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Abstract: Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals
has a certain application value in the study of wearable rehabilitation-training devices. In this paper,
MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper
optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements
in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed
and used to collect MMG movements from four sites on the subjects thighs. The relationship between
the threshold values and classification accuracy was analyzed, and comparatively high recognition
rates were obtained after redundant information was eliminated. When the threshold value rose,
the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position)
and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically
when increasing the threshold value. The comparison results demonstrated that using a GOA
consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and
ankle movements.

Keywords: feature selection; chameleon swarm algorithm; grasshopper optimization algorithm;
mechanomyography; pattern recognition

1. Introduction

For diseases such as stroke, if patients do not realize the importance of rehabilitation
training or cannot persist in it because of insufficient enthusiasm, their body function
will deteriorate in the long term, negatively affecting their quality of life. Reasonable
rehabilitation, especially active training with another person can have a positive effect on
the recovery of the neuromuscular system and prevent palindromia or sequela. Thus it is
necessary to study accurate and real time recognition method of human limb movements
for rehabilitation training with human machine interaction.

Currently, biomedical signals, especially surface electromyography (sEMG), have been
widely used in the pattern recognition of lower limb movements, and great progresses has
been made in fields such as exoskeleton rehabilitation training, human machine interaction
(HMI) systems and prosthetics [1]. Ryu et al. [2] proposed a method to extracted top and
slope (TAS) features of sEMG to detect human lower movements. This method can reflect
the time characteristic of sEMG and improve average detective accuracy. Yao et al. [3]
extracted time-domain and frequency features of an 8-channel sEMG and adopted a support
vector machine (SVM), extreme learning machine (ELM) and deep neural network (DNN)
to achieve the recognition of 6-class gait movements. Shi et al. [4] used principal component
analysis (PCA) to reduce the dimensionality after extracting features based on wavelet
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transform and then proposed a novel method to achieve the recognition of 5-class lower
limb movements. He et al. [5] proposed a sparrow search algorithm-optimized deep belief
network (SSA-DBN) classification method of gait movements after extracting wavelet
features. The results demonstrated that the SSA effectively improved the performance
of the DBN. Qin and Shi [6] extracted 11 features of three-channel sEMG and adopted
a multikernel-relevant vector machine to achieve the recognition of 5-class upper-limb
movements with a recognition rate up to 96%. In another study on the pattern recognition
of upper limb movements, Wei et al. [7] proposed a method based on tunable Q-factor
wavelet transform (TQWT) and Kraskov entropy, and achieved a high recognition rate of
4-class lower limb movements.

In contrast to sEMG, mechanomyography (MMG) is a low-frequency mechanical
signal generated from muscle’s lateral oscillation and has application value in human
machine interaction technology. Compared with sEMG, MMG is more convenient for
collecting since it is unaffected by sweating and can be collected through specific cloth
material [8,9]. Yu et al. [10] collected 4-channel MMG from the thigh and adopted a
hidden Markov model to achieve recognition of gait movements. In another study, a
Salp Swarm Algorithm (SSA) was used for time-domain feature extraction, and obtained
better recognition results compared with some traditional feature-selection algorithms [11].
Nowadays, deep learning has been made great progress in image and natural-language
processing and has been applied in the classification of biomedical signals with good
performance [12–14], especially for big data. Since deep learning needs hardware with a
higher configuration and takes a much longer time to train models, machine learning still
has a certain application value if a simple model can perform the recognition task. Therefore
machine learning is still worth investigating in pattern recognition of limb movements
based on MMG.

When studying machine learning for biomedical signals, feature extraction and selec-
tion are two factors that directly affect classification accuracy. So far, time-domain [15,16],
frequency-domain [17,18], and time-frequency-domain features [19,20] have been increas-
ingly applied in the machine learning of sEMG, and nonlinear dynamic analysis features [7]
have been used in the pattern recognition of human movements. If the dimension of the
feature set is too high, the structure of the trained model will be overly complicated. Thus,
an effective method for selecting features should be found before the features are input
into the classifiers. Currently, some filter-feature selection methods, such as ReliefF and
Laplacian, have been adopted to investigate the pattern recognition of human movement
based on sEMG [21]. These methods have high efficiency, but they are not classification
algorithms, and this may lead to a comparatively lower quality of selected features for
a specific classification algorithm. Unlike the filter-feature selection method, a heuristic
searching algorithm can adopt swarm intelligence, which simulates the model to use local
information to generate unpredictable swarm behavior. The advantage is that the solution
of a whole problem does not depend on just one part, giving the model stronger robustness
and globally optimizing the problem in many situations. On the one hand, some swarm
intelligence algorithms (SIAs) have so far been used to explore the pattern recognition
of human movement based on biomedical signals by optimizing some classification al-
gorithms [22,23]. On the other hand, an SIA can be used as the optimization algorithm
of feature selection, i.e., taking the results of feature selection as the design variables as
has been achieved in some fields [24,25]. Thus, feature-selection methods based on SIAs
are worth being studied for biomedical signals. The main contribution of this paper is
that MMG feature selection methods based on a chameleon swarm algorithm (CSA) and
grasshopper optimization algorithm (GOA) are proposed for investigating the pattern
recognition of knee and ankle movements, analyzing the relationship between threshold
values and classification accuracy, and obtaining comparatively high recognition rates
provided that redundant information is eliminated.
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2. Materials and Methods
2.1. Experiment Protocol and Data Preprocessing

This experiment was approved by the Ethics Committee of East China University of
Science and Technology (Number 001/2019). In the experiment, seven healthy subjects
(students from East China University of Science and Technology aged 23 to 26) who had no
history of lower-limb muscle disorder and who had not done strenuous exercise within
48 h before the experiment were recruited. They agreed with the content of experiments
and gave informed consent. An acquisition system each with a module integrated by
MMG sensors (ADXL355, Analog Device, Inc., Norwood, MA, USA)—Seeeduino Xiao
microprocessor (Seeed Technology, Co., Ltd, Shenzhen, China), power-supply with 3.7 V
and 400 mAh (PULAN Technology, Co., Ltd., Hong Kong, China) and wireless-transmission
units nRF24L01 (Nordic Semiconductor, Co., Ltd, Stockholm, Sweden)—was designed
to collect MMG, shown as Figure 1. Since the main frequency band of MMG is lower
than 100 Hz, the sampling rate was set at 250 Hz. Four sites on the thigh, i.e., vastus
lateralis, vastus medialis, gastrocnemius lateralis and gastrocnemius medialis were selected
for MMG collection, recorded as Channel 1 to 4. The experiment was divided into two
cases, as shown in Figure 2. In Case 1, the subjects performed four class movements: knee
extension (KE1), knee flexion (KF1), ankle dorsiflexion (AD1) and ankle plantar (AP1)
in a sitting position, as shown in Figure 2a. In Case 2 the subjects performed four class
movements: knee extension (KE2), knee flexion (KF2), ankle dorsiflexion (AD2) and ankle
plantar (AP2) in a standing position, as shown in Figure 2b. They performed the knee
and ankle movements without muscular discomfort. They performed the movements in
time to a metronome in a quiet environment. To avoid muscle fatigue and hampering
accurate performance, the movements of each class were repeated 100 times with plenty of
rest between movements of different classes. Based on above the conditions, MMG was
obtained from the standard movements.
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knee and ankle movement in the standing position.

According the characteristics of MMG, a 5–100 Hz band-pass digital filter was used
to process the signals, retaining useful information and removing the motion artifact [26].
The processed MMG signals are shown as Figure 3. Then the signals were segmented by
the short-time energy method according each movement. In particular, the signals were
divided into data blocks by a moving window. The average energy was calculated from the
data blocks of all the channels, and then the start and end situations were found according
to a threshold. Finally, the signal segments were obtained [27]. The MMG signals of a
movement are shown in Figure 4.
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2.2. Feature Extraction
2.2.1. Time Domain Features

Since the signals can be regarded as a function of time, time-domain (TD) features can
be calculated directly from a one-dimensional signal. Ten time-domain features [28]—root
mean square (RMS), variance (VAR), zero crossing (ZC), wavelet length (WL), slope sign
change (SSC), log detector (LOG), mean absolute value (MAV), v-order, simple square
integral (SSI) and average amplitude change (AAC)—were extracted from all signals.
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2.2.2. Frequency Domain Features

Frequency domain (FD) features are indexes that analyze signals in the frequency
domain. It can be calculated based on the power spectrum density (PSD), which is the
power function of the frequency component in the unit bandwidth power. Two regularly
used features—mean power frequency (MPF) and median frequency (MF) [29]—were
adopted in this paper.

2.2.3. Wavelet Packet Node Energy

Time-frequency analysis uses the joint distribution function of time and frequency
to represent a signal, and wavelet analysis is a common method in biomedical signal
processing [24]. After MMG was decomposed by a wavelet packet, a set of wavelet
coefficients was obtained:

S(t) =
2i−1

∑
j=0

fi,j(tj) = fi,0(t0)+ fi,1(t1) + · · · fi,j(tj) (1)

where fi,j(tj) is the reconstructed signal of MMG node (i, j) decomposed by a wavelet
packet. After calculating the node energy according to Parseval’s theorem, the energy of
the ith level signal was defined as

Ei,j(tj) =
m

∑
k=1

∣∣∣xj,k

∣∣∣2 (2)

where Ei,j(tj) is the energy of frequency band in the jth node of the ith level signal;
m is the number of the sampling data; and xj,k is the amplitude of the discrete point
of the reconstructed signal. A four-level wavelet packet decomposition was adopted, and
the energy features of 11 nodes corresponding to 7.8–93.8 Hz were extracted.

2.2.4. Nonlinear Dynamic Analysis Feature

A human biomedical signal has obvious nonlinear characteristics; thus, some features
based on a nonlinear dynamic (NLD) analysis—approximate entropy (AEn), sample en-
tropy (SEn) and fuzzy entropy (FEn)—were used in the study of sEMG [30]. However, the
computational requirements of NLD features are much more demanding, so they were
adopted comparatively less in HMI systems based on sEMG. Lempel Ziv complexity (LZC)
was used to represent the time series by symbol, and it increased with the disorder degree
of signals. In this paper, AEn, SEn, FEn and LZC were extracted from each signal segment.

2.3. Swarm Intelligence Algorithms
2.3.1. Chameleon Swarm Algorithm

A chameleon swarm algorithm (CSA) [31] is a kind of novel meta-heuristic optimiza-
tion algorithm based on chameleon predation. It solves optimization problems mainly
according to updated positions from the following three stages: searching for the prey,
moving the eyes to find the prey; and catching the prey.

Step 1: Initialize the population size N, the position Xi, and the maximum iteration
times Tmax. The initial positions of the chameleons can be described as

Xij = Ub + r× (Ub− Lb) (3)

where xij is the position of the jth dimension of the ith chameleon; Ub and Lb are the upper
bound and lower bound of the searching space; r is a random number between (0, 1).



Sensors 2023, 23, 6939 7 of 18

Step 2: During the predation stage, the chameleon swarm searches for prey by updat-
ing their positions. The updated positions can be described as{

Xt+1
ij = Xt

ij + p1r2(Pt
ij − Gj) + p2r1(Gj − xt

ij), r ≥ Pp
Xt+1

ij = Xt
ij + µ(r3(Ub− Lb) + Lb)sgn(rand− 0.5), r < Pp

(4)

where Xt
ij is the iteration position of the jth dimension of the ith chameleon; p1 and p2 are

the control parameters of developing ability; r1 and r2 are the random numbers between
(0, 1); Pt

ij is the global optimization position of the jth dimension of the ith chameleon; Pp is

the perceptual parameter; µ is the control parameter of searching ability, µ = e(−αt/T)3
—α is

the sensitivity coefficient; T is the maximum iteration number and t is the current iteration
number.

Step 3: The chameleon finds the prey by moving its eyes and updating its own position
according to the location of the prey. The updated position can be described as

Xt+1
i = m× (Xt

i − Xt
i) + Xt

i (5)

where Xt
i is the iteration position of the ith chameleon; Xt

i is the central position of the ith
chameleon; and m is the rotation matrix.

Step 4: When the prey is near, the chameleon will use its tongue to catch the prey. The
velocity of movement can be described as{

vt+1
i,j = ωvt

i,j + c1r1(Gj − Xt
ij) + cr(Pt

ij − Xt
ij)

ω = (1− t/T)p
√

t/T (6)

where vt+1
ij is the velocity of the jth dimension of the ith chameleon; c1 and c2 are two

constant numbers; r1 and r2 are random numbers between (0, 1); and ω is the linearly
decreasing inertial weight.

The updated position can be described as

Xt+1
ij = Xt

ij + [(vt
ij)

2 − (vt−1
ij )

2
]/2a (7)

where a is the acceleration and a = 2590× (1− e−lgt).

2.3.2. Grasshopper Optimization Algorithm

Grasshopper optimization algorithm (GOA) [32] is one other kind of novel meta-
heuristic optimization algorithm, which is based on foraging of grasshopper.

Step 1: Initialize the population size N, the position Xi, the maximum iteration times
Tmax, the range cmax and cmin. The position of the ith individual is

Xi = Si + Gi + Ai (8)

where Si is the effect on the ith individual from the population; Gi is the effect from gravity;
and Ai is the effect from wind.

To solve the optimization problems, Gi and Ai were often replaced with the position
of targeted food Td, thus

Xi = Si + Td (9)

Si =
N

∑
j=1,j 6=i

s(
∣∣xj − xi

∣∣) xj − xi∣∣xj − xi
∣∣ (10)
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where s(r) is the interaction force and it is defined as

s(r) = f e−
r
l − e−r (11)

where the individuals attract each other when s > 0, and exclude each other when s < 0.
Here f is the attractive factor, and l is the attractive scale.

Step 2: Calculate the fitness function value of each grasshopper.
Step 3: Update the control parameter c of the searching space, which can be described

as
c = cmax − t

cmax − cmin

Tmax
(12)

where t is the current iteration time, and Tmax is the maximum iteration time.
Step 4: The updated position of grasshopper can be described as

Xd
i = c

N

∑
j=1,j 6=i

c
Ub− Lb

2
s(
∣∣xj − xi

∣∣) xj − xi∣∣xj − xi
∣∣ + Td (13)

where Ub and Lb are the upper and lower bounds of the searching space, and Td is the best
solution of the swarms in the space.

2.4. Classification Algorithm

As a kind of algorithm with good performance in high dimension and nonlinear
classification problems, a support vector machine (SVM) was used to build the classifier. If
a set with two classes of data {xi, yi} (i = 1, 2, · · · , N, yi ∈ {−1,+1}, xi ∈ Rd) were given,
the slack variable ξi ≥ 0 and penalty parameter C > 0 were introduced, and then the
optimal hyperspace was

max
m

∑
i=1

αi −
1
2

m

∑
i=1

αiαjyiyj(xi, xj), s.t. 0 ≤ αi ≤ C,
m

∑
i=1

αiyi = 0, i = 1, · · · , m (14)

where αi is the Lagrange factor.
The kernel function was introduced to increase the dimension, thereby obtaining

the optimal hyperspace as f (x) = sign[
N
∑

i=1
αiyiK(xi · x) + b]. Some kernel functions such

as the radial basic function (RBF) had the characteristic of a simple structure and high
generalization performance. The formula of RBF is

K(x, x′) = exp(−‖x− x′‖2

σ2 ) (15)

In some studies about the classification of sEMG, using a SVM with RBF can achieve
better results than using K nearest neighbor (KNN), linear discriminant analysis (LDA),
random forest (RF) or some other classification algorithms [33,34].

2.5. Feature Selection

Feature selection can be used to obtain important and representative features from
the set, reducing the dimension of feature set. For the optimization problem, classification
accuracy was taken as the target function f (X) to evaluate the effect of feature selection.
In this paper, CSA and GOA were used as two searching algorithms to derive an optimal
feature subset. Each individual represented a solution, and its position information Xi was
taken as the design variable for the optimal problem. The value of Xi was changed by a
transfer function and compared with a threshold T to decide if this feature were retained.
The flow chart of feature selection based on SIAs is shown in Figure 5.
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Several functions can be adopted as the transfer function as shown as Table 1. In
this paper, S1 was adopted. In the process of iteration, the position of an individual was
updated according to the fitness function. When the classification accuracy was higher
and the number of selected features was lower, the result of the feature selection was
meaningful. The fitness function was defined as

Fitness = α · acc + β(1− R/N), β = 1− α (16)

where acc is the classification accuracy; R and N are the numbers of selected features and
all features, respectively; and α is 0.99.

Table 1. Formula of the transfer function.

Name Formulation Name Formulation

S1 1
1+e−x V1 tanh(x)

S2 1
1+e−2x V2 |x|√

1+x2

S3 1
1+e(−x/2)

The updated positions were changed by the transfer function, and then the values were
compared with the threshold T. If the values were larger than T, the corresponding features
were selected; otherwise, the corresponding features were not selected. The classification
results of the models were obtained based on intra-subject since it was impossible to avoid
the differences between subjects. A 10-fold cross validation was applied to evaluate the
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performance of the classifier and the effect of feature selection. The final results are shown
as Equations (2)–(17) and Equations (2)–(18). The samples of every subject were divided
into 10 folds, and 1 fold from each was retained as a testing set; the other 9 were used for
training a model.

mean_acc =
1
K

K

∑
i=1

acc(i) (17)

mean_R =
1
K

K

∑
i=1

R(i) (18)

3. Results
3.1. Classification Results from Different Feature Set

To evaluate the effect on movement classification from different feature sets, 7 feature
set were constructed from TD, FD, WE and NLD features. For two cases (sitting and
standing), the classification accuracy and time consumption are shown in Figures 6 and 7.
Among all the feature sets, using TD + FD + NLD obtained better results. For the CSA,
the classification accuracy was 88.43% for movement in a sitting position and 89.73% for
movements in a standing position; there was no significant difference (p > 0.05). For the
GOA, the classification accuracy was 86.87% for sitting and 89.01% for standing; there was
also no difference significant difference (p > 0.05). In the situation with a specific T, using
the CSA to select features achieved a higher classification accuracy than using the GOA.
TD features played an important role in high classification accuracy since using FD + WE
(without TD) merely obtained an accuracy of 70.59% (sitting) and 76.02% (standing), much
lower than using other feature sets (sitting: vs. TD, p < 0.01; vs. TD + FD, p < 0.01; vs.
TD + WE, p < 0.01; vs. TD + FD + WE, p < 0.01, vs. TD + NLD, p < 0.01; vs. TD + FD +
NLD, p < 0.01.) (standing: vs. TD, p < 0.05; vs. TD + FD, p < 0.05; vs. TD + WE, p < 0.05; vs.
TD + FD + WE, p < 0.05; vs. TD + NLD, p < 0.05; vs. TD + FD + NLD, p < 0.01.). Concerning
average time consumption, using a TD feature set can take less time. For the classification of
knee and ankle movements in the sitting position, time consumption was 5.21 s (CSA) and
4.81 s (GOA); For the classification of movements in standing position, time consumption
was 4.52 s (CSA) and 4.29 s (GOA). The TD + FD + WE feature set had the highest time
consumption. For the classification of knee and ankle movements in the sitting position,
time consumption was 10.21 s (CSA) and 9.00 s (GOA); For the classification of movements
in the standing position, time consumption was 9.28 s (CSA) and 8.58 s (GOA).
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selection (standing situation).

In the sitting position, the confusion matrix of the four-class movements based on
CSA-feature selection is shown as Table 2. The recognition rates of AD1 and AP1 were
higher than 90% while that of KE1 and KF1 were comparatively lower: only slightly higher
than 85%. A possible reason is that the distinction of muscle vibration between KE1 and KF1
was smaller, leading to lower feature-vector differences between the two class movements.
When standing, the confusion matrix of movements based on CSA-feature selection is
shown as Table 3. The recognition rate of KE2 was the lowest at 86.55%, while that of AD2
was the highest at 93.35%. Thus, both in sitting and standing, the recognition rates of KE
and KF were lower than that for AD and AP.

Table 2. Confusion matrix of movements based on CSA-feature selection (sitting).

Targeted Predicted Motion

Motion KE1 KF1 AD1 AP1

KE1 85.21 7.12 2.54 5.13
KF1 7.61 85.39 4.85 2.12
AD1 3.76 3.97 91.07 2.20
AP1 2.57 2.57 2.22 90.60

Table 3. Confusion matrix of movements based on CSA-feature selection (standing).

Targeted Predicted Motion

Motion KE2 KF2 AD2 AP2

KE2 88.26 7.48 2.78 1.48
KF2 8.40 86.55 2.01 3.04
AD2 4.10 3.59 90.24 2.07
AP2 3.07 3.07 1.91 93.35

3.2. Classification Results from Different Channel Combinations

For several 3-channel combinations, the recognition rates of knee and ankle movements
based on CSA and GOA feature selection are shown in Figures 8 and 9. Whether sitting
or standing, using Channel 2 + 3 + 4 obtained the best classification results. When sitting,
using CSA feature selection in the TD + FD + NLD feature set achieved a recognition rate
of 88.56%. The recognition rates were 87.49% from Channel 1 + 2 + 3; 87.52% from Channel
1 + 2 + 4; and 87.14% from Channel 1 + 3 + 4. In the standing position, using CSA feature
selection in the TD + FD + NLD feature set obtained a recognition rate of 89.56%. The
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recognition rates were 89.47% from Channel 1 + 2 + 3; 88.35% from Channel 1 + 2 + 4; and
89.42% from Channel 1 + 3 + 4. The results demonstrated that MMG from three muscles,
i.e., vastus medialis, gastrocnemius lateralis and gastrocnemius medialis may have had a
greater contribution to the recognition results than did vastus lateralis.
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3.3. Classification Results from Different Threshold

In the sitting position, for a different threshold T, the relationship between classi-
fication accuracy and T values is shown as Figure 10. There were obvious distinctions
between feature selection methods based on CSA and GOA. For the same T value, using
CSA feature selection achieved higher accuracy than using the GOA, while the number of
selected features from using the GOA was fewer. Taking 0.3 as an example, the average
number of selected features by the CSA was 58.66 (sitting) and 59.03 (standing), while that
of the GOA are 39.16 (sitting) and 44.27 (standing). When the value increased from 0.3 to
0.6, CSA classification accuracy for most of the subjects did not fluctuate much (the range
values were 0.98) while that for the GOA decreased sharply: range value 25.58. There
was no significant difference between the T value in 0.3 and 0.6 (p > 0.05) by using the
CSA while the classification accuracy had a significant difference (p < 0.01) from using the
GOA. For the two SIAs, the number of selected features decreased almost linearly as the
threshold increased. When the threshold value was 0.35, the high accuracy of movement
(in the standing situation) was 90.07%, and the average number of selected features was
53.26. When the threshold was 0.5, the average number of selected features (CSA) was
40.18 (sitting) and 38.67 (standing), and the classification results were 87.72% (sitting) and
88.75% (standing). When the threshold was 0.3, the average number of selected features
(GOA) was 39.16 (sitting) and 44.27 (standing), and the classification results were 86.36%
(sitting) and 89.33% (standing). Under these circumstances, the average number of selected
features by the two intelligence algorithms were similar. By using feature selection methods
based on CSA and GOA, the relationship between the recognition rates of each class move-
ment and the threshold values is shown in Tables 4 and 5. For the CSA, as the threshold
increased from 0.3 to 0.6, the recognition rates of most class movements fluctuated slightly,
though that of AP1 dropped from 90.40 to 87.90%. In contrast, for the GOA, the recognition
rates of each class movements decreased sharply to lower than 70% when the threshold
was 0.6.

In the standing position, the relationship between classification accuracy and the
T values is shown in Figure 11. Similar to sitting position, using CSA feature selection
achieved better classification results than using the GOA; however the number of selected
features from using the CSA was higher. By using feature selection methods based on CSA
and GOA, the relationship between the recognition rates of each class movements and the
threshold values are shown as Tables 6 and 7. For the CSA, the recognition rates of most
class movements fluctuated in a small range as the threshold increased (the range value is
1.37, p > 0.05). However, for the GOA, the recognition rates dropped to below 75%: range
value 19.11 (p < 0.01) when the threshold value was 0.6.
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Table 4. Recognition rates of each movements in sitting situation (CSA).

0.3 0.35 0.4 0.45 0.5 0.55 0.6

KE1 84.33 84.01 85.69 85.69 84.82 85.51 83.75
KF1 85.39 86.58 86.38 86.23 84.31 83.75 84.01
AD1 93.59 91.69 91.19 90.40 90.75 90.18 91.52
AP1 90.40 90.43 90.21 89.86 90.62 89.43 87.90

Table 5. Recognition rates of each movements in sitting situation (GOA).

0.3 0.35 0.4 0.45 0.5 0.55 0.6

KE1 83.06 81.90 81.87 81.11 77.28 73.30 64.84
KF1 85.04 84.65 83.98 83.56 78.85 74.76 61.94
AD1 90.76 90.83 89.14 86.47 84.56 75.89 67.80
AP1 87.83 87.94 87.74 85.42 81.84 74.68 63.91

Table 6. Recognition rates of each movements in standing situation (CSA).

0.3 0.35 0.4 0.45 0.5 0.55 0.6

KE2 87.80 87.27 85.62 87.38 86.45 86.50 85.41
KF2 87.56 86.72 88.02 87.44 87.57 87.11 85.70
AD2 90.08 89.47 91.02 90.00 89.63 90.27 89.72
AP2 93.09 94.05 92.20 92.70 93.54 93.44 92.28
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Table 7. The recognition rates of each movements in standing situation (GOA).

0.3 0.35 0.4 0.45 0.5 0.55 0.6

KE2 88.08 87.41 86.34 83.95 81.16 76.38 66.19
KF2 86.11 86.19 84.23 83.44 81.10 73.94 66.54
AD2 90.65 89.56 89.50 88.42 88.83 85.05 72.36
AP2 92.95 92.79 92.47 92.40 88.97 85.83 74.79

4. Discussion

For lower limb rehabilitation training, multichannel MMG signals were collected from
the thigh, and feature selection methods based on two swarm intelligence algorithms were
proposed for investigating pattern recognition of knee and ankle movement in sitting and
standing positions, thereby demonstrating the relationship between classification accuracy
and number of selected features. EMG sensors on the legs were adopted to represent the
electrical activity of muscles during a lower limb movement [35]. Currently, studies about
pattern recognition of lower limb movements based on sEMG, especially gait recognition
are being applied to an exoskeleton [36]. Compared with sEMG, another biomedical signal,
MMG is convenient for data collection, having investigative value for rehabilitation training
system. Though MMG is different from sEMG in physical characteristics, both are enhanced
and attenuated as muscles contract and relax, having some synchrony in static and transient
states.

As an import part of biomedical-signal machine learning, feature extraction and
selection directly affect the results of pattern recognition. The biomedical-signal features
can be generally divided into TD, FD, TFD and NLD features, of which TD features are the
most frequently adopted for sEMG or MMG classification problems. Because TD feature
extraction is easy to compute and use it can achieve satisfactory classification results in
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many cases. In some other studies, the representative TD features, such as MAV, ZC, RMS,
were used with high accuracy [37,38]. However, TD features alone may not use sufficient
signal information; thus, sometimes they are combined with other features [39]. In this
paper, though the TD features made a great contribution to MMG recognition rates of knee
and ankle movements, using a TD + FD + NLD feature set achieved better results.

The design of the classifier is another important part in the studies about pattern
recognition of gait movements based on sEMG. So far many scholars have applied var-
ious classification algorithms such as linear discriminant analysis [40], hidden Markov
model [40], extreme learning machine [30] and SVM [33]. Khomami et al. [33] demonstrated
that using an SVM with an RBF to build a classifier can achieve better sEMG classification
results compared to other algorithms. In this paper, an SVM with an RBF were applied
to be the classification algorithm of knee and ankle movements based on MMG. After
feature extraction to remove the redundant information and improve applicability, feature
transformation or selection were usually used to reduce the dimension [39], and the selected
features reflected the difference between the patterns of samples. Currently, the traditional
feature selection method ReliefF [21] has been used while a feature selection method based
on swarm intelligence algorithms are reported comparatively less often. The CSA and
GOA are two novel SIAs proposed in recent years, and it has been demonstrated that they
have excellent performance in engineering optimization problems. MMG feature selection
methods based on the CSA and GOA were proposed in this paper to investigate the pattern
recognition of knee and ankle movements.

Although multiple signal channels can improve classification accuracy, fewer channels
are more convenient. Thus, reducing the number of channels was meaningful for retaining
high accuracy. According to the results from several three-channel combinations, using
Channel 2 + 3 + 4 achieved the highest accuracy, approximating to using all four channels
and higher than using the other three-channel combinations. It illustrated that, of the four
thigh muscles, the vastus medialis, gastrocnemius lateralis and gastrocnemius medialis
gave more positive classification results when the subjects performed the four-class knee
and ankle movements. Regarding acquisition sites, collecting MMG from these three
muscles gave better in classification results.

Muscle group synergy is a kind of neural control strategy that coordinates movements
via the central nervous system. It can activate a muscle group according in different
proportions. If muscle group synergy is considered with pattern recognition of lower limb
movements, it is better for human physical mechanism. In the future, more experiments will
be done to increase the number of samples, and deep learning combined with muscle group
synergy will be used to investigate more applicable methods for lower limb movements.

5. Conclusions

In this paper, MMG feature selection methods based on the CSA and GOA were
proposed for pattern recognition of knee and ankle movements. Of all the feature sets, TD +
FD + NLD gave the best classification results. For the CSA-based feature-selection method,
the classification accuracy of knee and ankle movements was 88.17% (sitting) and 90.07%
(standing). Of all the three channel combinations, Channel 2 + 3 + 4 (vastus medialis,
gastrocnemius lateralis and gastrocnemius medialis) made the most important contribution
to accuracy. Concerning the same threshold, using CSA feature selection achieved higher
accuracy than using the GOA, while the number of selected features by using the GOA was
lower. For the CSA, recognition rates of most class movements fluctuated in a small range
as the threshold increased. However, for the GOA, recognition rates decreased sharply
when the threshold increased.
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