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Abstract: Wireless resource utilizations are the focus of future communication, which are used
constantly to alleviate the communication quality problem caused by the explosive interference
with increasing users, especially the inter-cell interference in the multi-cell multi-user systems. To
tackle this interference and improve the resource utilization rate, we proposed a joint-priority-based
reinforcement learning (JPRL) approach to jointly optimize the bandwidth and transmit power
allocation. This method aims to maximize the average throughput of the system while suppressing
the co-channel interference and guaranteeing the quality of service (QoS) constraint. Specifically,
we de-coupled the joint problem into two sub-problems, i.e., the bandwidth assignment and power
allocation sub-problems. The multi-agent double deep Q network (MADDQN) was developed to
solve the bandwidth allocation sub-problem for each user and the prioritized multi-agent deep
deterministic policy gradient (P-MADDPG) algorithm by deploying a prioritized replay buffer that
is designed to handle the transmit power allocation sub-problem. Numerical results show that the
proposed JPRL method could accelerate model training and outperform the alternative methods in
terms of throughput. For example, the average throughput was approximately 10.4–15.5% better than
the homogeneous-learning-based benchmarks, and about 17.3% higher than the genetic algorithm.

Keywords: uplink; multi-cell multi-user system; joint-priority-based reinforcement learning (JPRL);
prioritized replay buffer; throughput

1. Introduction

The fifth generation (5G) and beyond fifth generation (B5G) era is boosting a mega
growth in the number of mobile devices [1], thereby resulting in explosive increasing
demand that prompts people to explore new technologies to ease the demand strains.
Recently, the large-scale dense network is gradually developing as a trend for the next-
generation communication networks [2,3] due to its advantages traffic capacity and di-
versified services [4]. The densification of the network [5] is one of the key features of the
5G wireless network architecture, which not only contributes to increasing the system
capacity of 5G networks, but also is closely related to user experience enhancement. As an
important technique for improving the efficiency and quality of communications, dense
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networks still suffer from extremely complex interference problems [6]. In the dense multi-
cell multi-user system, explosive rising users in different cells have an interplay due to the
reuse of resources, which leads to increased co-channel interference and scarce resources.
Furthermore, it is not conducive to deliver high throughput and a good quality of service
(QoS) [7]. As a result, reasonable radio resource management [8] is imperative to improve
the performance of future communications.

As pointed out in [9,10], whether resource allocation is rational or not determines the
throughput performance of the system. Consider the multi-cell multi-user system where
multiple resources (e.g., the bandwidth and transmitted power) are allocated to each user.
As one user who interferes other users improving individual throughput causes serious
interference, the coordination of resource allocation can avoid this situation efficiently.
Therefore, bandwidth assignment and power allocation are the essential components of
radio resource management, which can effectively suppress co-channel interference and
conserve frequency resources. For the challenges of bandwidth and power allocations in
the multi-cell multi-user network, a variety of methods have been proposed to increase
throughput. Xu et al. [11] improved the throughput by selecting mobile relay and assigning
subcarriers in the existence of various interferences. Liu et al. [12] increased the throughput
by means of fast power allocation while guaranteeing stringent latency and reliability. The
authors in [13] proposed a metaheuristic algorithm to solve the power control problem,
which relied on discrete power allocation schemes. For the network cost problem of the
large-scale heterogeneous system, Cao et al. [14] improved the network coverage using
an adaptive seagull algorithm. In addition, various joint allocation methods have been
proposed to maximize the rate, energy efficiency, and spectral efficiency [15–17]. The
above-mentioned research works are based on traditional methods, such as the genetic
algorithm [18], game theory [19], water-filling method [20], graph theory [21], and so on.
These approaches are usually able to achieve the goals for different optimizations and
application scenarios. Nevertheless, all of them experience dilemmas in exponentially
growing the search space for the large-scale system, which are unsuitable for addressing
high-dimensional joint optimization problems.

Reinforcement learning (RL) has been an efficient tool to solve optimization problems
with a large number of data. It relies on uncharted exploitation with available samples
for good reward feedback, which has been widely applied in large-scale scenarios [22,23].
Han et al. [24] proposed a State-Action-Reward-State-Action (SARSA) algorithm for power
control to improve throughput. By taking advantage of machine learning, deep RL (DRL)
is more effective for multi-user systems with large action spaces, which speeds the training
process. The deep Q network (DQN) combines deep neural networks with Q-learning to ap-
proximate the value function with the help of maximizing the Q value [25], which has been
deployed in many studies [26–28]. In [26], the authors developed a DQN-based method to
allocate resource blocks in order to reduce the collision ratio and improve the throughput.
Instead of directly using the maximum Q value, the double DQN (DDQN) selects the
action by de-coupling the maximum Q value, which can avoid the overestimation of the Q
value and speed up the convergence. Iqbal et al. [29] designed a DDQN method for power
allocation to minimize the total power consumption. Nevertheless, many optimization
variables, such as power allocation, are continuous in practice and are not applicable to the
DQN and DDQN due to the discrete nature of actions. Furthermore, although the DQN and
DDQN can transform continuous ranges into actions with different discrete granularities,
they are impractical because of the limited granularity. For problems with infinite choices
(e.g., power allocation), continuous action-selection-based algorithms such as the deep
deterministic policy gradient (DDPG) [30] can overcome the disadvantages of discretiza-
tion. Meng et al. [31] customized a DDPG to maximize the sum rate in a downlink cellular
communication system. The authors in [32] optimized the long-term throughput using the
adjusted DDPG extended from the DDPG, which is valid for two absolutely different action
spaces. However, a centralized method such as the above works is feasible but inefficient
and unsuitable for large-scale systems [33]. Multi-agent DRL (MADRL) is an advanced
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RL method that can outperform the single agent in resource allocation, especially in the
multi-cell multi-user system [34,35]. In [36], a joint resource allocation problem is settled by
a MADRL relying on the independent Q-learning method [37]. Similarly, Tian et al. [38]
presented a DDPG-based MADRL method to allocate the channel and power by optimizing
the QoS in vehicular networks.

Though MADRL contributes a great progress in the filed of joint resource allocation,
it still continues to have the following limitations typically: (1) It generally ignoring the
importance of the transition replay in sampling a mini-batch. In the traditional MADRL,
since the complex communication environments usually contain a large amount of infor-
mation, uniform experience replay leads to poor stability and the slow convergence of
neural networks; (2) It weakens the interconnectivity between agents, especially in the
system where the agent plays a direct role with the other agents (for example, an agent
promotes individually and hinders others). Therefore, the traditional MADRL, which uses
a distributed training process to explore solutions, is unsuitable for finding the action char-
acteristics of each agent; and (3) It is not realistic to simplify the channel with a free-space
propagation model, since some test scenarios are neglected in different channel models [39],
including the urban macro-cell (UMa), rural macro0cell (RMa), and rural micro-cell (RMi)
in IMT-2020.

Inspired by the success of DRL and the above research, the joint-priority-based RL
(JPRL) method has been proposed to maximize the average throughput, which considers
the co-channel interference between different cells. Unlike the traditional DRL algorithm
that optimizes multiple variables, we selected different algorithms to optimize variables
according to the problem property and deployed a distributed learning and centralized
training framework. The main contributions of this paper are summarized as follows:

• We proposed a joint bandwidth and power allocation framework based on the JPRL
method to maximize the average throughput of the uplink large-scale system, which
considered the co-channel interference between different cells with the assurance of
the QoS. For the joint optimization problem, since the bandwidth assignment is a
discrete problem, while the power allocation is continuous, we decomposed the joint
problem into two sub-problems and used different algorithms to solve them.

• We proposed a priority experience replay mechanism for power allocation. By ana-
lyzing the characteristics of the optimization sub-problems, the proposed experience
replay mechanism was applied to a multi-agent DDPG (MADDPG), which was named
the prioritized MADDPG (P-MADDPG), which trained valuable experiences to im-
prove the throughput in the training process, thereby surpassing the issue of infinite
power action space.

• The proposed JPRL method is shown in Figure 1. It consists of a multi-agent DDQN
(MADDQN) algorithm and the P-MADDPG algorithm, where MADDQN was de-
veloped to solve the bandwidth assignment sub-problem, and the P-MADDPG was
employed to solve the transmit power allocation. Besides, both the MADDQN and
P-MADDPG used a centralized training framework with a joint action-value function.

The remainder of this paper is organized as follows. Section 2 introduces the system
model and optimization problem. The proposed JPRL method is described in Section 3. Sec-
tion 4 demonstrates the simulation results, and the conclusions are presented in Section 5.
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Figure 1. Joint bandwidth and power allocations scheme.

2. System Model and Problem Formulation
2.1. System Model

Consider a large-scale uplink multi-cell multi-user network, where M single-antenna base
stations (BSs) are collected by the setM = {1, 2, . . . , M} are deployed at the center of M cells,
respectively. Assume that there are N users collecting by the set Lm = {lm,1, lm,2, . . . , lm,N} in
each cell m, where lm,n denotes the index of the n-th user in the m-th BS. The total users
of the considered system are collected by the set K = {1, 2, . . . , K}, where K = MN. The
total bandwidth of the considered system is denoted as W and is divided into three widths,
which are collected by the set B = {Bi} = {15kHz, 30kHz, 60kHz}, where i ∈ {1, 2, 3} [40].
Let Xi = {1, 2, . . . , Xi} denote the set of the sub-bands of the width i of the bandwidth,
where Xi is the total number of allocated bandwidth of width i.

Since users in different cells would occupy the same frequency band when transmitting
their uplink signals, there exists interference between these users. This interference is called
co-channel interference [41]. In this paper, each cell occupies the same frequency band and
serves the same number of users N. For each user lm,n, some users in the neighboring cells
can cause co-channel interference. In other words, users in the same cell can use different
frequency band sub-carriers, and, thus, each user is subject to co-channel interference from
users in other cells. LetM′ = {lm′ ,n|m′ ∈ M, m′ 6= m} denote the set of interfering users.
Thus, these users from different cells belonging to the setM′ will interfere with user lm,n.
The channel gain between user lm′ ,n and BS m at the slot t is represented by the following:

g(dlm′ ,n ,m) = hlm′ ,n [β(dlm′ ,n ,m)]
1
2 , where β(dlm′ ,n ,m) = 10

PLlm′ ,n
+σβzβ

10 is the large scale fading
corresponding to the distance dlm′ ,n ,m between user lm′ ,n, BS m , PLlm′ ,n is the path loss
of user lm′ ,n, σβ is the standard deviation of shadow fading, zβ ∼ N (0, 1) is a Gaussian
random variable, and hlm′ ,n ∼ CN (0, σ2

h ) is the small-scale fading with variance σ2
h . Then,

the power of co-channel interference on user lm,n is expressed as follows:

Ilm,n = ∑
m′∈M′

g
(

dlm′ ,n ,m, t
)

plm′ ,n , (1)

where plm′ ,n denotes the transmit power for user lm′ ,n.
The signal ylm,n received by BS m from user lm,n can be written as

yln,m = xln,m + Ilm,n + nlm,n , (2)

where xlm,n = blm,n |g
(
dlm,n ,m, t

)
|plm,n denotes the transmitted signal by user lm,n, blm,n is the

transmitted symbol from user lm,n to BS m, and n0 ∼ CN
(

0, σ2
lm,n

)
is the additive white
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complex Gaussian noise. As a result, the received signal-to-interference-plus-noise ratio
(SINR) at BS m of user lm,n is given by

ξlm,n

(
plm,n , Bi,lm,n

)
=

plm,n g(dlm,n ,m, t)

σ2
lm,n

+ Ilm,n

, (3)

where σ2
lm,n

= n f Bi,lm,n indicates the variance of the Gaussian white noise, and n f is the
power spectral density of noise. plm,n is the power vector that includes the power of user
lm,n and its interfering users, and Bi,lm,n is the i-th width of the bandwidth allocated to the
user lm,n. Then, by considering the normalized rate [42], the achievable throughput of user
lm,n at BS m is

THlm,n = log2
(
1 + ξlm,n

(
plm,n , Bi,lm,n

))
. (4)

2.2. Problem Formulation

This paper mainly focuses on maximizing the average throughput of the considered
large-scale multi-cell multi-user system subject to QoS of all users by jointly optimizing the
transmit power and bandwidth allocation of all the users. Denote the average throughput
of all the users by TH; then, the joint resource allocation problem is formulated as follows:

P1 : max
plm,n ,Bi,lm,n

TH ,
1
K

M

∑
m=1

N

∑
n=1

THlm,n

s.t. C1 : Pmin ≤ plm,n ≤ Pmax, ∀lm,n ∈ Lm, m ∈ M,

C2 :
3

∑
i=1

BiXi ≤W,

C3 : THlm,n ≥ THth, ∀lm,n ∈ Lm, m ∈ M,

(5)

where Pmin and Pmax are the minimum and maximum transmit power of each user, re-
spectively. Constraint C1 limits the transmit power budget per user; C2 indicates that the
allocated bandwidth cannot exceed the total bandwidth of the system; and C3 ensures the
QoS of each user. THth denotes the required minimum throughput. Note that plm,n and
Bi,lm,n are the decision variables associated with user lm,n, where plm,n is the allocated power
of the user lm,n, and Bi,lm,n denotes the bandwidth assigned to the user lm,n of width i. This
paper aims at obtaining better throughput by jointly optimizing the two variables.

Problem P1 is non-convex; it is difficult to solve using traditional methods due to the
high computational complexity. Furthermore, owing to the intricacy of the co-channel
interference relationship in large-scale systems and the interaction between users in differ-
ent cells, it is challenging to find the effective solution for joint transmission power and
bandwidth allocation directly. To tackle these challenges, we proposed the JPRL method,
which is excellent for the multi-cell multi-user system. In the proposed method, the MAD-
DQN algorithm was used to allocate the bandwidth, and the P-MADDPG algorithm was
developed to optimize the transmit power.

3. JPRL-Based Joint Resource Allocation Approach

The detailed structure of the joint uplink bandwidth and transmit power allocation
is shown in Figure 2. Joint resource allocation often optimizes multiple variables consis-
tently. However, for the problem of the joint allocation of the bandwidth and transmit
power, there exist infinite combinations of joint assignment schemes that are influenced
by the users interactions, thereby leading to unfortunate performance. In addition, the
bandwidth assignment with limited choices is a discrete assignment scheme, rather than
the continuous range such as for the power allocation. Thus, we de-coupled problem P1
into two sub-problems and designed an efficient JPRL method to solve the joint resource
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allocation problem in the considered large-scale multi-cell multi-user system. Specifically,
the MADDQN algorithm was developed to solve the bandwidth allocation sub-problem
with a discrete action space, and the P-MADDPG algorithm was designed to solve the
transmit power allocation subproblem in the continuous domain. This resource assign-
ment procedure satisfies the decentralized partially observable Markov decision process.
Therefore, the proposed JPRL based on the RL method employed each user as an agent to
model the optimization, which could solve large-scale resource allocation while meeting
QoS constraints.

The RL can be described as a stochastic game, which is defined by a tuple 〈K,S ,A, R, P〉,
where K is the set of agents, and S and A denote the set of states and the joint actions the
space of all agents, respectively. The R is the reward function, and P is the state transition
probability. The game is generally concerned with the interaction between the environment
and one or more agents in a series of iterations. In each iteration, the agent observes the
environmental state S to take action from action space A. Thenm the agent receives an
immediate reward Rt to reflect the quality of this iteration and observes a new state to the
next step. Our goal was to maximize of the long-term rewards over various iterations. The
details of the proposed framework are illustrated as follows.

• Agent: All users K.
• State space: The state sk(t) of agent k is denoted as its co-channel interference, and the

global environment state is thus defined as a set including the state of all agents, i.e.,

St = {s1(t), . . . , sk(t), . . . , sK(t)},
= {Il1,1(t), . . . , Il1,n(t), . . . , IlM,N (t)}.

(6)

• Actions space: The actions of each agent consist of the bandwidth and power allocation
and can be expressed as

At = {
(

ab
1(t), ap

1 (t)
)

, . . . ,
(

ab
K(t), ap

K(t)
)
}, (7)

where Ab
t = {ab

1(t), . . . , ab
K(t)} is defined as the bandwidth allocation, and Ap

t =

{ap
1 (t), . . . , ap

K(t)} is defined as the power allocation of all agents.
• Reward function: Since the whole performance is influenced by all users in the

considered system, the sparse reward is a serious issue. Inspired by the entire long-
term evaluation mechanism, in the learning process, previous lessons are indicative of
the current learning. Therefore, a novel reward function is defined as

Rt = THt − T̃Ht,τ − c, (8)

where THt denotes the average throughput of the current step t, τ denotes the moving
step, and T̃Ht,τ = 1

τ ∑τ
τ=1
(
THt−τ+1

)
is the moving average of THt. c is a non-

negative value. Especially, c = 0 if constraint C3 of Problem P1 is satisfied for all users;
otherwise, c > 0. Unlike the typical reward functions that evaluate the single-step
target by setting a threshold, the proposed reward function employs a long short-term
criterion that varies autonomously as the performance over time, which allows agents
to perform more stable exploration in the multi-cell multi-user system.

In the proposed JPRL method, we developed a distributed learning and centralized
training framework, as shown in Figure 3, which promised to explore the entire action
space fully and encourage each agent to leverage the experience of other agents. Specifi-
cally, all agents are guided by the harmonized loss feedback value of the MADDQN and
P-MADDPG when learning the bandwidth and power individually. The details of the
proposed JPRL method are given as follows, its structure is illustrated in Algorithm 1, and
the flow chart is shown in Figure 4. In the learning phase, the state of each agent is input
into the the MADDQN and P-MADDPG algorithms synchronously, and then each agent
individually performs the bandwidth allocation and power allocation actions. Based on
the actions, rewards and new states are generated and stored in the replay buffers of the
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two algorithms. Note that the reward is calculated by Equation (8), which corresponds to
all actions of the bandwidth and power. In the training phase, the values in the buffer are
randomly selected to compute correlation values to guide the intelligence in the direction
of increasing throughput. The details are described as follows.

mini-
batch

t
 1, , , ,p

t t t t tR V   1, , ,b
t t t tR   

tR
t

Soft update

 1
pa t

Actor
Eval net

Target net



'
tY

tV

Loss
(MADDPG)

 1
ba t

Eval net Target net
Train

tY
Loss

(MADDQN)

 '
1( )s t 1( 1)s i 

Agent 1
Agent 2

Agent K

mini-
batch

    1 1,b pa t a t

    2 2,b pa t a t

    ,b p
K Ka t a t

1 2

Soft update

Critic
Eval net

Target net

Q

'Q

Multi-cell Multi-user system

Q

Q  1s t  

  1 1s i  

2 ( )s t
1( )s t

( )Ks t

2( )s t

1( )s t

( )Ks t

Figure 2. System model of the JPRL-based bandwidth and power allocations.
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2 ( )s t 2 ( )pa t

Agent2
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Actor Eval

TargetCritic

( )Ks t ( )p
Ka t

AgentK

Loss

Agent1

Actor

Critic

Eval

Target

Loss1( )s t
1

( )pa t

Communication Uplink

Interference

Figure 3. Framework of centralized training.
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Figure 4. Flow chart of the JPRL method.

3.1. Bandwidth Allocation of MADDQN

Bandwidth allocation is a non-convex problem with discrete space; there are finite
choices. The size of the action space grows exponentially with the number of users.
Therefore, a MADDQN algorithm with centralized training was presented to achieve
sufficient exploration of the actions, which had good performance in large-scale discrete
action spaces.

A MADDQN model consists of a target Q network and an evaluated Q network, which
creates a copy of neural network for the two networks, respectively. For multiple agents, an
arbitrary agent taking actions to improve its performance could lead to the degradation of
the overall performance as the agents are interacting with each other. Therefore, the effect
of mutual synergy between agents cannot be ignored. A centralized training architecture, to
this end, denotes a joint action-state function Qb

sum that composes the action-state functions
from different agents to promote cooperation between agents. The concrete formula is
defined as

Qb
sum

(
St,Ab

t

)
=

K

∑
k=1

Qb
k(sk(t), ab

k(t) | ω), (9)

where ω is the parameter of the evaluated Q network. Qb
k is the k-th user’s action-state

function based on its own state. In the training phase, the joint action-state function is
used for back propagation to promote cooperation, and a mini-batch sample is randomly
sampled from the replay memory D1 that stores the states, actions, next states, and rewards
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of all the agents (note that all the agents have the same reward value) to minimize the loss
function, which is written as

L = E
(St ,Ab

t ,St+1,Rt)∼D1
[
(

Yt −Qb
sum

(
St,Ab

t | ω
))2

], (10)

where E[•] denotes the mathematical expectation and

Yt = Rt + γ1argmax
A

Qb
sum

(
St+1,Ab

t+1 | ω
)

; (11)

γ1 is the discount ratio. For each agent, the soft updating is given by

ω′ ←− ηω + (1− η)ω′, η ∈ (0, 1), (12)

where ω′ are the parameters (including the weights and biases) of target Q network.
In the multi-cell multi-user system, the MADDQN model of agent k chooses the

bandwidth assignment action according to its own state sk(t) in step t. Note that the agents
can share their past training process (state, the influence based on training). Then, all the
agents are centralized trained to minimize the loss value by Qb

sum.

3.2. P-MADDPG-Based Uplink Power Allocation

For power allocation, a huge action space is not helpful for exploitation. In addition,
although the discrete DRL algorithms can quantize power, they ignore the diversity of
power choices. To this end, a novel P-MADDPG algorithm was proposed to solve the
transmit power allocation subproblem. This is an enhancement of the DDPG with a priori-
tized replay buffer. In contrast to the power quantization, the P-MADDPG directly outputs
the power of all the users in a continuous domain with infinite choices. Furthermore, by
applying the prioritized replay buffer, it is more sensitive to the negative effect of the bad
actions than the general MADDPG algorithms.

Similar to DDPG, an actor-critic architecture [43] applies for learning and training;
both the actor and critic networks of each agent contain two identical neural networks,
which are named the online network and target network, respectively. For a multi-agent
system, the actor network of agent k outputs the power allocation under the current state
through a policy π, i.e., ap

k (t) = π(sk(t)). However, the inherent exploration–exploitation
dilemma in the DRL is prevalent for an inflexible action policy. By taking advantage of
the DQN, it is balanced by a stochastic noise whose function is similar to the ε− greedy
mechanism. Consequently, the actions of all agents are written as

Ap
t = [π(St | ωµ) + Σt]

Pmax
Pmin

, (13)

where ωu is the weight of the actor network, and Σt follows a Gaussian distributionN (0, $);
$ is the variance of Gaussian noise and decreases linearly to zero as the iteration proceeds.
Similarly, applying the individual action-value function to each agent ignores the features
of others, which reduces the learning stability and weakens agent interaction. To this end,
the critic network uses the joint action-value function Qp

sum(St,At) to evaluate all actions.
The specific Qp

sum is defined as

Qp
sum(St,At) = ERt ,St∼D2[Rt + γ2Qp

sum(St+1, π(St+1))], (14)

where D2 is the experience replay buffer, and γ2 ∈ (0, 1] is a discount factor. According to
the deterministic policy gradient theorem, the action-value function Qp

sum is used to update
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the actor parameters ωµ in the direction of increasing the cumulative discounted reward
with D samples of a mini-batch, that is

∇ωµ π ≈Eπ′ [∇ωµ Qp
sum(S ,A | ωQ) |S=St ,A=π(St |ωµ)],

=Eπ′ [∇ωµ Qp
sum(S ,A | ωQ) |S=St ,A=π(St) ∇ωµ π(S | ωµ) |S=St ],

=
1
D ∑

k
∇ap

k (t)
Qp

sum

(
St,Ap

t | ωQ
)
|∇ωµ π(sk(t) | ωµ)|sk(t),

(15)

where ωQ is the weight of critic network.
A common method for training neural networks is to randomly and uniformly sample

mini-batches from the buffer D2, which often results in a high probability of selecting
bad actions among the vast combinations of different actions, thereby lowering perfor-
mance. This method is inefficient and poorly helpful for guiding the networks to update
in the correct direction. Considering the transition samples of all agents, we designed the
P-MADDPG algorithm to enhance the MADDPG by customizing a prioritized experience
replay technique, where the more important transition samples have a higher probability of
being replayed to participate in network updating. Specifically, in each step t, the transition
samples of all agents are measured by the corresponding importance denoted by Vt, which
is combined with St, Ap

t , Rt, and St+1 to form a tuple
(
St,Ap

t , Rt,St+1, Vt

)
being stored

in D2. Similar to the MADDQN, the goal of P-MADDPG updating is to minimize the
magnitude between the joint Q-value and target joint Q-value, i.e., joint temporal-difference
(JTD) error. The transitions with the large JTD error contain more information and are
more necessary to the update of neural networks. Thus, the JTD error is a reasonable proxy
measure of important value, and Vt is written as

Vt = |Yt −Qp
sum

(
St,Ap

t | ωQ
)
|. (16)

However, in the sampling process, initially stored transition samples with small JTDs
may not be sampled to replay if the sampling only relies on the importance. This can result
in over-fitting, since the system lacks the sampling diversity of transitions. To avoid the
issue, a probability associated with the importance is assigned to each transition sample,
which can overcome the above issues effectively. The probability of the arbitrary transition
sample ϕ at the step t is expressed as

Pϕ
t =

(
Vϕ

t

)α

(
∑
|D2|
ϕ=1(V

ϕ
t )
)α , (17)

where α ∈ [0, 1] is a contribution factor that controls the impact of importance. In particular,
α = 0 means that all samples are equally distributed, i.e., no contribution is made according
to importance (uniform sampling). Original samples are equally probability-distributed in
the replay buffer, but prioritized experience replay introduces bias, since it changes the orig-
inal distribution by assigning different probabilities to the transitions. The compensation
weight is thus introduced to correct this bias, which is expressed as

λ
ϕ
t =

(
1
D

1
Pϕ

t

)β

, (18)

where β ∈ [0, 1] is a hyperparameter, which regulates the degree of bias compensation.
In particular, there is no compensation for non-uniform probabilities Pϕ

t if β = 0; there
ispartial compensation if 0 < β < 1; and thre is full compensation if β = 1. As a result, The
loss of a mini-batch ϕ after weight compensation is rewritten as
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L = E
(St ,A

p
t ,St+1,Rt ,V

ϕ
t )∼D2

[
λ

ϕ
t

(
Vϕ

t

)2
]

. (19)

Algorithm 1 JPRL methodfor joint bandwidth and power allocation

Initialize:
Initialize the network parameters in MADDQN and P-MADDPG respectively, ω, ωQ;
Initialize the replay buffer D1 and the prioritized replay buffer D2, |D1|, |D2|;
Initialize a sum tree for D2, α, β.

Excute:
1: for episode i = 1, · · · , I do
2: Receive initial observation state of all agents K, and input sk(t) to agent k.
3: Initialize the actions of all agents.
4: for step t = 1, · · · , Ti do
5: for agent k = 1, · · · , K do
6: if random number ζ < εt then
7: Randomly choose ab

k(t) from bandwidth allocation action space.
8: else
9: ab

k(t) = argmaxab
k(t)

Qb
k

(
sk(t), ab

k(t) | ω
)

.
10: end if
11: Choose power allocation ap

k (t) = [π(sk(t) + σt)]
Pmax
Pmin

.
12: Execute actions ab

k(t), ap
k (t) and observe next state sk(t + 1).

13: end for
14: Calculate reward with all agents’ actions by Equation (8).
15: Store transition with bandwidth allocation

(
St,Ab

t ,St+1, Rt

)
in D1.

16: Store transition ϕ with power allocation
(
St,Ap

t ,St+1, Rt, Vϕ
t

)
in D2.

17: if Both D1 and D2 are full then
18: Sample a mini-batch of transition from D1.
19: Sample a mini-batch of transition from D2 according to sample importance.
20: Compute the action-value function of MADDQN and P-MADDPQ according to

Equations (9) and (14), respectively.
21: Update evaluated Q network of MADDQN by Equation (10).
22: Update actor online network by Equation (15).
23: Update critic online network by Equation (19).
24: Update the MADDQN and P-MADDPG networks by soft updating.
25: end if
26: end for
27: end for

For a mini-batch with D samples, directly traversing the experience buffer D2 for
sampling requires D times, and the complexity is intolerable. To tackle this matter, a sum-
tree frame is designed for D2, where the sample ϕ is stored with the sampling probability
Pϕ

t . As shown in Figure 2, the structure is a binary tree with a root node at the top, and
there are only two child nodes for each node of the upper level. For the leaf nodes at
the bottom, the tuple

(
St,Ap

t , Rt,St+1, Vϕ
t

)
of transition ϕ is stored with its probability

according to Equation (16). Note that the value of each node is the sum of its child nodes’
value. We divided the value of the root node (the sum of the probabilities of all samples)
into D segments, which have an equal interval. In each interval, a random value, which
is no more than the range of the interval generated to backtrack the leaf node from top to
bottom. The specific backtracking rules are listed as follows, until the leaf node is selected,
if the random value is less than or equal to the value of the left child node, and we continue
backtracking from left child node; otherwise, we continue backtracking from the right child
node and calculates the difference between this value and the value of the left child node
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as the basis for the next backtracking. Then, the critic and actor networks are updated by
the selected transition samples. The proposed JPRL method is summarized in Algorithm 1.

3.3. Time Analysis of the Proposed JPRL Method

We analyzed the time complexity of our proposed JPRL method. In Algorithm 1,
let I be the total number of training episodes and Ti be the training steps in the episode
i. Therefore, the total amount of training iterations implies the time complexity, that is
O
(

∑I
i=1 iTi

)
. For each iteration, the computational efficiency is subjected to the the size of

the neural network, i.e., the number of parameters. According to [44], the time complexity
for a fully connected layer is O

(
∑L

l=1 clcl−1

)
, where l is the fully connected layer and cl

denotes the number of neural units in layer l. In the JPRL method, each agent utilizes two al-
gorithms to output the bandwidth and power actions. Note that the two algorithms are run

simultaneously. Thus, the time complexity is c = O
(

max

(
∑L

l=1
{MADDQN,P−MADDPG}

clcl−1

))
.

The total time complexity of the JRPL method is O
(

c ∑I
i=1 iTi

)
.

4. Simulations

In this section, we evaluate the performance of the proposed JPRL method. First of all,
the simulation setup is portrayed. Then, the experience results are discussed in terms of the
convergence, learning rate analysis, and performance comparison. Lastly, the performance
of our proposed method compared to different models is exhibited.

4.1. Setup

Parameter Setting of Environment: We set the location of seven base stations in the
cell center, and four users wererandomly distributed in each cell. The uplink user power
was limited to Pmin = −40 dBm and Pmax = 23 dBm [40]. The total bandwidth of the
system was W = 20 MHz. The minimum throughput requirement of all the users was
THth = 0.15 bit/s, and the power spectral density n f was −174 dBm/Hz.

The size of the cells and channel model change according to different scenarios [39],
which are referenced from the test scenior in the 3GPP protocol, such as UMa, RMa, RMi. By
default, the outsider scenario of the non-line-of-sight of the RMa was selected to evaluate
the proposed method. The RMa stipulates the radius of cell r, and the pathloss is defined as

PLlm,n = max
(

PLlm,n ,1, PLlm,n ,2
)
, (20)

where PLlm,n ,1 and PLlm,n ,2 denote the line-of-sight and non-line-of-sight pathloss, respec-
tively, which are written as

PLlm,n ,1 =

{
PLlm,n ,11, 10 m < dh < dBP,
PLlm,n ,12, dBP < dh < 5 km,

(21)

where
PLlm,n ,11 = min(0.03hε

b , 10) lg(ds)−min(0.044hε
b , 14.77)

+ 0.002 lg(hb )ds + 20 lg(40πds fc),
(22)

PLlm,n ,12 = PLlm,n ,11 + 40 lg(
ds

2πha1ha2 fc/v
), (23)

and

PLlm,n ,2 = 161.4− 7.11 lg(lw) + 7.5 lg(hb)−
(

24.37− 3.7
h2

b
h2

a1

)
lg(ha1)

+ (43.42− 3.1 lg(ha1))(lg ds − 3) + 20 lg( fc)− 10.24(lg(11.75ha2))
2 + 4.97.

(24)
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Here, ds =
√

d2
h + (ha1 − ha2)

2 and dh = dlm,n ,m denote the straight distance and
horizontal distance between BS and user respectively, where ha1 and ha2 are the heights of
the antenna in the BS and user, respectively. hb is the building height, lw is the average width
of the road, and ε is the excitation factor. For the long distance line-of-light pathloss PLlm,n ,12,
fc is the central frequency, and v denotes the propagation velocity. These parameter settings
are listed in Table 1. In this paper, the five benchmarks were considered:

(1) DDQN and DDPG: The existing DDQN for bandwidth assignment and the DDPG
for allocating the power. The architecture with a one-layer fully connected network
was used in the DDQN, and the DDPG deployed two-layer fully connected networks
in the actor and critic networks. Both of them adopted the uniform sampling-based
experience replay.

(2) DDQN andP-DDPG: The settings were the same as (1), except that the DDPG used
the prioritized experience replay.

(3) MADDQN and MADDPG(ct): We treated each user as an agent and deployed the
DDQN and DDPG on each agent. Centralized training was adopted.

(4) MADDQN and MADDPG(dt): The MADDQN and MADDPG with distributed train-
ing. Note that each agents had the exclusive reward and loss.

(5) Genetic algorithm (GA): The GA framework in the DEAP was used to realize this
benchmark [45]. The bandwidth and power allocation schemes were encoded into the
chromosome of each individual, which is the action sequence about the bandwidth
and power allocation of all the users. We set the population size to 200. The crossover
rate and mutation rate were set as 0.8 and 0.05, respectively.

Note that the GA depends on the fitness rather than the learning-based reward; thus it is
appropriate to compare the results after final convergence instead of comparing the entire
optimization process with the learning-based approach.

Table 1. Environmental parameters.

Parameters Values Description

M 7 The number of cells
N 4 The number of users per cell
Pmin −40 dBm The minimum transmitting power
Pmax 23 dBm The maximum transmitting power
W 2 GHz The total bandwidth
THth 0.15 bit/s The minimum throughput constraint
n f −174 dBm/Hz The power spectral density of noise
r 866 m The radius of cells
hb 10 m The average height of building
ha1 10 m The antenna height of BS
ha2 1.5 m The antenna height of user
ε 1.72 Excitation factor
fc 1 GHz The center frequency
v 3× 108 m/s The propagation velocity
lw 20 m The average road width

Hyperparameter Setting of JPRL: The JPRL method contains an MADDQN algorithm
and a P-MADDPG algorithm. There are the same size of the experience buffer for the
two algorithms, which are set to |D1| = |D2| = 10000. The learning rate, including
the MADDQN, actor network, and critic network of the P-MADDPG was set as 0.0001.
Furthermore, we set the hyperparameters of the prioritized replay buffer in the P-MADDPG
D2 as α = 1 and β = 0.1. In the training phase, both the MADDQN and P-MADDPG
used the Adam optimizer to optimize the loss function. The sampling batch size was
D = 128, and the reward discount factor was γ1 = γ2 = 0.89. The system began to
train the neural network when the memory buffer was full, and it updated the neural
parameters at one-step frequency after training. Besides, we set the number of episodes
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to I = 500. Note that every episode did not have fixed steps. To determine whether an
episode was completed, a done flag was designed, where the done flag was true if the
reward R increased by 200 steps; otherwise, it was false (the learning of this episode was
not finished). the other parameters of each neural network are listed in Table 2.

All experiences were operated by a computer with the 12-th Gen Intel(R) Core(TM)
i7-12700F @2.10 GHz, 16-GB RAM. The simulation results were presented using Numpy
1.21.5 and Tensorflow 2.3.0 on the Python 3.6 platform.

Table 2. Network parameters.

Network Neural Units Activation Optimizer

MADDQN 64 sigmoid Adam Optimizer
Actor Network of P-MADDPG 32, 16 tanh Adam Optimizer
Critic Network of P-MADDPG 32, 16 ReLu Adam Optimizer

4.2. Results

The setting of the learning rate has a profound impact on the learning of the distri-
bution scheme of the proposed method, which determines the ability to explore action
space. Specifically, higher learning rates are detrimental to the exploration of the action
space, as well as to the updating of network parameters in large systems with large action
spaces. Moreover, in large systems with large action spaces, a lower learning rate implies
finer-grained exploration, which does not mean that better actions can be explored, since
having more actions in a large action space degrades performance. Thus, it is necessary
to study the setting of the learning rate in a multi-cell multi-user system. Firstly, Figure 5
compares the loss values of the multiple networks under different learning rates. In order
to view the variation and performance clearly, the loss values within the first 3000 steps
after training are given. Figure 5a–c imply an interaction between the MADDQN and
P-MADDPG in the proposed method. It is worth noting that the curve values in Figure 5b
show a clear loss reduction in the P-MADDPG with a lower learning rate. It reveals the fact
that the MADDQN exploring bandwidth influenced the P-MADDPG training. However,
as shown in Figure 5c, a decrease in loss value did not signify an increase in throughput,
and it may have also been trapped in sub-optimality. As a result, we set the learning rate of
the MADDQN to 0.0001 to achieve a high throughput and fast convergence speed of the
P-MADDPG.

Figure 6 illustrates the loss values and throughput of the actor and critic networks
in the P-MADDPG at different learning rates. For the learning rates of the actor network,
the proposed JPRL achieved the best in terms of the loss value and throughput whenthe
learning rate was 0.0001. The loss curves of the MADDQN in Figure 6a show a slight
increase after 1000 steps, and a similar trend appears in Figure 6d. The reason is that the
power actions selected from the P-MADDPG affected the training process of the MADDQN.
As shown in Figure 6b,c, it is noticed that, the smaller the learning rate, the better the
performance, since the larger learning rate may skip various actions within the infinite
action space. Finally, from Figure 6d–f, in the large action spaces, the critic network with a
higher learning rate converged faster but converged to a worse value. The reason is that a
larger learning rate of the critic network implies a more coarse-grained exploration, which
is prone to learning sub-optimality. As a result, when the learning rate of the actor and
critic networks were set to 0.0001, our method could jump out of the local optimal.
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Figure 5. The loss value and throughput under different learning rates of MADDQN. The learning
rates of both actor networks and critic networks of P-MADDPG are set to 0.0001, and the loss value
was extracted at 3000 steps after the beginning of network training. (a) MADDQN loss function value.
(b) P-MADDPG loss function value. (c) Average throughput.
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Figure 6. The loss function value and throughput of the two networks of P-MADDPG under different
learning rates. (a–c) show the effect of variable learning rates on actor network, and (d–f) are the
exhibitions within the changing learning rates of critic network. Note that the learning rates of other
networks were set as default when a network varied in learning rate.

With respect to recording the reward for every 200 steps, Figure 7 plots the reward
values of the proposed method and benchmarks; the benchmarks included the DDQN and
DDPG, DDQN and P-DDPG, MADDQN and MADDPG based on the centralized training
(ct) and decentralized training (dt). In the process of early random exploration (before the
buffers are full), rewards decrease to negative values. The reason is that there are users
whose throughput does not meet the QoS requirement. As the system begins to train, all
five curves have a sharp augment. After a period of training, the moving average of the
average throughput T̃Ht,τ will be close to the average throughput THt, e.g., the reward
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is close to 0, which indicates that the methods fall into a local optimal or converge to an
optimal. It is seen that the curve of the MADDQN and MADDPG(dt) swung more than that
of the MADDQN and MADDPG(ct). As a result, Figure 7 indicates that the JPRL method
has an excellent ability to jump out of sub-optimal conditions and obtain good feedback.
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Figure 7. Reward comparison of different methods as the number of steps increased.

Figure 8 illustrates the average throughput of the different methods after 500 episodes.
In the random exploration stage, the throughput is unstable and relatively small because of
the impacts of Gaussian noise and the randomly selected actions. All methods are prone to
get stuck in the local optimum during the learning process, and there is a small fluctuation
for the average throughput because of the existence of the Gaussian noise. Since a small
change in power of any user may cause a large variation for co-channel interference, the
benchmarks fall into the local optimum easily and are difficult to jump out of it. We can
also see that the joint method MADDQN and MADDPG(dt) was extremely unstable, since
the distributed training favored the individual performance of the agent at the expense of
the overall performance. In other words, an agent, which follows its own wishes while
neglecting the other characteristics for increasing power, will increase interference and
decrease throughput. It was observed that the proposed JPRL outperformed the other
methods in terms of throughput, since it explored the action spaces fully.
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Figure 8. Average throughput comparison of different methods as the number of episodes increased.
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Figure 9 depicts a comparison of the average throughput for the six methods versus
the cell number M. It should be observed that the average throughput decreased as the
number of cells M increased. This is because fewer cells mean less interference from users
lm,n, which leads to a lower amount of co-channel interference. Obviously, it can be seen
that the RL-based approach was far superior to the GA, which is because the GA fell into
the local optimum easily. We also see that the proposed JPRL had a steeper curve than
the others, since it had better exploration in the small action spaces as cells decreased.
Therefore, the JPRL method could achieve the high throughput.

As shown in Figure 10, we further tested the average throughput of the proposed JPRL
under some different channel models, including the RMa, RMi, and UMa. The average
throughput of the users for the urban environment (UMa model) is generally less than that
of the users in rural scenarios (RMa and RMi models). This is because severe interference is
caused by a lot of users in a small range. It can be seen that the JPRL method is universally
applicable to different environments.
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Figure 9. Comparison of average throughput for the different methods versus the number of cells.
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Figure 10. Comparison of average throughput for the different channel models versus the number
of episodes.
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5. Conclusions

This paper mainly studied the resource allocation to maximize the throughput by
jointly optimizing the bandwidth assignment and power allocation subject to the QoS
constraint for the multi-cell multi-user uplink system. According to the variable attributes
of the joint resource allocation problem, we proposed a JPRL method to decouple the
optimization problem into two sub-problems, where the MADDQN was used to allocate
bandwidth, and the P-MADDPG assigned uplink power with the given importance of
transition. In order to compare the loss value and learning performance of the different
networks with various learning rates, we set the appropriate parameters for the proposed
JPRL method and analyzed the impact of the different learning rates. Furthermore, we
evaluated the reward value and throughput of the proposed JPRL method against other
existing methods. the simulation results showed that our approach can (1) obtain a better
performance and be more applicable to the complex environments than other alternative
methods (e.g., the average throughput was approximately 10.4–15.5% better than the
average throughput of the benchmarks.) and (2) be universally applicable to other large-
scale scenarios.

It is worth noting that, for simplicity, the single antenna system was used in this
work. As for multi-antenna systems such as MIMO, the impact of more complex channel
matrices caused by multiple antennas on user interference needs to be considered. In
future work, the multiple antennas, the users’ trajectory, and cloud computing will be
taken into consideration in multi-cell systems to facilitate communication–computing
integration. By considering the interference corresponding to the complex channel matrix,
the optimization is relevant to the compromised performance of the computing delay
and energy consumption, which is based on the resource allocation and task offloading
under various constraints, such as QoS constraints and offloading decisions. Moreover,
multi-dimensional and deep analysis will be researched to validate the system tradeoff.
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