, H. A machine learning method for defect detection and visualization in selective laser sintering based on
convolutional neural networks. Addit. Manuf. 2021, 41, 101965. [CrossRef]

53. Wang, Y.; Lu, J.; Zhao, Z.; Deng, W.; Han, J.; Bai, L.; Yang, X.; Yao, J. Active disturbance rejection control of layer width in wire arc
additive manufacturing based on deep learning. J. Manuf. Process. 2021, 67, 364–375. [CrossRef]

54. Fathizadan, S.; Ju, F.; Lu, Y. Deep representation learning for process variation management in laser powder bed fusion. Addit.
Manuf. 2021, 42, 101961. [CrossRef]

55. Szymanik, B.; Psuj, G.; Hashemi, M.; Lopato, P. Detection and Identification of Defects in 3D-Printed Dielectric Structures via
Thermographic Inspection and Deep Neural Networks. Materials 2021, 14, 4168. [CrossRef]

56. Kadam, V.; Kumar, S.; Bongale, A.; Wazarkar, S.; Kamat, P.; Patil, S. Enhancing Surface Fault Detection Using Machine Learning
for 3D Printed Products. Appl. Syst. Innov. 2021, 4, 34. [CrossRef]

57. Li, R.; Jin, M.; Paquit, V.C. Geometrical defect detection for additive manufacturing with machine learning models. Mater. Des.
2021, 206, 109726. [CrossRef]

http://dx.doi.org/10.1109/ICMLA.2019.00171
http://dx.doi.org/10.1016/j.addma.2019.05.030
http://dx.doi.org/10.1016/j.cirp.2019.03.021
http://dx.doi.org/10.1007/s10845-018-1412-0
http://dx.doi.org/10.1016/j.addma.2018.11.010
http://dx.doi.org/10.1007/s40964-019-00108-3
http://dx.doi.org/10.1007/s00170-020-06241-6
http://dx.doi.org/10.1016/j.addma.2020.101444
http://dx.doi.org/10.1016/j.addma.2019.100923
http://dx.doi.org/10.1016/j.procir.2020.05.107
http://dx.doi.org/10.1115/1.4048957
http://dx.doi.org/10.3844/jmrsp.2020.74.84
http://dx.doi.org/10.1007/s11837-020-04428-6
http://dx.doi.org/10.1007/s00170-020-05205-0
http://dx.doi.org/10.1007/s00170-020-06201-0
http://dx.doi.org/10.1080/24725854.2019.1659525
http://dx.doi.org/10.1016/j.addma.2020.101453
http://dx.doi.org/10.1109/TII.2019.2956078
http://dx.doi.org/10.1007/s10845-020-01549-2
http://dx.doi.org/10.1088/1361-6501/ab524b
http://dx.doi.org/10.1016/j.cie.2021.107314
http://dx.doi.org/10.1016/j.addma.2021.101965
http://dx.doi.org/10.1016/j.jmapro.2021.05.005
http://dx.doi.org/10.1016/j.addma.2021.101961
http://dx.doi.org/10.3390/ma14154168
http://dx.doi.org/10.3390/asi4020034
http://dx.doi.org/10.1016/j.matdes.2021.109726


Sensors 2023, 23, 6821 29 of 30

58. Gerdes, N.; Hoff, C.; Hermsdorf, J.; Kaierle, S.; Overmeyer, L. Hyperspectral imaging for prediction of surface roughness in laser
powder bed fusion. Int. J. Adv. Manuf. Technol. 2021, 115, 1249–1258. [CrossRef]

59. Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect inspection technologies for additive manufacturing. Int. J.
Extrem. Manuf. 2021, 3, 022002. [CrossRef]

60. Snow, Z.; Diehl, B.; Reutzel, E.W.; Nassar, A. Toward in-situ flaw detection in laser powder bed fusion additive manufacturing
through layerwise imagery and machine learning. J. Manuf. Syst. 2021, 59, 12–26. [CrossRef]

61. Davtalab, O.; Kazemian, A.; Yuan, X.; Khoshnevis, B. Automated inspection in robotic additive manufacturing using deep
learning for layer deformation detection. J. Intell. Manuf. 2022, 33, 771–784. [CrossRef]

62. Matuszczyk, D.; Tschorn, N.; Weichert, F. Deep Learning Based Synthetic Image Generation for Defect Detection in Additive
Manufacturing Industrial Environments. In Proceedings of the 2022 7th International Conference on Mechanical Engineering and
Robotics Research (ICMERR), Krakow, Poland, 9–11 December 2022; pp. 209–218. [CrossRef]

63. Sun, W.; Zhang, Z.; Ren, W.; Mazumder, J.; Jin, J.J. In Situ Monitoring of Optical Emission Spectra for Microscopic Pores in Metal
Additive Manufacturing. J. Manuf. Sci. Eng. 2022, 144, 011006. [CrossRef]

64. Xia, C.; Pan, Z.; Polden, J.; Li, H.; Xu, Y.; Chen, S. Modelling and prediction of surface roughness in wire arc additive
manufacturing using machine learning. J. Intell. Manuf. 2022, 33, 1467–1482. [CrossRef]

65. Wu, Z.; Xu, Z.; Fan, W. Online detection of powder spatters in the additive manufacturing process. Measurement 2022, 194, 111040.
[CrossRef]

66. Huang, C.; Wang, G.; Song, H.; Li, R.; Zhang, H. Rapid surface defects detection in wire and arc additive manufacturing based on
laser profilometer. Measurement 2022, 189, 110503. [CrossRef]

67. AbouelNour, Y.; Gupta, N. In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review. Mater.
Des. 2022, 222, 111063. [CrossRef]

68. Li, X.Y.; Liu, F.L.; Zhang, M.N.; Zhou, M.X.; Wu, C.; Zhang, X. A Combination of Vision- and Sensor-Based Defect Classifications
in Extrusion-Based Additive Manufacturing. J. Sens. 2023, 2023, e1441936. [CrossRef]

69. Nascimento, R.; Martins, I.; Dutra, T.A.; Moreira, L. Computer Vision Based Quality Control for Additive Manufacturing Parts.
Int. J. Adv. Manuf. Technol. 2023, 124, 3241–3256. [CrossRef]

70. Chebil, G.; Bettebghor, D.; Renollet, Y.; Lapouge, P.; Davoine, C.; Thomas, M.; Favier, V.; Schneider, M. Deep learning object
detection for optical monitoring of spatters in L-PBF. J. Mater. Process. Technol. 2023, 319, 118063. [CrossRef]

71. Lu, L.; Hou, J.; Yuan, S.; Yao, X.; Li, Y.; Zhu, J. Deep learning-assisted real-time defect detection and closed-loop adjustment
for additive manufacturing of continuous fiber-reinforced polymer composites. Robot. Comput. Integr. Manuf. 2023, 79, 102431.
[CrossRef]

72. Chung, J.K.; Im, J.S.; Park, M.S. Development of Photo-Polymerization-Type 3D Printer for High-Viscosity Ceramic Resin Using
CNN-Based Surface Defect Detection. Materials 2023, 16, 4734. [CrossRef]

73. Ahmadi, R.; D’Andrea, D.; Santonocito, D. Fatigue assessment of 3D-printed porous PLA-based scaffold structures by Thermo-
graphic Methods. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1275, 012002. [CrossRef]

74. Gerdes, S.; Gaikwad, A.; Ramesh, S.; Rivero, I.V.; Tamayol, A.; Rao, P. Monitoring and control of biological additive manufacturing
using machine learning. J. Intell. Manuf. 2023, 1–23. [CrossRef]

75. Boschetto, A.; Bottini, L.; Vatanparast, S. Powder bed monitoring via digital image analysis in additive manufacturing. J. Intell.
Manuf. 2023, 1–21. [CrossRef]

76. Yang, C.J.; Huang, W.K.; Lin, K.P. Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional
Neural Networks. Sensors 2023, 23, 491. [CrossRef] [PubMed]

77. Fang, Q.; Xiong, G.; Zhou, M.; Tamir, T.S.; Yan, C.B.; Wu, H.; Shen, Z.; Wang, F.Y. Process Monitoring, Diagnosis and Control of
Additive Manufacturing. IEEE Trans. Autom. Sci. Eng. 2022, 1–27. [CrossRef]

78. Malamas, E.N.; Petrakis, E.G.M.; Zervakis, M.; Petit, L.; Legat, J.D. A survey on industrial vision systems, applications and tools.
Image Vis. Comput. 2003, 21, 171–188. [CrossRef]

79. Megahed, F.M.; Woodall, W.H.; Camelio, J.A. A Review and Perspective on Control Charting with Image Data. J. Qual. Technol.
2011, 43, 83–98. [CrossRef]

80. Charalampous, P.; Kostavelis, I.; Tzovaras, D. Non-destructive quality control methods in additive manufacturing: A survey.
Rapid Prototyp. J. 2020, 26, 777–790. [CrossRef]

81. Yan, H.; Paynabar, K.; Shi, J. Image-Based Process Monitoring Using Low-Rank Tensor Decomposition. IEEE Trans. Autom. Sci.
Eng. 2015, 12, 216–227. [CrossRef]

82. Ren, Z.; Fang, F.; Yan, N.; Wu, Y. State of the Art in Defect Detection Based on Machine Vision. Int. J. Precis. Eng. Manuf. Green
Technol. 2022, 9, 661–691. [CrossRef]

83. Hartnig, C.; Manke, I. MEASUREMENT METHODS | Structural Properties: Neutron and Synchrotron Imaging, In-Situ for
Water Visualization. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009;
pp. 738–757. [CrossRef]

84. Zhu-Mao, L.; Qing, L.; Tao, J.; Yong-Xin, L.; Yu, H.; Yang, B. Research on Thermal Fault Detection Technology of Power Equipment
based on Infrared Image Analysis. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 2567–2571. [CrossRef]

http://dx.doi.org/10.1007/s00170-021-07274-1
http://dx.doi.org/10.1088/2631-7990/abe0d0
http://dx.doi.org/10.1016/j.jmsy.2021.01.008
http://dx.doi.org/10.1007/s10845-020-01684-w
http://dx.doi.org/10.1109/ICMERR56497.2022.10097812
http://dx.doi.org/10.1115/1.4051532
http://dx.doi.org/10.1007/s10845-020-01725-4
http://dx.doi.org/10.1016/j.measurement.2022.111040
http://dx.doi.org/10.1016/j.measurement.2021.110503
http://dx.doi.org/10.1016/j.matdes.2022.111063
http://dx.doi.org/10.1155/2023/1441936
http://dx.doi.org/10.1007/s00170-022-10683-5
http://dx.doi.org/10.1016/j.jmatprotec.2023.118063
http://dx.doi.org/10.1016/j.rcim.2022.102431
http://dx.doi.org/10.3390/ma16134734
http://dx.doi.org/10.1088/1757-899X/1275/1/012002
http://dx.doi.org/10.1007/s10845-023-02092-6
http://dx.doi.org/10.1007/s10845-023-02091-7
http://dx.doi.org/10.3390/s23010491
http://www.ncbi.nlm.nih.gov/pubmed/36617085
http://dx.doi.org/10.1109/TASE.2022.3215258
http://dx.doi.org/10.1016/S0262-8856(02)00152-X
http://dx.doi.org/10.1080/00224065.2011.11917848
http://dx.doi.org/10.1108/RPJ-08-2019-0224
http://dx.doi.org/10.1109/TASE.2014.2327029
http://dx.doi.org/10.1007/s40684-021-00343-6
http://dx.doi.org/10.1016/B978-044452745-5.00078-2
http://dx.doi.org/10.1109/IAEAC.2018.8577908


Sensors 2023, 23, 6821 30 of 30

85. Bai, J.; Feng, X.C. Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Trans. Image Process. 2007, 16, 2492–2502.
[CrossRef]

86. Haralick, R.M.; Shapiro, L.G. Image segmentation techniques. Comput. Vis. Graph. Image Process. 1985, 29, 100–132. [CrossRef]
87. Nixon, M.S.; Aguado, A.S. Feature Extraction & Image Processing for Computer Vision; Academic Press: Cambridge, MA, USA, 2012.
88. Lin, Z.; Fu, J.; Shen, H.; Xu, G.; Sun, Y. Improving machined surface texture in avoiding five-axis singularity with the acceptable-

texture orientation region concept. Int. J. Mach. Tools Manuf. 2016, 108, 1–12. [CrossRef]
89. Gao, Z.; Ding, S.X.; Cecati, C. Real-time fault diagnosis and fault-tolerant control. IEEE Trans. Ind. Electron. 2015, 62, 3752–3756.

[CrossRef]
90. Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for industrial applications: A comprehensive literature

review. Expert Syst. Appl. 2021, 175, 114820. [CrossRef]
91. Muhamedyev, R. Machine learning methods: An overview. Comput. Model. New Technol. 2015, 19, 14–29.
92. Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques, 3rd ed.; University of Illinois at Urbana-Champaign Micheline

Kamber Jian Pei Simon Fraser University: Champaign, IL, USA, 2012.
93. Sarker, I.H.; Kayes, A.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine

learning perspective. J. Big Data 2020, 7, 41. [CrossRef]
94. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
95. Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA,

2016.
96. Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Physics Conf. Ser. 2018,

1142, 012012. [CrossRef]
97. Goldberg, Y. Neural Network Methods for Natural Language Processing; Springer Nature: Berlin/Heidelberg, Germany, 2022.
98. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
99. Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current

Applications, Challenges, and Future Perspectives. Engineering 2019, 5, 721–729. [CrossRef]
100. Izchak, O. How does a neural network work? Implementation and 5 examples— Mize. Mize 2021 .
101. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 25. [CrossRef]
102. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
103. Matsugu, M.; Mori, K.; Mitari, Y.; Kaneda, Y. Subject independent facial expression recognition with robust face detection using a

convolutional neural network. Neural Netw. 2003, 16, 555–559. [CrossRef] [PubMed]
104. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.

IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef]
105. Shalev-Shwartz, S.; Singer, Y.; Srebro, N. Pegasos: Primal estimated sub-gradient solver for svm. In Proceedings of the 24th

International Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007; pp. 807–814.
106. Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020;

pp. 101–121.
107. Joshi, M.S.; Flood, A.; Sparks, T.; Liou, F.W. Applications of Supervised Machine Learning Algorithms in Additive Manufacturing:

A Review. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing
Conference, Austin, TX, USA, 12–14 August 2019.

108. Harrington, P. Machine Learning in Action; Simon and Schuster: New York, NY, USA, 2012.
109. Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends

2021, 2, 20–28. [CrossRef]
110. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine

Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

111. Wickramasinghe, I.; Kalutarage, H. Naive Bayes: Applications, variations and vulnerabilities: A review of literature with code
snippets for implementation. Soft Comput. 2021, 25, 2277–2293. [CrossRef]

112. Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-based Defect Recognition towards Industrial
Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2007.904971
http://dx.doi.org/10.1016/S0734-189X(85)90153-7
http://dx.doi.org/10.1016/j.ijmachtools.2016.05.006
http://dx.doi.org/10.1109/TIE.2015.2417511
http://dx.doi.org/10.1016/j.eswa.2021.114820
http://dx.doi.org/10.1186/s40537-020-00318-5
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1088/1742-6596/1142/1/012012
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.eng.2019.04.012
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/S0893-6080(03)00115-1
http://www.ncbi.nlm.nih.gov/pubmed/12850007
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.38094/jastt20165
http://dx.doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.1007/s00500-020-05297-6
http://dx.doi.org/10.1016/j.jmsy.2021.05.008

	Introduction
	Image-Based Fault Monitoring
	Image Acquisition
	Optical Camera
	Thermographic Camera

	Preprocessing
	Image Analysis
	Defect Identification
	Real-Time Monitoring and Decision Making

	Machine Learning Algorithms
	Neural Network (NN)
	Convolutional Neural Network (CNN)
	Support Vector Machine (SVM)
	K-Nearest Neighbors (KNN)
	Decision Tree (DT)
	Random Forest (RF)
	Naive Bayes (NB)

	Discussion
	Summary of Findings
	Recent Developments
	Image Acquisition
	Novel Algorithms and Methods

	Future Directions
	Robust and Accurate Image Processing Algorithms
	Efficient and Scalable Data Acquisition and Analysis Techniques
	Standardized Methods and Datasets
	Lack of Error Detection and Mitigation Research


	Conclusions
	References

