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Abstract: Various viral diseases can be widespread and cause severe disruption to global society.
Highly sensitive virus detection methods are needed to take effective measures to prevent the spread
of viral infection. This required the development of rapid virus detection technology to detect viruses
at low concentrations, even in the biological fluid of patients in the early stages of the disease or envi‑
ronmental samples. This review describes an overview of various virus detection technologies and
then refers to typical technologies such as beads‑based assay, digital assay, and pore‑based sensing,
which are the three modern approaches to improve the performance of viral sensing in terms of
speed and sensitivity.
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1. Introduction
Globalization has facilitated long‑distance travel of people and goods. On the one

hand, this promoted progress in technologies and the global economy due to technology
transfer; on the other hand, this resulted in the rapid worldwide spreading of viruses.
Some of these viruses are pathogenic, and they often cause a global pandemic with serious
social disruption. In recent years, we have often heard of the damages due to not only
viral infectious diseases that infect humans, such as the recent novel coronavirus infection
(COVID‑19) [1], severe acute respiratory syndrome (SARS) [2], and Middle East respiratory
syndrome (MERS) [3], but also viral infections that infect livestock or agricultural products,
such as Avian influenza [4], swine fever [5], and foot‑and‑mouth disease [6].

Rapid virus detection technology is of great importance in sustaining global economics
while preventing the spread of pathological viruses. The detection of viral infection at an
early stage helps to contain viruses and limits its spreading, e.g., the early detection of
the Ebola virus has limited the spreading of the Ebola virus mainly within West Africa in
2014–2015 [7], while failure to do so is among the reasons which turned both SARS out‑
breaks into global pandemics. Therefore, the development of highly sensitive rapid virus
detection technology is an important proactive measure to construct the safety net to pre‑
vent the spread of infection, such as screening and infection risk assessment and manage‑
ment in living spaces, by detecting a very small amount of virus even from asymptomatic
people in the early stages of infection and from the environment to cause the contact or
airborne transmission [8–10].

While virus detection technology is important in the public health and medical sec‑
tors, it is a challenging task due to the small size and obligate intracellular functions of
viruses [11]. Biological detection methods, such as optical microscopy, are not applica‑
ble for virus detection. Conventionally, viruses are detected by a serological approach in
which the result of immune response to viral infection, e.g., the production of immunoglob‑
ulin, is observed and evaluated. The infectious viral titer assays observe whether the virus
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can infect cultured cells by conducting either plaque assay [12] or a 50% tissue culture in‑
fectious dose (TCID50) method [12,13]. The titer assays have the advantage of being able
to detect only infectious virions. However, the serological approach for virus detection is
cumbersome and low in throughput. Therefore, various virus detection technologies other
than the serological approach have been developed to fulfill the need for the rapid and
highly sensitive detection of viruses. The principle of these virus detection technologies dif‑
fers depending on which part of the virus is targeted. Figure 1 shows the schematic struc‑
tures of viruses. Viruses are classified according to nucleic acid structure (DNA or RNA,
single‑stranded or double‑stranded, linear, circular, segmented, etc.) and morphological
properties. As one way of morphological classifying, viruses can be broadly classified into
two types: enveloped viruses with an outer membrane (envelope) derived from the lipid
bilayer of the host cell, and non‑enveloped viruses with exposed capsid proteins [14]. De‑
spite their differences, nucleic acids and proteins are basic components in all viruses, and
they are virus‑specific, which we can exploit for virus detection. Most rapid and highly sen‑
sitive virus detection technologies developed are based on the detection of the molecular
fingerprint of viruses.
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Figure 1. Schematic of viral structures. Whether the virus has an envelope, the virion has specific
proteins and nucleic acid sequences.

A representative example of virus detection technology that targets nucleic acids is
polymerase chain reaction (PCR), particularly quantitative PCR (qPCR) [15]. This method
has become the golden standard for nucleic acid quantitation and has become widely
known due to the COVID‑19 pandemic. It has been used both as a screening test and a
confirmatory test in the diagnosis of viral infection. In addition to qPCR, other methods
which allow for nucleic acid amplification at a constant temperature, e.g., loop‑mediated
isothermal amplification (LAMP) methods [16] and nicking enzyme amplification reaction
(NEAR) methods [17], were also used in nucleic acid detection.

On the other hand, another molecular fingerprint of virus, i.e., proteins, were detected
and quantified mainly with immunoassays. These assays are also widely known as anti‑
gen tests [18,19]. Antibodies that recognize and bind to specific epitopes of viral proteins
are used to capture the protein. Following that, another antibody, which was labelled with
labelling substances, was bound to either the antigen or capturing the antibody for detec‑
tion. Immunochromatography [18], for instances, is often used as a rapid test for viral
infection based on coloration label. The test usually takes only 10 to 20 min and does not
require additional equipment, making it a suitable component for point of care testing. For
highly sensitive applications, highly sensitive antigen tests (antigen quantitative tests) [19]
are used. This method relies on chemiluminescent label for detection, and the measure‑
ment time is 20 to 30 min, while the detection limit is 2 to 3 orders of concentration lower
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than the rapid test. As this method requires specific equipment for detection, it is generally
used in a more professional setting, e.g., in the airport for border control.

In the development of virus detection technologies, progress has aimed mainly at
two directions: the reduction of limit of detection (LOD) and the improvement of speed
of detection. However, these two directions are in a trade‑off relationship, as shown in
Figure 2. For example, while PCR has the highest level of sensitivity for virus detection,
it is time‑consuming (1 to 4 h), and is subject to contamination. On the other hand, the
immunochromatographic method can be tested in a short time 10 to 20 min, but the LOD
is three to four orders higher than that of PCR. Considering the cases of false negatives,
it cannot be used for a definitive negative diagnosis [20]. Recently, nucleic acid‑targeted
rapid test equipment that can complete the test from sample collection to completion in
10 to 20 min has appeared, but LOD is two to three orders of concentration higher than
normal PCR [21]. For the efficient screening of asymptomatic patients, a high‑performance
method in which the LOD is equivalent to or better than PCR and speed is equivalent to or
better than immunochromatography is desirable. A breakthrough is required to overcome
the current trade‑off relationship between LOD and speed of detection.
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Figure 2. Trade‑off relation of the LODs and required times of viral detection methods. For screen‑
ing and risk management of infections, a breakthrough is desired to overcome the current trade‑off
relation. The desirable specification for the rapid virus detection is indicated as “!!” in the figure.

This review describes an overview of efforts to improve the LOD and speed of detec‑
tion of virus detection technologies, with particular attention to three approaches: bioas‑
says using micro‑ or nanoparticles (bead‑based assays), digital bioassays, and pore‑based
sensing. These approaches have a common characteristic: the use of nm‑size or µm‑size
components, such as magnetic nanoparticles, µm‑scale well‑arrays, and nm‑scale pores.

2. Bead‑Based Assays for Virus Detection
The characteristics of viruses, as described in the previous section, is a factor which

has limited the sensitivity and speed of detection. The small size of virus particles has lim‑
ited the use of conventional biological detection methods, e.g., microscopic examination to
detect virus particles in biological sample; its property with obligate intracellular functions
has increased the difficulty for in vitro detection of viruses (Figure 3a). To address these
problems, bead‑based assays have been proposed for virus enrichment and detection.
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through bead-based ELISA. Multiplex analysis of viruses allows the detection of multiple proteins 
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Figure 3. Bead‑based assay for virus detection. (a) Conventional methods for virus detection.
Viruses were usually too small to be detected by direct observation of virus particles. They are gener‑
ally detected with their proteins via ELISA or nucleic acid via quantitative PCR. (b) Virus detection
through bead‑based ELISA. Multiplex analysis of viruses allows the detection of multiple proteins on
viruses or multiple viruses in a single assay. (c) ELIME assay. 1‑NPP is oxidized into 1‑NP, followed
by the release of electrons into the reaction buffer. The current produced by the electron is related to
the concentration of the antigen. (d) Bio‑barcode assay. The target is sandwiched between captured
microbeads and barcode beads. Next, the microbeads were trapped with a magnet, and barcode
DNA was dehybridized. The barcode DNA and nanoparticles will be quantified to investigate the
number of targets in each assay.
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Bead‑based assays are indirect virus detection methods in which virus particles in
biological samples were captured and enriched with microbeads (0.5–500 µm). Following
that, the signals generated from these microbeads were detected.

While the concept to apply particles in the biological study was introduced by Wag‑
ner et al. in 1964 [22], it was not until after 2004 when Langer and Tirrell proposed methods
for surface modification of materials for medicine [23] that bead‑based assays were opti‑
mized. Today, both magnetic and non‑magnetic beads are used for virus detection, with
the optical detection of non‑magnetic beads the most popular method used, as the signal
can be evaluated with equipment available in most biochemical laboratories.

2.1. Bead‑Based ELISA
For the optical detection of viruses captured by microbeads, captured antibodies will

be coated on fluorescence microbeads, e.g., Luminex microbeads. The coating can be
achieved either by passive adsorption of antibody on the surface of microbeads, binding
through biotin‑avidin binding, or by the covalent binding through amine groups. Virus
particles are captured by the capture antibody on the surface of microbeads and detected
by detection antibody and fluorochrome. The beads–virus complex will be analyzed with
flow cytometer by detecting the fluorescence signal emitted from the fluorochrome on de‑
tection antibody (Figure 3b). This method can be considered as a form of enzyme‑linked
immunosorbent assay (ELISA), and each bead represents an independent assay. However,
bead‑based assay is more efficient and cost‑saving than conventional ELISA, as the surface
area to volume ratio of sphere is larger than the flat surface used in conventional ELISA,
and the free moving microbeads could increase the probability of collision with target
molecule. Furthermore, by using two fluorescent dyes in beads and precisely controlling
the ratio of dyes, it is possible to conduct multiplex analysis with the bead‑based method,
which could greatly reduce the sample volume required for analysis, e.g., Khan et al. have
demonstrated successful multiplex detection of six target analytes with <1 µL serum [24].

2.2. Bead‑Based Electrochemical Assay
In addition to optical detection, bead‑based detection based on the electrochemical

properties of materials was also exploited and used in virus detection. Some enzymes cat‑
alyze the oxidation of substrate, in which electrons will be released into its environment
after enzymatic reaction. The flow of electrons into a reaction buffer can be measured as
a current. By correlating the magnitude of current with the concentration of antigen, we
could thereby quantify the concentration of viruses with the magnitude of current. How‑
ever, the measurement of current in nA–µA magnitude is difficult with distance between
analyte and electrode. Although it is possible to adsorb antibodies on electrodes by coating
a layer of polymer on an electrode to facilitate the passive adsorption of proteins, the poly‑
mer might interfere with the detection of weak currents generated by enzymes when the
concentration of the target virus is low. To address this problem, Gehring et al. proposed
capturing the target analyte with antibody‑coated magnetic nanoparticles and localizing
these magnetic nanoparticles on electrodes with a magnet to increase the sensitivity of
current detection (Figure 3c). This method is known as enzyme‑linked immunomagnetic
electrochemistry (ELIME) [25]. Generally, alkaline phosphatase, which could oxidize 1‑
naphthyl phosphate to 1‑naphthol, was used in ELIME for its high stability. As color de‑
velopment or the use of tertiary antibody is not required for ELIME, it could reduce the
time of ELISA from 8 h to 2 h. As an example, ELIME assay has been employed in the
direct quantification of the hepatitis A virus. The low titer and the undefined structure of
proteins from hepatitis A virus [26] render it difficult to be quantified by ELISA. Currently,
hepatitis A virus is detected by the presence of hepatitis A virus antibodies, which has pre‑
vented the early detection of hepatitis A virus in patients. ELIME assay provided a solution
for the direct quantitation of hepatitis A virus between 10−10–5× 10−7 IU/mL range with a
detection limit of 10−11 IU/mL [27]. The results obtained from hepatitis A virus ELIME cor‑
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related to results obtained from RT‑qPCR, with high coefficient of correlation, suggesting
that the quantitation is feasible.

In addition to ELIME, label‑free electrochemical bead‑based assay, e.g., immunomag‑
netic impedance metric sensor, was also developed. An antigen‑antibody reaction will re‑
sult in changes in electrochemical impedance, which allows for label‑free detection of the
target. In this method, first, streptavidin‑coated magnetic microbeads are immobilized on
the surface of gold electrode with a magnetic bar to ease the process of regeneration of
sensing surface when necessary. Next, the biotinylated antibody was coated on magnetic
microbeads followed by introduction of the sample. The concentration of target was corre‑
lated to changes in electron transfer resistance differences ∆R_m, and ∆R_m is defined as

∆R_m = R_(et(Ab))− R_(et(Ab−Ag))

where R_(et(Ab)) is electron transfer resistance after antibody immobilization and
R_(et(Ab−Ag)) is electron transfer resistance after antigen binding to antibody [28].

Other than proteins, nucleic acid can also be captured and analyzed with bead‑based
assay. Either peptide nucleic acid or a fragment of complementary DNA was immobilized
on the surface of magnetic beads to trap target DNA from samples. Magnetic beads were
used instead of direct immobilization of complementary DNA on probes or electrodes,
as it is difficult for long fragments of DNA to hybridize directly short fragment of nucleic
acid attached on the surface of electrodes. After incubation, magnetic beads were collected
with magnets, and the non‑complementary DNA was removed by washing. Then, inter‑
calators were introduced, the beads were collected after reaction, and the electrochemical
signal from the intercalator was measured. This method is known as genomagnetic elec‑
trochemical bioassay [29,30]. The limit of detection of genomagnetic electrochemical bioas‑
say depends on the properties of the intercalator. For example, when Meldola’s blue was
used as an intercalator, the system had a detection limit of 2 pmol/L, a dynamic range of
2–20 pmol/L, and a hybridization time of 20 min [31].

2.3. Bio‑Barcode Assay
To further reduce the limit of detection of bead‑based method to amol/L order, the

bio‑barcode method has been proposed [32,33]. The bio‑barcode generally consists of two
components: (1) magnetic beads bearing probes (either monoclonal antibody or DNA) to
capture target; (2) gold nanoparticles bearing detection probes (DNA or polyclonal an‑
tibody) and a custom‑designed oligonucleotide which will be used to identify the gold
nanoparticle. This custom oligonucleotide is also known as bio‑barcode.

In bio‑barcode assay, first, the target will be captured with magnetic beads. Then,
nanoparticleswith detectionprobes and barcode are incubated withmagnetic beads–target
complexes. Magnetic beads–target–nanoparticles complexes are isolated with magnetic
field, and the barcode will be dehybridized from nanoparticles. Either barcode DNA or
nanoparticles will be detected (Figure 3d). The amount is correlated to the concentra‑
tion of the target. Therefore, it can be used to quantify the concentration of target. The
limit of detection of bio‑barcode assay depends on the choice of components, reagents,
and the species of viruses. For example, the limit of detection for hepatitis B virus was
1 pmol/L [34], 100 fg/L for bluetongue virus [35], and 100 pg/L for human immunodefi‑
ciency type 1 capsid antigen [36]. Nevertheless, evaluating the limit of detection in ideal set‑
ting suggested that the sensitivity of bio‑barcode system is almost similar to PCR method,
which is approximately 500 zmol/L, or approximately 10 copies in a 30 µL sample [37].

2.4. External Force‑Assisted Near‑Field Illumination Biosensor
In addition to the detection of targets captured by particles, motion‑based sensing has

also attracted considerable attention due to its potential in real‑time detection and high
spatial resolution [38,39]. However, it was difficult to control and analyze the motions of
many particles in high‑resolution in the bulk solution, which resulted in lower sensitivity
of these systems than the PCR assay, i.e., 103 virus particles/mL. To address this issue, our
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group has an External Force‑Assisted Near‑field Illumination (EFA‑NI) biosensor [40,41]
that uses magnetic force as the bead driving force, which helps to reduce false positivity
by simultaneous detection of optical signals from markers and particle movements.

In and near the evanescent field from near‑field illumination, the EFA‑NI biosensor
uses an external force (magnetic force) to move the target which has bound to antibody‑
modified magnetic particles. This movement of particles is used to distinguish signal from
noise. While various studies have demonstrated the use of magnetic particles for target
manipulation, EFA‑NI is the first to combine the movement of magnetic particles and op‑
tical signal detection to reduce false positivity. Our approach has enhanced the contrast
between signal and noise by detecting the “moving optical signal”, thus increasing the
signal‑to‑noise ratio [40,41]. Since the entire space that the near‑field illumination reaches
becomes the detection area, it is possible to use the concentration effect of the surface. Si‑
multaneously, because of the movement, it is also possible to avoid the influence of noise
due to non‑specific adsorption on the surface of detection [40]. The EFA‑NI biosensor
does not require a washing process, and even samples containing many contaminants can
be measured simply by mixing the sample with a detection solution (including antibody‑
modified magnetic particles and optical markers) and injecting it into the device [40,41].

Figure 4 shows a detailed schematic diagram of the detection chamber of the EFA‑NI
biosensor. The sensor chip is mounted on a trapezoidal prism. An s‑polarized parallel light
is incident on a trapezoidal prism at an angle parallel to the chip surface. In this setting,
the angle of incident light on the surface of the sensor chip, which serves as a reflective
surface, is designed to be greater than or equal to the critical angle. The incident light is
totally reflected at the surface of the sensor chip, and the vicinity of the sensor chip surface
is illuminated by the near‑field light.
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Figure 4. Schematic diagram of the EFA‑NI biosensor. The target viruses are sandwiched by
antibody‑modified magnetic particles and optical markers. Using magnets and near‑field illumi‑
nation, the complexes, including the target viruses, are detected as moving optical signals.

For the electric field enhancement of near‑field light, the surface plasmon resonance
based on a thin metal film on the surface (a leaking electric field with a height of approxi‑
mately 100–200 nm) is often used for immunosensors. However, in the detection area up
to about 200 nm in height, the detection target easily leaves the detection area with the
EFA‑NI biosensor that does not capture the detection target on the surface. Therefore, to
use a wider space as the detection area, we adopted a waveguide mode excitation mech‑
anism using a multi‑layered waveguide, which is capable of forming a highly enhanced
electric field with a height of approximately micrometers.
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A mixture that included the sample, the antibody‑modified magnetic particles, and
the antibody‑modified optical markers was introduced into the liquid cell formed on the
sensor chip. The targeted virus was detected as a moving optical signal by applying a
magnetic field from a sandwiched complex with the antibody‑modified magnetic particles
and the antibody‑modified optical signal marker. Contaminants, which are noise sources,
do not move in the same manner as magnetic particles when a magnetic field is applied,
so optical signals originating from contaminants can be easily distinguished as noise.

Wedemonstrated the detection ability of the EFA‑NI biosensor bydetecting Norovirus
Virus‑Like Particles (NoVLPs) [42,43]. Norovirus is a pathogen that has been reported to
be infected all over the world, and it is reported that there is a possibility of infection even if
only about 20 virus particles are orally ingested [44,45]. Therefore, prevention of norovirus
infection requires the detection of even very small amounts of norovirus in specimens sus‑
pected of viral contamination. The EFA‑NI biosensor exhibits high detection ability in the
range of 102–104 NoVLPs/mL (which the LOD ≈ 1 order of magnitude smaller than other
motion‑based methods, e.g., Pt‑nanomotors based method [39]) and can measure for sam‑
ples containing rich contaminants, such as sewage‑treated water, even without a washing
process [40,41]. Due to its high contamination resistance, this technology is expected to be
applied to environmental virus detection.

3. Digital Bioassays Technologies in Virus Detection
To this point, the discussions revolve around virus detection technologies based on

bulk analysis in a single reactor with large volume (>10 µL). These methods are known
as analogue assays, in which the concentration of target, C, is proportional to the relative
intensity of readout signals, I (I ∝ C) (Figure 5a). When the concentration of target is low,
the probability of detection and relative signal intensity reduced, which results in false
negativity. Furthermore, the sensitivity of detection based on analogue assays is incom‑
patible to the detection of disease at the early stages of disease development. For instance,
patients in the first two weeks of human immunodeficiency virus (HIV) infection have con‑
centration range of p24 capsid antigen from 50 amol/L to 15 fmol/L [46], while the LOD of
analogue assays is >pmol/L [47], rendering it challenging for the diagnosis and detection
of viral infection at an early stage. Therefore, there is an urgent need for the development
of technologies for ultrahigh sensitivity detection system to realize early diagnosis and the
detection of viruses at low concentrations.

Two methods have been proposed to address the issue of limited sensitivity of detec‑
tion in bulk system: (1) increase sensitivity of sensors. However, the sensitivity of sensors
is constrained by a trade‑off among the physical principles of sensors and its fabrication
process which has come to its limitations. (2) The compartmentalization of the reaction sys‑
tem to enrich the target molecules in each compartment, thus increasing signal intensity
and probability of detection. Theoretically, all compartments with target molecules can be
detected as endpoint entity and are thus categorized as positive and negative compartments.
Then, the number of both positive and negative compartments will be collected and statisti‑
cally analyzed. Absolute quantitation of target molecule is defined as the product of average
number of target molecules per compartment, λ, and the number of positive compartments.
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where R_E is the fraction of negative compartments. This method is known as digital as‑
says in contrast to its analogue counterpart, for its nature of binary detection. Sensitivity
of detection can be easily increased by reducing the volume of each compartment, which
makes compartmentalization a more favorable and cost‑effective method compared to in‑
creasing the sensitivity of sensors (Figure 5b).

Bioassay through compartmentalization was first introduced by Lwoff and Gutmann
in their study of lysogeny of Bacillus megatherium in 1950 [48]. Lwoff and Gutmann de‑
tected the lysogeny through the disappearance of Bacillus megatherium in droplets, fol‑
lowed by the release of hundreds of bacteriophages. This method allowed for the quantita‑
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tion of a fraction of lysogenic bacteria which produced bacteriophages with ultrahigh sen‑
sitivity, which led to the award of the Nobel Prize in Physiology and Medicine in 1965 [49].
Digital assays later extended from single cell analysis [48,50] to protein and nucleic acid
analysis, which has in turn facilitated the development of ultrahigh sensitivity virus detec‑
tion technology.
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Figure 5. Digitalization of bioassays. (a) Analog bioassay. The relative concentration of the target
in the analyte is estimated by the relative intensity of the signal generated from the target. Signal
intensity is correlated with a concentration within the dynamic range. (b) Digital bioassay. Bioassay
is compartmentalized either by microwell array or a microdroplet so that each compartment contains
either 1 or 0 copy of the target. Then, the presence of the target in each compartment was detected,
and statistics were collected. Digital bioassays allow for absolute quantification of the target in the
analyte. (c) Digital–analog bioassays. More than 1 target was encapsulated in each compartment.
Next, both the presence of the signal and the relative intensity of the signal generated from a target
in each compartment were used to quantify the number of copies of the target.
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3.1. Digial Polymerase Chain Reaction
Nucleic acid analysis is one of the standards, and the most used method in virus de‑

tection in contemporary society. It was invented by Kary Mullis in 1983, commercialized
as Thermal Cycler by Certus and Perkin‑Elmer in 1987, and it came to replace the North‑
ern blot developed in 1977 [51] as a common practice in RNA analysis. Today, reverse
transcription‑quantitative polymerase chain reaction (RT‑qPCR) is the gold standard for
nucleic acid and virus quantitation (For a detailed review of application of RT‑qPCR in
virus detection, the readers are advised to refer to reference, e.g., [52]). While RT‑qPCR
has high dynamic ranges (>9 log), a low operating cost, and supports multiplexing, a com‑
plicated optimization process is required for qPCR to obtain reliable and reproducible re‑
sults [53]. The sensitivity was low (≈106 copies/mL), and its property as a tool for relative
quantitation has resulted in large interlaboratory variation (≈27%) [54]. Therefore, there
was an urgent need for a new method for nucleic acid analysis which could reduce the
error of RT‑qPCR and act as a reliable method for nucleic acid analysis.

Combining the methodology of limiting dilution and compartmentalization, as pro‑
posed by Lwoff and Gutmann, Vogelstein and Kinzler developed a method which could
detect the presence of specific DNA fragment as either negatives or positives in 1999, which
they named the method “digital PCR (dPCR)” [55]. As the target DNA is limiting diluted,
the probability distribution of target DNA detected in each event was approximate to Pois‑
son distribution (Equation (2)) [56],

P(n) = (λˆn eˆ (−λ))/n! (2)

where n is the number of molecules detected in each event. The absolute number of copies
of DNA approximates the product of DNA in each compartment and the fraction of posi‑
tive compartment. Apparently, when each compartment contains only 1 copy of DNA or
no DNA, the sensitivity of the system is limited by the number of compartments screened.
For instance, Vogelstein and Kinzler noted that by increasing the number of compart‑
ments from 96 to 1536, theoretical sensitivity in mutation detection could be reduced to
≈0.1% [55]. As we increase the number of compartments formed, the sensitivity will be
limited only by polymerase error. By increasing the compartment to 20,000 to 30,000 com‑
partments, various studies have shown that dPCR is more sensitive than RT‑qPCR in virus
detection under the same experimental conditions [57,58].

Today, there are generally two approaches in which compartmentalization was con‑
ducted: (1) chip digital PCR (cdPCR) based on microwell array, and (2) droplet digital
PCR (ddPCR) based on microdroplets suspended in oil generated by microfluidic chips or
vortex mixing.

Both approaches have been commercialized. The Fluidigm BioMark system and
ThermoFisher Quantstudio 3D are commonlyused systems for cdPCR; Bio‑Rad QX100/200,
the RainDance RainDrop system, and the Stilla Naica system are commonly used ddPCR
systems (Figure 6a).

Technically, cdPCR has larger compartment volume compared to ddPCR as the cost of
fabrication increases exponentially with the reduction in size of the microwell. ddPCR also
offers higher dynamic ranges (5–6 log) compared to cdPCR (2–5 log), and sensitivity for rare
mutation detection. RainDance RainDrop dPCR system could detect 0.071 copies/µL [59],
while the detection limit of Thermo Fisher Quantstudio 3D was 1.51 copies/µL [60], which
is 3 times greater than the Bio‑Rad QX100/200 ddPCR system (0.5 copies/µL) and 21 times
greater than the RainDance RainDrop dPCR system. ddPCR has gradually become a more
popular option compared to cdPCR for its lower operation cost and higher sensitivity.
Nonetheless, both dPCR platforms are capable of performing direct quantitation of viruses
without nucleic acid extraction [61], which could effectively prevent the loss of information
in the nucleic acid extraction process.
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Although the method demonstrated by Vogelstein and Kinzler relied on limiting dilu‑
tion, it is unnecessary for digital assays. To ensure a sufficient number of empty compart‑
ments for quantification described in Equation (1), the range of λ is usually maintained
within the range of 0.001 to 6 [62]. In other words, a maximum of six targets can be encap‑
sulated in each compartment to conduct digital assays. By combining digital and analogue
assays, i.e., setting the threshold value for signal intensity in each droplet corresponded to
1–6 copies of target DNA encapsulated and collecting the statistics of positive droplets, it
is possible to counteract the consequence of encapsulating more than 1 copy of DNA in
each droplet, which will further increase the accuracy of quantitation (Figure 5c).

A concern that remained for ddPCR compared to cdPCR is the volume uncertainty of
droplets. Unlike microwell array, the volume of droplets is not constrained by the volume
of container, and therefore there is higher volume variation in droplets (2–8%) compared to
the microwell array (<1.0%). To address this issue, Pinheiro et al. have revised an equation
(Equation (3)) which could counteractively correct the result of measurement with volume
uncertainty [63].

u = K√
((u_c)ˆ2 + (u_V/V)ˆ2) (3)

where u is the uncertainty of target in droplets, K is the coverage factor ranging from 2.05
to 2.18 for 95% confidence interval, u_c is the uncertainty of compartment, u_V is the un‑
certainty of volume of compartment, and V is the mean volume of compartment. From
Equation (3), we can note that uncertainty decreases as the number of compartments in‑
creases. It is possible to reduce the influence of uncertainty by increasing the number of
compartments generated and analyzed.

With the recent development of vortex ddPCR [64], the cost of ddPCR can further be
reduced as the requirement for specialized equipment and apparatus is eliminated. Fur‑
thermore, our group has recently developed a hydrogel capsule‑based dPCR method [65].
By encapsulating the PCR reaction assay into a hydrogel capsule (which is composed by
hydrogel shell and sol core), we eliminated the use of fluorinated oil and surfactant to
stabilize the interface of droplets without compromising the efficiency of ddPCR. The cost
has been reduced by 4000‑fold compared to ddPCR as both soybean oil and hydrogel were
cheap alternatives compared to fluorinated oil and surfactant. Furthermore, higher fluo‑
rescence intensity was also obtained at endpoint measurement due to the better dispersity
of gel capsule in soybean oil compared to fluorinated oil, as fluorinated oil is denser than
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water. This property is particularly useful to detect nucleic acid, which is difficult to am‑
plify. These technologies might further increase the attractiveness of ddPCR and enable
its employment in a laboratory with limited resources.

3.2. Flow Virometry
When a portion of suspension is compartmentalized into a vast amount (102–106) com‑

partment, statistic collection becomes a cumbersome task. Therefore, it is important to com‑
bine high‑throughput analysis technology with digital assays for the practical application
of digital assays. Before the advent of microscale analytic systems, various methods were
developed to quantify colloidal particles aligned as single particles in fluid flow, based on
photoelectric effect [66], electrical impedance [67], and fluorescence [68]. Combined with
technology for the electronic separation of cells [69], these methods have contributed to the
development of fluorescence‑activated cell sorting (FACS) [70]. FACS generally employ a
large suspension buffer‑to‑particle ratio to ensure that only a single particle is analyzed in
each measurement (event).

With recent advances in FACS technology, which have allowed for the detection of
particles size ranging from 100–1000 nm, it became possible to detect viruses with FACS.
The first attempt to detect viruses and bacteriophage with FACS dated back to 1979 when
Hercher et al. developed a custom flow cytometer for virus detection. By focusing the
core of the stream to 2–20 µm and magnifying the laser with microscope magnifiers, the
scattering signal from T2 bacteriophage (70–200 nm) and reovirus (60–80 nm) could be dis‑
tinguished from background noise [71]. By changing the position of photodetector from
0.5◦–15◦ to 15◦–70◦, a higher intensity of signal can be observed as forward scattering,
which reduces the detection limit from µm order to 50 nm [72]. Although this technology
is not informative, i.e., it did not provide much information about the virus, neverthe‑
less, it is a breakthrough which has opened a new field of study known as flow virometry
(Figure 6b).

The progress of flow virometry has been accelerated by the development of stable
nucleic acid stain, which allows for the labelling and identification of DNA viruses [73].
The invention of bead‑based assay (as discussed in Section 2) has allowed for the enrich‑
ment of viruses with microparticles and for te detection of viruses bound on micropar‑
ticles [74–76]. By coating specific lectins on the surface of beads and employing beads
containing fluorophore with different wavelengths, it is possible to identify viruses with
viral glycoprotein on their surface besides the quantitation of virus particles.

Furthermore, the invention of flowvirometry has also changed the paradigmof virus’s
characterization. It has always troubled researchers and health workers that viral stocks
generally contain large fractions of defective viruses compared to infectious viruses. Ana‑
logue assays usually measured the sample as bulk, which does not provide useful informa‑
tion on the composition of proteins in viruses. With flow virometry, El Bilali et al. demon‑
strated that it is possible to sort Herpes simplex virus 1 by infectivity based on tegument
proteins VP16 and VP22 [77].

On the other hand, the development of microfluidic devices since the beginning of
the 21st century has enabled customizable fluid manipulation in microelectromechanical
systems. The successful generation of droplets in microfluidic devices [78] has allowed
the integration of droplet‑based methods invented by Lwoff and Gutmann [48] into this
precise liquid manipulation system. With microfluidic, droplets at fL–nL scale can be gen‑
erated at high‑throughput, which has provided three great advantages for digital assays:
(1) smaller compartment volume increases the relative concentration of samples in each
compartments, thus the sensitivity of assays, and (2) smaller compartment size has reduced
the field of illumination, thus, a brighter signal can be obtained from each compartment,
(3) miniaturization increases the speed of reaction by l̂2, where l is the length of reaction. To
date, various sorting modules based on droplet microfluidics have been invented, which
includes fluorescence [79], fluorescence lifetime [80], absorbance [81,82], scattering [83,84],
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Raman spectrum [85], X‑ray [86], and UV‑vis spectrum [87], which are particularly useful
for virus sensing.

With the help of enrichment technology, e.g., bead‑based enrichment [88,89], enrich‑
ment by specially designed probes [90], and droplets‑encapsulating technology [91], the
analysis of species of virus has become feasible. A virus can be captured, trapped, and
lysed, and the nucleic acid can be amplified and detected, which has expanded the poten‑
tial application of flow virometry.

3.3. Digital Enzyme‑Linked Immunosorbent Assays
Protein analysis is another important approach for virus identification and quantita‑

tion. Among various methods for protein quantitation, ELISA has emerged as the golden
standard for protein quantitation. As analogue assays, the LOD of analogue assays of
ELISA is pmol/L. This LOD does not meet the sensitivity required for the early detection
of a virus (several tens amol/L). Therefore, a single‑molecule detection method with high
sensitivity is required to detect proteins at amol/L. In 1961, Rotman reported a method
to encapsulate single β‑galactosidase molecule into emulsion and successfully measured
the activity of individual molecules [92]. By observing the rate of change of fluorescence
intensity in each droplet, Rotman discovered Poisson distribution in the trend, which is
typical in digital assays. After several tens of years from Rotman’s pioneering work, dig‑
ital enzyme assays using an array of microwells of femtoliter volumes for encapsulating
enzyme molecules were reported [93–95], which provided the technical basis of single en‑
zyme molecule detection.

Based on the technology of digital enzyme assays, Duffy’s group (Quanterix Corpo‑
ration) has developed and reported the first digital ELISA (dELISA) system that employed
targeted molecules capturing by immunomagnetic beads and enzyme labeling in 2010 [96].
The schematic diagram of dELISA is shown in Figure 7. First, an analyte containing target
protein molecules was mixed with antibody‑functionalized immunomagnetic beads (typ‑
ically 3 µm in diameter) to capture target proteins in suspension (Figure 7a,b). Enzyme
labels then bonded to the target molecules via antibody (Figure 7c). An immunocomplex
containing antibody‑functionalized magnetic beads, target molecules, and enzyme labels
were formed. The immunocomplex was encapsulated into a microwell array (103–105 of
wells with femtoliter volumes) with fluorogenic substrate (Figure 7d). When the immuno‑
complex is present in the microwell, fluorescence signal is generally generated through
enzymatic reactions, and the statistic of positive wells was collected (Figure 7e). By us‑
ing a microwell array which could only accommodate a single magnetic bead per well,
e.g., a microwell with a diameter of 4.5 µm and a depth of 3.25 µm for a magnetic bead
with a diameter of 2.7 µm [96], the ratio of the luminescent wells was equal to the ratio
of the number of immunocomplex to total number of magnetic beads, which is used to
evaluate the average enzyme number per bead. The first dELISA used approximately
50,000 microwells fabricated by processing optical fiber bundles, and a prostate‑specific
antigen (PSA) in serum was detected with the LOD of 200 amol/L (8 fg/mL) [96]. The re‑
sult was 1000 times superior to the LOD of analogue ELISA (≈10 pg/mL for PSA). After
the first report, the research group of Quanterix Corporation continued to develop digital
ELISA‑related technologies, including the dynamic range broadening of assays by using
the average enzyme number per bead measured with digital and analogue hybrid meth‑
ods [97], polymer‑based microwell sensing plate with fluidic channel for automation of
assays [98], and the theoretical analysis of digital assays [99], and commercialized the au‑
tomated digital ELISA systems such as the Simoa series [100]. Simoa series has been widely
used in viral protein detection, which includes the detection of HIV (LOD = 2.5 fg/mL
in serum) [101], influenza virus (LOD = 0.59 fmol/L and 0.99 fmol/L for nucleoprotein
and hemagglutinin in buffer solution) [102], and SARS‑CoV‑2 (20 fg/mL for N protein in
nasopharyngeal swab) [103–105]. The sensitivity of dELISA is approximately 1000‑fold
higher than analogue ELISA. Also, several assays using CRISPR‑based technology to tar‑
get nucleic acids were established in a manner that mimics immunoassay detection sys‑
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tems such as immunochromatography [106]. Being a similar system to digital ELISA,
CRISPR‑based amplification‑free digital RNA detection was recently developed to detect
viral RNA (LOD = 5.7 fmol/L of SARS‑CoV‑2 RNA extract) using microwell arrays and
CRISPR‑Cas13 [107]. Besides, interferometric techniques can also be applied to the digi‑
tal assay. Using interferometric scattering of the small particles, the size and count of the
particles are visualized in the microscopic image [108,109]. By combining interferometry
and sandwich immunoassay techniques, a commercialized device based on the principle
of Single Particle Interferometric Reflectance Imaging Sensing has successfully detected
extracellular vesicles (EV) with the LOD of 106 to 109 EV/mL [109].
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dELISA technology flourish around the Simoa series, and various progress has been
obtained, e.g., Kim et al. increased the number of microwell in dELISA by 1 order of mag‑
nitude, which lowered the LOD of dELISA to 2 amol/L [110]; Leirs et al. extended the
application of dELISA from PSA detection to nucleoprotein detection [111]; dELISA with‑
out magnetic beads were developed by exploiting viral enzymes, e.g., neuraminidase of
influenza virus [112]. The portability of dELISA was enhanced by using the camera of
a smartphone and evanescent light illumination, which produced a portable dELISA sys‑
tem with 100 times higher sensitivity compared to rapid diagnostics kit [113]. The vari‑
ation of dELISA with air as sealant instead of oil was also developed to enable solution
exchange of microwells for performing multiple condition assays on the same target en‑
zyme molecules [114].

Further studies have been conducted to improve the LOD of dELISA to zmol/L. While
increasing the number of microwells is effective to improve LOD as a larger volume of sus‑
pension can be sampled [110], the field of observation has limited the maximum number of
microwells to ≈106 wells; reducing the number of magnetic beads could also improve the
sensitivity of dELISA as it increased the fraction of immunocomplex analyzed, e.g., reduc‑
ing the number of magnetic beads by 100‑fold could improve sensitivity by 189‑fold [115].
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Nevertheless, low concentration of magnetic beads resulted in a longer reaction time for
antigen capturing, which reduced the speed of detection [115].

Balancing the trade‑off of sensitivity and speed of detection is a challenging task in
dELISA with the current design, which allows for only single bead per well. A break‑
through is needed to achieve high sensitivity, such as rapid dELISA.

3.4. Multiparticle‑Concentrated Digital Immunoassay
As mentioned above, dELISA for virus detection [101–105] achieves high sensitivity

by combining the principle of digital detection and the efficient capture, concentration, and
washing of targets with the help of magnetic particles. However, to increase the resolution
of detection, it is preferable that only one magnetic particle is accommodated in a well.
Therefore, it is desirable to have only one target bind to a magnetic particle. As dELISA
measures viral proteins from lysed virion, it is difficult to know whether the virus particles
maintain their particle shape, which may have a negative effect on the quantification of
enveloped viruses, for their wide range of particle sizes and diversity in the number of
proteins contained in each particle. In addition, the number of magnetic particles which
could be used in dELISA is determined by the number of wells available. Even if more
magnetic particles than the number of wells is used, they cannot be accommodated in
the wells, which will increase the probability of false negativity. Therefore, it is difficult to
speed up the capturing, concentrating, and washing processes by using high‑concentration
magnetic particles.

To address this issue, our group has proposed a lysis‑free method that could sim‑
plify the complex and cumbersome sample preparation process, while achieving simi‑
lar sensitivity to the PCR method, which we call a multiparticle‑concentrated digital im‑
munoassay (MCDIA) [116,117]. Figure 8 shows an outline of the detection principle of
MCDIA. MCDIA uses digital detection technology, similar to the dELISA [101–105] which
has been described above. The well array used consists of pL‑sized holes which can ac‑
commodate many magnetic particles per well. Highly concentrated (>108 particles/mL)
antibody‑modified magnetic particles can quickly capture viruses in the sample. Next, the
enzyme‑labeled antibodies are bound to the virus and unbound enzyme‑labeled antibod‑
ies are removed. By rapidly guiding the complexes into the well array using a magnetic
field, the viruses sandwiched with the magnetic particles and the labeled antibodies are
concentrated in a short time. Almost all the particle–virus complexes and magnetic parti‑
cles can be accommodated in the well array. Furthermore, they are enclosed in the well
array together with fluorogenic substrates that react with the enzyme label. Fluorophore
was released, and fluorescent signals are detected only in the wells, including the viruses.
Viruses in the sample can be detected and quantified by counting the wells that emit fluo‑
rescent signals.

Theoretically, the MCDIA can achieve detection within a few to a few tens of min‑
utes with a sensitivity equal to or greater than that of the PCR method. Both rapid virus‑
capturing and high sensitivity can be realized by introducing a multi‑particle concentration
method into the digital detection technology. We have successfully developed an influenza
A virus (IAV) detection system [116] and a SARS‑CoV‑2 detection system [117] based on the
MCDIA. Using the developed IAV detection system, the LOD of 100 copies/mL of IAV has
been demonstrated, which is more sensitive than the PCR method, approximately 30 min
from the mixing of the antibody‑modified magnetic particles with the sample [116]. In ad‑
dition, the SARS‑CoV‑2 detection system succeeded in detecting UV‑inactivated
SARS‑CoV‑2 equivalent to 100 TCID50/mL in a reaction time of 3 min, for which the con‑
centration is approximately the lowest virus concentration (titer) that can be detected in
the saliva of SARS‑CoV‑2 patients [118–121]. This indicates that this system can cover the
clinical detection range. These demonstrations suggest that MCDIA is a high‑performance
system that could be used to detect low concentrations of viruses within minutes.
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Figure 8. Schematic diagram of MCIDA. After capturing the targets by antibody‑modified magnetic
beads, bead–target–enzyme immunocomplexes are applied to microwells. Different from the digital
ELISA, many immunocomplexes and beads are introduced in each microwell. After sealing and
enzyme reaction, the sealed microwell array is observed, and we counted how many wells indicate
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reaction of the substrates changing to the fluorescent substance.

In future works, while maintaining sensitivity, we aim to shorten the entire detection
time by automating and improving the efficiency of the procedure part and will achieve
both the highest‑level sensitivity and fastest‑level sensitivity required for screening tests
for asymptomatic people and for evaluating the risk of infection in a certain space. If a
highly sensitive and reliable rapid on‑site test is put into practical use, it is possible to con‑
trol the spreading of viruses before it evolves into a pandemic by screening asymptomatic
patients and reducing the risk of aerosol transmission. In the event of an infectious dis‑
ease pandemic, we can also expect to avoid situations that cause huge social and economic
losses, such as declaring a state of emergency or pre‑emergency measures in the global
pandemic of viral infection.

4. Pore‑Based Sensing for Virus Particles Detection
Pore‑based sensing is a promising candidate for the early detection of extremely small

particles such as molecules, proteins, and viruses (50–200 nm). This method is known as
“Coulter principle” or “resistive pulse sensing”. Pores usually consist of a nano‑ to microm‑
eter hole within a substrate which forms a barrier between two electrolyte‑filled reservoirs.
A pair of electrodes are placed on each side of substrate, and voltage is applied to the pore
and measures the ion current flowing through it (Figure 9). Particles can be counted in real
time by modulation in an ion current derived from obstructing the pore in the translocation
process. Since the magnitude of the ion current depends on the size of particles, pore‑based
sensing can measure the size of individual particles then output them as statistics such as
transmission electron microscopy [122]. Notably, pores on the nanometer scale are called
“nanopores” and are particularly suitable for measuring nanometer‑sized viruses.
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Nanopores are widely used in biochemical and single molecule detection, and could
be made of biomacromolecule or synthetic materials. For example, molecular measure‑
ments using nanopores, in which α‑hemolysin with cyclodextrins inside is embedded in
lipid membranes, was reported [123,124], and pore‑based sensing was recognized as a
method for single molecule analysis. On the other hand, pore‑based sensing using nat‑
urally occurring pores has limited the size of measured particles. Therefore, artificially
fabricated pores have been developed for particle measurement. Viral particle sensing us‑
ing artificially fabricated pores will be discussed in this chapter.

4.1. Fabrication of Pores for Sensing
An important aspect of nanopore measurement is techniques for making pores. There

are many ways to penetrate thin membranes for the fabrication of pores such as ion beam
drilling, electron beam lithography, electrochemical etching, etc. [125–129]. For example, it
has been reported that the fabrication of pores in glass with sub‑micrometer diameter uses
a femtosecond‑pulsed laser [126,130] to measure paramecium bursaria chlorella virus 1 with a
diameter of 175–190 nm [131,132]. Other reports have also shown the use of a single heavy
ion to fabricate pores [125,133,134], while in another method, a needle is used to penetrate
a membrane [135]. This method is used for pore preparation, sold as a pore membrane for
qNano and Exoid by Izon Science, and is a necessary process for tunable resistive pulse
sensing (TRPS) (The details of TRPS are discussed below).

An advantage to using pores for particle measurement is that not only the size of the
particles can be estimated, but also the waveform of electric current varies with the shape
of nanoparticles. Therefore, the preparation of pores with precisely controlled geometry
is also of great importance to obtain highly reproducible measurement. For example, pre‑
cisely uniformed low‑aspect ratio pore prepared by electron beam lithography and reactive
ion etching can obtain the specific current waveform derived from the shape of measured
particles [136–138]. Pore fabrication methods are developing according to the parameters
of the particles to be measured.

4.2. Quantification of Virus Using Pore‑Based Sensing
The conventional technique to measure viruses does not depend on the amount of

virus particles but on infection titer such as hemagglutination inhibition assay and plaque
assay, as viruses cannot be detected directly. PCR is also a conventional assay by mea‑
suring the number of viral nucleic acid, which can measure viruses quantitatively at first
glance. However, viral integrity must be maintained for infectivity, and the detection of
viral nucleic acid does not necessarily indicate risk of infection. Although the infectivity of
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the counted virus particles cannot be measured, the virus can be quantified from a different
perspective than PCR because particles that have the shape of a virus can be counted.

A main challenge of pore‑based sensing is that the detection opportunity depends on
a stochastic factor, that is, it relies on the probability that a viral particle in the vicinity of
a pore will pass through the pore. The frequency of passing particles increases with the
density of particles. Therefore, this concentration range is the dynamic range of the pore
sensor. Note that a passing efficacy is not only depends on a particle concentration but
characteristics of particles. The main driving force for particles to pass through the pores
is electrophoresis caused by the application of voltage. Accordingly, particles with higher
or lower surface potential relative to their environment are more likely to pass through
the pores, while particles with no charge rarely pass through the pores by electrophore‑
sis. Electroosmotic flow also allows particles to pass through the pore [139], but the drive
by electroosmotic flow is limited in scope. Therefore, the frequency of particles passing
through is difficult to be directly treated as particle concentration.

The problem of pore‑based sensing can be improved by external forces. Pore sensors,
in which a pore is provided in a stretchable membrane and the size of the pore is changed
by stretching, are called tunable resistive pulse sensing and are commercially available
under the product names qNano and Exoid [140–142]. In the case of TRPS, the particles
are forced to pass through the particles regardless of their surface charge because of the
pressure‑driven mechanism that allows the solution to flow through the pores. There have
been reports of using TRPS to measure and evaluate the amount of vesicular stomatitis
virus [143]. According to this study, the passing rate of viral particle is 1 particle per minute
when 1.0 × 107 particles/mL viral suspension was applied, which is roughly viral concen‑
tration at the limit of detection by single pore‑based sensing. Although this value requires
more virus than the PCR detection limit of 100 copies/mL, it should be considered that the
viral particles are measured as they are without any manipulation, such as gene extraction
or gene amplification. The fact that PCR involves dozens of amplification operations also
indicates that pore‑based sensing is inherently capable of detecting very small amounts of
virus. Apart from this, the upper limit should also be considered. According to this report,
the limit of linearity between counting rate and concentration of virus is approximately
1.0× 1010 particles/mL viruses [143]. This is because high concentration of the virus results
in miscalculation derived from temporary clogging, and the virus concentration must be
adjusted for quantitative evaluation.

Pore‑based sensing is a useful technique to measure the virus in the suspension quan‑
titatively. Since the parameter of physical quantity of virus is essentially different from
virus titer and number of nucleic acids, these different parameters should be matched at
a viewpoint of infection risk. It is a challenging problem to quantify the risk of infection,
and virus evaluation by pore‑based sensing may be one tool to solve this.

4.3. Advanced Techniques of Pore‑Based Sensing for Virus Detection
In the previous subsection, we discussed the property of virus counting quantitatively.

However, an actual sample, including viruses, certainly has other impurities, which some‑
times prevents a viral particle measurement. While pore‑based sensing is an attractive
method for evaluating each measured particle individually, the properties of the particles
obtained are limited to physical parameters such as size and charge density. Therefore,
pore‑based sensing performance must be advanced to selectively measure biological par‑
ticles such as viruses. Clogging of the pore, which is one of the most troubling problems
for pore‑based sensing, should also be solved, because the impurities contained in virus
suspension could prevent the viruses from passing through the pore.

Hydrophilic plasma treatment is commonly used to prevent the clogging of pores.
However, facilities for plasma irradiation are required, and the effect is lost over time. Sur‑
face functionalization of a pore is one effective technique to improve the performance of
pore‑based sensing. For example, preventing unwanted adhesion is a required technique
in the field of biomaterials and biosensing, which is mostly solved by surface functionaliza‑
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tion. It is known that polyethylene glycol can give the non‑fouling character on a surface
by preventing impurity approaches because of excluded volume effects derived from a
hydrophilic chain [144]. Zwitterion‑based materials are also effective candidates for pre‑
venting pore clogging. An adhesion mechanism is strongly related to the state of water
condition around the materials, which is called bound water or non‑freezing water [145],
which promotes adhesion via the dehydration of bound water molecules. On the other
hand, zwitterionic surface minimizes bound water and prevents adhesion [146]. It has
been reported that the surface modification of zwitterions and polyethylene glycol to the
pore inhibited pore clogging [147].

There are some methods for the specific detection of target particles. One technique
is to use a specially shaped pore for sensing. As mentioned previously, a low aspect ratio
pore can obtain a detail of particle shape based on current waveform. For example, several
kinds of viruses, such as vesicular stomatitis virus, tobacco mosaic virus [148], bafinivirus,
and ronivirus, have distinctive shapes and can be easily distinguished by their waveforms.
High aspect pores provide accurate volume information because the entire particle enters
the pore, and shape information can also be obtained, although not as much as with low
aspect pores [149–151]. However, many kinds of viral particles are near spherical shape,
which makes it difficult to distinguish the virus species. Therefore, a further advanced
technique is required.

Another approach is surface functionalization to capture the target. Conventional biosen‑
sors such as surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensors
use the ligands on the surface of the sensor for specific detection. Since ligands are pro‑
vided on the surface of the pore or near pore and measuring the passing time of particles
significantly reveals how the target is captured through molecular recognition (Figure 10),
pore‑based sensing has been reported not only for viruses but also for proteins [152–158].
On the other hand, the capturing of the target on pore surface has a risk of pore clogging
because molecular recognition keeps the targets on pore surface, which results in conges‑
tion. Therefore, pore‑based sensing by molecular recognition on the pore surface requires
ingenuity in adjusting target concentration and binding strength.

Apart from this, the conjugation approach has also been suggested to identify the
virus. For example, when the virus and antibody interact specifically, the volume of the
virus increases because the virus is covered by the antibody due to complex formation.
Therefore, the presence of the virus can be determined by changing the size of the viral
particle [130]. It has been reported that artificial nanomaterials are used because they un‑
dergo significant size changes upon compositing (Figure 11). In this case, human influenza
virus specific ligands are immobilized on 20 nm of gold nanoparticles, which can be used as
virus recognition nanoparticles [159]. Since the typical size of influenza virus is 80–120 nm,
the binding of nanoparticles gives the statistical change of virus particle size.
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tion, the target particles are covered with molecular recognition particles that shows the particle
size changes (simultaneously, the signals change from ‘Original’ to ‘After molecular recognition’ as
shown in the right graph of the figure).

As a recent trend, artificial intelligence (AI) technologies for pore‑based sensing have
been investigated [139,155,157,160,161]. In this approach, the AI identifies the virus species
by learning the characteristics of the pulse shape measured from each virus [160]. It is re‑
ported that AI techniques can identify not only the virus species but also the virus subtype
such as influenza A H1N1 and H3N2 [139]. Although AI‑based virus identification is a
promising technology, it is important to note that this approach is not based on biological
analysis such as traditional detection methods. It is difficult to explain on what basis the
AI identifies the type of virus, so careful discussion is needed for its use as a diagnostic
method. The combination of molecular recognition and AI are also investigated [155,157].
As mentioned above, if target particles bind strongly on the pore surface, serious pore clog‑
ging will occur easily. However, as the interaction is weakened, the difference in pulse
shape becomes smaller, making simple identification more difficult. Therefore, AI tech‑
nology capable of identifying subtle differences in pulse waveforms would be useful.

In this chapter, pore‑based sensing technologies for virus detection have been dis‑
cussed. This method is still an emerging technology and needs further development to
become a general sensing technology. However, the method of detecting and analyzing
viruses in their particle form is unprecedented and is expected to lead to rapid diagnosis.
Since pore‑based sensing only measures current values, it does not require optical devices,
etc., and can be miniaturized. It is anticipated that pore‑based sensing will be widely used
as a particulate measurement method in the future.

5. Conclusions
The COVID‑19 pandemic has caused tremendous damage to society and the econ‑

omy around the world. While we hope that the tragedy can be prevented, unfortunately,
the development of human society with dense traffic and the nature of cross‑species virus
transmission through random mutation [162] has dictated that the emergence of human
viruses is inevitable. Therefore, it is important to continuously establish novel virus de‑
tection technology which could achieve high sensitivity and detecting speed, in addition
to low cost and easy implementation to the society to prevent the development of virus
emergence into a pandemic.

In this article, we provided an overview of various virus detection technologies
(Table 1). As shown in Table 1, in general, conventional sensing technologies were limited
by their capability to achieve both high sensitivity and high speed. Among these technolo‑
gies listed in Table 1, we focused on some of them, applying three approaches using µm‑
or nm‑scale components, i.e., bead‑based assays, digital bioassays, and pore‑based sensing
technologies. They are potential technologies that could simultaneously achieve high sen‑
sitivity and rapid testing. Bead‑based assays and digital bioassays (except flow virometry)
are mainly based on chemical techniques, while pore‑based sensing and flow virometry
are methods based on physical approaches. In the chemical approach, the research com‑
munity has focused on developing the methods to recognize the molecular fingerprints
of viruses, i.e., (1) reagents for virus capturing with high specific recognition performance
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and (2) carrying out the amplification process until the absolute amount exceeds the lower
limit of detection to increase the number of target or signal substances. To achieve the
above‑mentioned aim, two components are essential. Molecular design with high specific
recognition is essential for aim (1), but practical measures are also necessary to increase
the collision frequency between the target and the reagent. Also, in aim (2), the key lies in
the method to improve the efficiency of the amplification process. Bead‑based assays have
the advantage of increasing the surface area to volume ratio for detection surface and the
disadvantage to increase surfaces causing non‑specific adsorption of the markers. Over‑
coming the issue of non‑specific adsorption, bead‑based assays could be implemented in
rapid diagnostic for point‑of‑care multiplex virus detection. Digital assays have the ad‑
vantage of absolute quantitation of viruses without the need for a calibration curve; the
disadvantage is its need to divide samples quickly and efficiently. Overcoming the issue
of sample loss and high‑speed dividing, digital assays would be the optimal point‑of‑care
virus detection methods.

Table 1. The list of viral detection assays introduced in this review summarizes the characteristics of
targets, required time, LOD, and quantitative.

Type of Assay Targeted
Element Required Time Limit of Detection Quantitative? Related

Section

Nucleic acid
amplification [15–17] (PCR, LAMP,

NEAR, etc.)
Nucleic acid

1~4 h (a)

Rapid type [22]:
10~20 min

100~1000 copies/mL
(~aM level)
Rapid type:

3000~20,000 copies/mL

Yes 1

CRISPR‑based [106] Nucleic acid

25~90 min (a)

SATORI [107]:
5 min

+RNA extraction
time

3000~50,000 copies/mL
SATORI:

3,000,000 copies/mL
Partially yes 3.3

Bio‑barcode [32,33] Protein
Nucleic acid <1.5 h 3 aM Yes 2.3

dPCR [55] Nucleic acid 5 h
1 copy (theory)
0.5 copies/µL

(considering noise)
Yes 3.1

Flow virometry
[71–77]

Viral particle
Nucleic acid Protein

N/A; Volume,
concentration, and
flow cytometer
dependent

1 particle/analysis Yes 3.2

Pore‑based [143] Viral particle
Protein 10–20 min 1 × 107 particles/mL Partially yes 4

Conventional immunoassay [18,19]
(ELISA, CLEIA,

Immunochromatography (IC))
Protein

ELISA, CLEIA [19]:
20 min~4 h (a)

IC [18]: 10~20 min

ELISA, CLEIA
[19]: fM~pM (a) ELISA, CLEIA

[19]: Yes
IC [18]: No

1

IC [18]: ~pM (a)

Bead‑based ELISA [24] Protein 3 h 0.001 RU/mL Yes 2.1

Bead‑based electrochemical [27] Protein 2 h 10–11 IU/mL Yes 2.2

EFA‑NI [40,41] Protein Viral
particle ~30 min ~100 viral particles/mL

(VLP detection) Partially yes 2.4

dELISA [110] Protein 5 h 10 zM Yes 3.3

MCDIA [116,117] Protein Viral
particle ~30 min ~100 copies/mL

(Not lysised virus) Yes 3.4

Infectious viral titer [12,13] Active virus
Plaque [12]: ~4 days

TCID50 [12,13]:
~4 days

Plaque:
>1 pfu/loading volume (a)

TCID50:
>0.5 TCID50/loading volume (a)

Plaque: Yes
TCID50: Yes 1

(a) It significantly varies depending on the protocols and targets.

On the other hand, physical approaches focus on the measurement of native signals
generated from viruses, e.g., light scattering and electrical impedance. The label‑free na‑
ture of physical approaches has made them an attractive approach in virus detection, as
reagents to label viruses, e.g., antibodies are not basically necessary. However, it should
be noted that viruses are not completely isomorphic and have a wide range of physical
properties. Therefore, physical approaches exhibit less specificity compared to chemical
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approaches. For the reason above, the advanced techniques such as molecular recogni‑
tions and machine learning technology, mentioned in the relevant section, might help to
improve the specificity of virus detection based on physical approaches by extracting and
clustering the signal pattern specific to certain types of viruses.

In recent years, the introduction of digital measurement technology for virus detec‑
tion has contributed to increasing the effective SNR of signals and reducing the LODs. In
addition, the practical application of an extreme imaging device that realizes single pho‑
ton counting has been announced [163,164]. The device may bring more than an order
of magnitude improvement in the SNR compared to a conventional image sensor, which
suggested that the reaction time of assay and detection time of signal can be further short‑
ened. Furthermore, as can be understood by comparing one‑dimensional measurement
systems such as flow cytometry with two‑dimensional measurement systems such as mi‑
crowell arrays, it is also effective to improve throughput by increasing the dimensionality
of the specimen.

In this way, various technological innovations have been boosted in recent years. By
combining the innovations of these technologies, there is no doubt that the ideal virus
testing method, which has both high enough detection sensitivity equivalent to that of
PCR and quick testing time such as within 1 min, would be established in the near future.
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