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Abstract: In order for a country’s economy to grow, agricultural development is essential. Plant
diseases, however, severely hamper crop growth rate and quality. In the absence of domain experts
and with low contrast information, accurate identification of these diseases is very challenging
and time-consuming. This leads to an agricultural management system in need of a method for
automatically detecting disease at an early stage. As a consequence of dimensionality reduction,
CNN-based models use pooling layers, which results in the loss of vital information, including the
precise location of the most prominent features. In response to these challenges, we propose a fine-
tuned technique, GreenViT, for detecting plant infections and diseases based on Vision Transformers
(ViTs). Similar to word embedding, we divide the input image into smaller blocks or patches and
feed these to the ViT sequentially. Our approach leverages the strengths of ViTs in order to overcome
the problems associated with CNN-based models. Experiments on widely used benchmark datasets
were conducted to evaluate the proposed GreenViT performance. Based on the obtained experimental
outcomes, the proposed technique outperforms state-of-the-art (SOTA) CNN models for detecting
plant diseases.

Keywords: agriculture monitoring; deep learning; embedded vision; Internet of Things (IoT); image
classification; plant disease detection; vision transformers; precision agriculture

1. Introduction

Over the past few decades, agriculture has emerged as the primary source of income
for several countries, significantly contributing to the global economy. As per the World
Bank report of 2018, agriculture engaged over a billion population, representing 28.5% of
the total labor force, and amounted to about 10 million tons of food a day [1]. Although,
the total potential of agriculture is prone to plant infections and diseases, food security is
compromised by such infections. Major food crops, such as rice, wheat, potatoes, soybeans
and maize can suffer losses of 10% to 40% due to plant viruses [2]. Addressing these
challenges necessitates frequent inspection of disease symptoms, often inefficient and time
consuming, particularly for huge crop fields. In order to achieve precision agriculture,
plant infections must be detected effectively. Research groups have been motivated to
work on Machine Learning (ML) as a result of the proliferation of this field to explore its
potential in automating the detection of plant diseases by analyzing images obtained from
fields. To identify diseases, these groups analyze the images and extract significant features.
For example, in Ref. [3], Support Vector Machine (SVM) was applied after extracting image
features using Scale Invariant Feature Transform (SIFT) to classify guava leaf diseases.
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Before applying SVM, Ref. [4] used a Statistical Gray Level Co-occurrence Matrix instead of
SIFT. A variety of feature extraction methods have been utilized by other studies to analyze
plant diseases in order to achieve remarkable results, including [5–8].

To handle fiddly data designs and stupendous training data, some researchers used
the k-Nearest Neighbors (k-NN) classifier instead of SVM. It was possible to classify Cotton
Grey Mildew disease based on local statistical input features and k-NN in [9]. There
has also been use of the k-NN algorithm in [10] for classifying paddy leaves and [11] for
classifying groundnut leaf diseases. However, every approach requires multiple steps
in order to prepare the data for preprocessing and feature extraction. There is also no
evidence that they are effective at classifying more than one class of data and that they
are sensitive to predefined parameters, such as the kernel parameter k in SVM and the
kernel parameter f in K-NN [12]. To address these issues, some researchers have turned
to Deep Learning (DL) methods for improved crop infection and disease detection. The
authors in [13] created a DL-based system called PlantVillage (PV), which can accurately
identify 26 different plant diseases. In contrast to explicit feature extraction techniques,
DL techniques automatically learn and extract relevant features from the input images.
However, traditional ANN classifiers lose spatial information when converting 2D images
to 1D vectors for classification, leading to increased computational complexity and storage
requirements. The article in [14] describes a method for defining diseases of plants based
on a new dataset called DRLI.

Agricultural applications of neural networks, specifically convolutional neural net-
works (CNNs), have proven successful in overcoming previous limitations with Deep
Neural Networks (DNNs) [15]. For example, Ref. [16] used the MaskRCNN model with
transfer learning to detect fusarium head blight disease in wheat, achieving an average
accuracy of 92.01% on the intended test data, which included around 450 images. In a
similar manner, a process was applied to analyze [17] and identify apple leaf diseases
with 77.65%, 75.59% and 73.50% recognition accuracy using ResNet152, Inception V3
and MobileNet models. According to [18], the authors proposed using the PV dataset
to generate a custom DCNN to classify cucumber infections that performed up to 94%
accurately, using a pretrained AlexNet model. In [19], the authors developed a Custom-Net
model for classifying pearl millet diseases using Raspberry Pi (RPi), achieving an accuracy
of 98.78%. Additionally, DL models have been applied to detect further leaf infections,
mostly established on the PV dataset. According to the mentioned methods, the accuracy
of classification has been high, especially in the case of tomato leaf diseases, which obtained
97.49% results in [20], and with banana leaf diseases, which obtained 99.72% results in [21].

Moreover, AI models and ML techniques have been deployed on drones, which
are unmanned aerial vehicles used to mitigate various malicious factors in agriculture,
including lack of rain, nutrition abnormalities, infections, weeds and pests. Precision
agriculture uses drones widely because they are affordable, have an extensive range of
operation and are AI-compatible, according to [22]. Based on the IoT architecture used
by [23], the researchers equipped a drone with an RPi 4 to classify plant infections early
in crop production by using the IoT. As reported in [24], a drone-based fidelity farming
apparatus is being used to detect affected areas in open-field tomato crops using algorithmic
neural networks. Depending on the level of infection, precise pesticides could be sprayed
on afflicted areas. In a similar way, the [25] project constructed an automated system to
detect and spray chemicals on infected plants by combining high-quality cameras with
disease detection models based on ResNet architecture.

While SOTA DL models can achieve high-performance results and are suitable for use
with drones, they require significant computational resources for training. In contrast, ViT
which avoids CNN and has similar performance to SOTA CNN models, is a promising
alternative [26]. As a derivative of Transformer, ViT employs a self-attention mechanism
that determines a global reference pixel-by-pixel during training. Each given image is
split into equal patches and each patch is embedded with its position. After learning from
patches, the self-attention block can accurately represent them for vision tasks. In the
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last layers of the ViT model, the cosine similarity between patch representations increases
significantly, suggesting that increasing the layers does not enhance model performance [27].
The memory requirements of ViT make handling high-resolution images difficult due to
their four times length requirement.

Several studies have aimed to overcome the limitations of Transformer-based mod-
els, and in general, it falls into two categories: hybrid models and pure-Transformer
enhancement. Hybrid models combine the strengths of CNN and Transformer to improve
performance. A model based on CNN called Ghost-Enlightened Transformer, for example,
was proposed by [28] to construct intermediate feature maps. In the next step, the self-
attention mechanism is used to convert those maps into deep semantic features. Based
on 12,615 images collected by the author, this model achieved 98.14% accuracy. A similar
system is outlined in [29]. As is PlantXViT, it incorporates a VGG16 network, a transmission
block and an encoder layer called Transformer. The VGG16 and inception block provide
better capture of local image features than SOTA CNN models currently available. Further-
more, multiple studies have incorporated CNN layers into Transformer architectures to
amplify the capability of extraction of most prominent features [30–32]. As a result of this
approach, the model becomes more accurate because it is able to learn local features through
the CNN architecture, but the training and inference times are significantly extended and
the memory used is huge.

In contrast, pure-Transformer enhancement variants operate primarily based on opti-
mizing the self-attention mechanism to improve performance. Based on shifted windows,
the Swin Transformer, for example, calculates local attention efficiently while maintaining
connections across windows [33]. Additionally, Ref. [34] developed k-NN attention, which
determines the attention matrix based on the top-k related tokens found in the keys, thereby
reducing training time. In RegionViT, local self-attention is employed to retain global in-
formation through a regional-to-local concept [35]. Several studies have also proposed
modifying the self-attention mechanism by using feature channels instead of tokens in the
calculation of the self-attention matrix [36] and revamping the spatial attention mechanism
to include small-distance, large-distance and all-inclusive information [37]. It involves opti-
mizing the attention matrix calculation process in order to decrease the model’s complexity
while maintaining the global connection. There are, however, some studies that maintain
the original architecture of the self-attention mechanism, leading to a huge number of
trainable parameters in each self-attention head in comparison with previous studies. Thus,
existing Transformer-based models retain their complexity while being larger. Transformer-
based models have these limitations, which hinder their application to intelligent edge
applications, such as drones and single-board computers, where resources are limited. We
designed the models so that they could be deployed and operated on products that have
limited resources, with the aim of minimizing transmission latency and network bandwidth
consumption [38]. In summary, this study made the following contributions:

1. Plant disease detection is now significantly improved using CNN-based models,
based on the latest research findings. However, the particular models exhibit limi-
tations such as translation invariance, locality sensitivity and a lack of global image
comprehension. To address these shortcomings inherent in CNN-based approaches,
this study introduces a new approach utilizing a Vision Transformer-based model for
improved and effective plant disease classification.

2. Drawing inspiration from the Vision Transformer (ViT) proposed by Alexey Dosovit-
skiy et al. [26], we conducted training and fine-tuning of the ViT model, specifically for
fire detection, resulting in notable advancements surpassing the SOTA CNN models.
By improving the architecture of the ViT model, it has been possible to reduce the
number of learning parameters from 85 million to 21.65 million as a result of the
fine-tuning process, which has resulted in an increase in the accuracy of the model at
the same time.
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3. The proposed GreenViT model exhibits exceptional accuracy and effectively reduced
the occurrence of false alarms. Consequently, the developed system proves to be
highly suitable for accurate plant disease detection, ultimately mitigating the risks
associated with food scarcity and security.

This paper is further divided into the following sections: In Section 2, the proposed
methodology is presented, outlining the key steps and techniques employed in the study.
Section 3 provides a brief description of the experimental results obtained from the con-
ducted experiments. Finally, in Section 4, the paper is concluded, summarizing the main
findings, contributions and prospective approach for future work.

2. Material and Methods

This section begins by introducing the experimental dataset used in the study. Subse-
quently, the plant disease detection model, named GreenViT, is presented. It is necessary to
review the experimental environment, as well as evaluation metrics in order to evaluate
the performance of the model.

2.1. Datasets

To gauge the effectiveness of the proposed model, the study utilized two popular
standard datasets, namely PV and DRLI. Furthermore, to test the model’s resilience, a new
dataset called PC dataset was utilized, which was created by integrating both datasets.
The combined datasets’ statistics are listed in Table 1 while the comprehensive details are
provided below.

Table 1. The statistics of all three included datasets.

S. No. Dataset Training Testing Validation Total Images

1 PlantVillage [13] 39,100 10,861 4344 54,305
2 Data Repository of Leaf Images [14] 3241 901 360 4502
3 Plant Composite [39] 42,341 11,762 4704 58,807

2.1.1. Plant Village

A feasibility study was conducted to assess the effectiveness of the newly presented
GreenViT method; the authors conducted experiments on two well-known benchmark
datasets PV and DRLI. The PV dataset has been widely utilized in previous studies due to
its large size, public availability and free access to data on crop leaf disease classification.
To validate the classification accuracy of the employed approach, the authors carried out
several experiments on this dataset, which comprises images of plants with various types
of diseases. The dataset contains a total of 54,303 images from 14 plant species, which
are categorized into 38 classes. Of these, 26 classes correspond to infected plants, while
12 belong to healthy plants. The dataset includes images of plants such as tomatoes,
strawberries, grapes and oranges. In addition to variations in color, size and lighting,
the dataset features image distortions such as noise, blurring and color variations, making
it a challenging dataset for detecting and categorizing affected plant leaf regions.

2.1.2. Data Repository of Leaf Images

The intricate interaction between plants and their surroundings leads to the production
of various substances that enhance the environment and help in controlling greenhouse
gases and climate change. However, in the past, humans have ruthlessly exterminated
many plant species, resulting in the loss of biodiversity and further exacerbating climate
change. To address this, the identification, detection and diagnosis of plant diseases have
become crucial. In this dataset, the authors have chosen twelve plant species, including
guava, arjun, mango, alstonia, bael, scholaris, jatropha, jamun, pomegranate, basil and
lemon. The leaves of these plants were photographed in both healthy and infected states
and were divided into two categories: healthy and infected. The entire dataset contains
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approximately 4503 photos, with 2278 healthy leaves and 2225 diseased leaves, taken from
March to May 2019 at the University of Shri Mata Vaishno Devi in Katra. The dataset was
divided into 22 subject groups based on plant species, and the photographs were captured
in an enclosed space using a Nikon D5300 camera (Nikon, Tokyo, Japan) with an 18–55 mm
lens and sRGB color representation. The photos were taken with 1000 ISO and without
flash, resulting in a single JPEG photo in 0.58 s per frame and a RAW + JPEG photo in 0.63 s
per frame.

2.1.3. Plant Composite

In order to evaluate the robustness of the proposed GreenViT model, the authors
conducted an experiment using a combination of publicly available datasets: PV and the
DRLI. By merging these datasets, a new and more diverse dataset was created, which posed
greater challenges for the model. The composite dataset consists of a total of 58,807 images,
making it 7.6% larger than PV and 92.3% larger than the data repository of leaf images. This
increased size and diversity of plant species within the dataset necessitated a meticulous
training process for the model. As a result, the model demonstrated improved the general-
ization ability and enhanced the reliability for real-time plant disease detection scenarios
by providing a visual representation.

2.2. The Proposed GreenViT Plant Disease Detection Method

The proposed framework has been thoroughly outlined in this section. A Trans-
former model forms the foundation for our framework. Currently, the Transformer model
is widely regarded as the SOTA in handling sequential data processing, particularly in
Natural Language Processing (NLP) tasks for instance speech recognition, language model-
ing and machine translation. The Transformer architecture, introduced by [40], revolves
around an encoder–decoder module that facilitates the rearranging and incorporating
of a given sequence of elements into a new sequence. The primary objective behind the
development of Transformers was to enable parallel processing of data. The purpose of
this study is to evaluate the performance of the ViT model in predicting plant diseases.
As depicted in Figure 1, the ViT architecture is employed, which takes an input image with
dimensions of 72× 72 pixels. Initially, the input image is divided into patches, and the
number of patches utilized depends on the specific scenario being addressed. In this
study, the input image is converted into six image patches. To accommodate 2D images
with height (H), width (W) and (C) channels, the image, denoted as X ∈ <(H×W×C) is
reshaped into a sequence structure resembling word embedding. This transformed repre-
sentation is then used as input to the transformer network, which processes the 2D patches
(P) XP ∈ <N(P2,C). This is a representation of the actual image XP, and the resolution of
the patches is characterized by (P, P). The most functional length of the sequence for the
transformer is determined via N = HW/P2. In the transformer network, these patches
are treated in a similar manner as tokens in NLP. In each layer of the transformer, a fixed
width is maintained, and a trainable linear projection is applied to map each vectorized
patch to the model dimension D. The resulting outputs are referred to as patch embedding.
The ViT model incorporates three main components: the embedding layer, the encoder
layer and the classifier layer. These components will be discussed in detail as follows:
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Figure 1. An overview of the proposed GreenViT framework for diagnosing plant diseases. The
(*) notation in patch + position embedding represents class token, indicating that it depicts the
information about the entire image in the sequence of patch embeddings.

2.2.1. Embedding Layer

Transform models treat patches individually as tokens and map them to higher dimen-
sions through learnable linear projections. These embedded projections are then combined
with a learnable class token UClass that plays a crucial role in the classification process.
To preserve the positional information and to retain the spatial positioning of the patches,
positional embedding EPosition is employed. Each patch in the image can be located pre-
cisely based on these positional embedding. The patch concatenated with the token Y0 is
represented by the following Equation (1):

Y0 =
(

UClass; X1
PE; X2

PE; ...; Xn
PE

)
(1)

This equation captures the fusion of the class token UClass with the encoded patches to
form the final input representation for further processing in the model.

2.2.2. Encoding Layer

In this particular step, the transformer encoder plays a crucial role in processing a
sequence of embedded patches, denoted as Y0. The ViT utilizes a set of L encoder blocks,
which are further subdivided into two distinct sub-components: Multi-Head Self-Attention
(MHSA) and the Multi-Layer Perceptron (MLP). The MHSA block serves as a pivotal
component within the encoder block, incorporating self-attention and concatenation layers.
Specifically, given an input x = x1, x2, ..., xn, an attention operation is performed with the
transformer on a set of queries Q using all available keys K and values V. This process is
represented in Equation (2).

Attention(Q, K, V) = SoftMax
(

QKT
√

D

)
V (2)

In Equation (2), the weight matrices WQ, WK and WV are trainable parameters that
determine the importance or weight assigned to the value, query and key, respectively.
The process involves calculating the dot product of the queries Q across all keys K, scaling it
by the square root of D and applying a SoftMax classifier for classification. The transformer
executes multiple parallel iterations of scaled dot product attention using different weights,
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known as attention heads. The outputs of these attention heads are then merged together
to calculate the end result, as listed in the Equation (3).

MHSA(Q, K, V) = Concatenate
(

Attention1, Attention2, ..., Attentionn
)

W0 (3)

In Equation (3), WQ
i , WK

i , WV
i and W0 refer to the trainable parameter matrices. The fi-

nal output at the Ith layer of the MHSA block is formulated in Equation (4).

Z′l = MHSA(LN(Zl−1)) + Zl−1, where l = 1, 2, 3, ..., L (4)

The MLP comprises two fully connected layers, which are connected sequentially.
Following the fully connected layers, the ReLU activation function is applied. The output
of the MLP is provided in Equation (5).

Zl = MLP(LN(Z′1)) + Z′1, where l = 1, 2, 3, ..., L (5)

2.2.3. Classification Layer

In the given sequence, the very initial entity Z0
l is extracted and passed on to an

external head classifier responsible for predicting the last layer of the encoder. The head
classifier performs classification by assigning the input to one of two corresponding class
labels: “Healthy” or “Infected”. The formulation for this classification process is provided
below in Equation (6).

y = LN(Z0
l ) (6)

Alexey Dosovitskiy et al. [26] proposed three fundamental versions of the ViT, namely
ViT-Base, ViT-Large and ViT-Huge. In each version, the number of encoders, hidden dimen-
sions, attention heads and classifiers differ. The ViT-Base variant is trained using a patch
size of 16× 16, employing 12 layers in the encoder, a hidden size of 768 and 12 attention
heads. On the other hand, the ViT-Large and ViT-Huge versions are computationally
more demanding. For a detailed overview of the specifications for each version, please
refer to Table 2.

Table 2. The three basic ViT architectures, namely ViT-Base, ViT-Large and ViT-Huge, can be com-
pared based on their layer count, hidden size (D), number of attention heads and parameters.
The proposed GreenViT model is highlighted in blue color.

Model No. of Layers Hidden Size (D) Heads Parameters (M)

ViT Base 12 768 12 86
ViT Large 24 1024 16 307
ViT Huge 32 1280 16 632
GreenViT 8 768 4 21.65

During the experiments, the ViT-Base model is fine-tuned with specific configurations.
The projection dimensions, number of heads, transformer layers and MLP head units are
set to 64, 4, 8 and 1024, respectively. Following the MLP heads, a SoftMax classifier is
employed for classification, distinguishing between two classes: “Healthy” and “Infected”.
The tweaking process of the ViT-Base method successfully reduces the total number of
learning parameters without compromising the overall performance.

3. Experimental Results

This section delves into the evaluation and assessment metrics, and graphical out-
comes. We begin by describing the experimental setup and performance metrics. Then, we
discuss the evaluated results. All models, including our proposed GreenViT, underwent
training for a total of 10 epochs, employing a low learning rate to ensure the retention of
previously acquired knowledge. The pre-trained model continually updated its learning
parameters to optimize performance on the designated dataset. After obtaining the results,
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each model underwent retraining using its default input size of 224× 224 while the pro-
posed GreenViT utilized 72× 72, also employing a batch size of 32. The Adam optimizer
was utilized with a learning rate of 1× 10−4 and momentum of 0.9. The experiments were
conducted on an NVIDIA GeForce RTX 3090 Graphical Processing Unit (GPU) that has
24 GB on-chip memory, equipped with 64 GB of onboard memory (Nvidia Corporation,
Santa Clara, CA, USA). The single-precision floating-point computing capability of the
GPU can achieve a peak performance of 36 TFLOPS. For implementation, we utilized the
Keras DL framework with TensorFlow 2.9.1 serving as the backend.

3.1. Evaluation Metrics

The proposed GreenViT model was assessed based on various evaluation metrics, such
as precision, recall, F1-score and accuracy, where TP represents True Positive, TN represents
True Negative, FP represents False Positive and FN depicts False Negative.

Accuracy =

(
TP + FN

TP+TN+FP+FN

)
, (7)

Precision =

(
TP

TP+FP

)
, (8)

Recall =
(

TP
TP+FP

)
, (9)

F1-score = 2×
(

Precision× Recall
Precission + Recall

)
. (10)

3.2. Quantitative Results

This study conducted a comparison between the proposed GreenViT and various
pre-trained CNN-based architectures for plant disease detection. The evaluation focused
on the parameters, precision, recall, F1-score and accuracy. Among the models examined,
such as VGG19, VGG16, EfficientNetB0, MobileNetV1 and MobileNetV3Small, most of
them demonstrated similar performance. However, the base ViT performed the worst com-
pared with the other models; on the other hand, the proposed GreenViT model achieved
superior accuracies of 100%, 98% and 99% on all three datasets, while also exhibiting the
lowest False Alarm Rate (FAR) compared with the other SOTA models. Notably, when
comparing the proposed GreenViT with MobileNetV1, both models demonstrated compu-
tational efficiency, but the proposed GreenViT showcased low FAR and still outperformed
all the included datasets. A detailed performance comparison of the employed models
is listed in Table 3. It is evident that the pre-trained models achieve high performance
with a low FAR. Nevertheless, the FAR remains elevated and necessitates improvement.
Consequently, this research explores the refinement and pre-training of a CNN architec-
ture, specifically GreenViT, with a focus on accuracy and reducing incorrect predictions.
Following fine-tuning, GreenViT demonstrates the best performance among the other mod-
els, exhibiting fewer false predictions. Furthermore, the proposed GreenViT performance
was evaluated employing 5-fold and 10-fold cross-validation on all the included datasets.
The cross-validation accuracies show that our GreenViT maintains a competitive perfor-
mance across all folds, even though there is a slight decrease in average test accuracy when
the training samples in each fold are smaller compared with the whole dataset. This consis-
tent performance demonstrates the robustness and reliability of GreenViT. Tables 4 and 5
list a comprehensive overview of the 5-fold and 10-fold cross-validation accuracies for
each dataset, including the average test accuracy across the 5 and 10 folds. These results
reaffirm the effectiveness of our GreenViT in handling diverse datasets and its ability to
yield consistent and promising results in real-world applications.
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Table 3. Quantitative evaluation of GreenViT in contrast to SOTA models using the included datasets.
The proposed GreenViT model is highlighted in blue. The upward arrow (↑) depicts higher value
is better.

Model Class
PV DRLI PC

P R F1 ACC ↑ P R F1 ACC ↑ P R F1 ACC ↑

VGG19 [41] Healthy 1.00 0.95 0.98 0.99 0.96 0.97 0.97 0.97 0.99 0.96 0.97 0.98Infected 0.98 1.00 0.99 0.97 0.96 0.96 0.98 1.00 0.99

VGG16 [41] Healthy 0.99 0.99 0.99 1.00 0.98 0.94 0.96 0.96 0.99 0.99 0.99 0.99Infected 1.00 1.00 1.00 0.93 0.98 0.96 0.98 1.00 1.00

EfficientNetB0 [42] Healthy 1.00 1.00 1.00 1.00 0.99 0.83 0.90 0.89 1.00 0.97 0.98 0.99Infected 1.00 1.00 1.00 0.78 0.98 0.87 0.99 1.00 0.99

MobileNetV1 [43] Healthy 1.00 0.99 0.99 1.00 0.97 0.96 0.97 0.97 0.99 0.99 0.99 0.99Infected 1.00 1.00 1.00 0.96 0.97 0.96 1.00 1.00 1.00

MobileNetV3Small [44] Healthy 1.00 1.00 1.00 1.00 0.93 0.99 0.96 0.96 1.00 0.99 0.99 0.99Infected 1.00 1.00 1.00 0.99 0.93 0.95 0.99 1.00 1.00

ViT Base [26] Healthy 0.92 0.98 0.95 0.95 0.81 0.62 0.70 0.75 0.87 0.95 0.91 0.94Infected 0.98 0.92 0.95 0.71 0.86 0.78 0.98 0.94 0.96

GreenViT Healthy 1.00 1.00 0.99 1.00 0.97 0.95 0.96 0.98 0.98 1.00 0.99 0.99Infected 0.99 1.00 1.00 0.98 0.99 0.98 0.99 0.98 0.99

Table 4. Five-fold cross validation accuracies of GreenViT for the included datasets.

Fold
Dataset

PV DRLI PC

1 0.9836 0.9314 0.9540
2 0.9749 0.9425 0.9377
3 0.9723 0.9425 0.9471
4 0.9611 0.9623 0.9632
5 0.9839 0.9447 0.9680

Average Test Accuracy 0.9752 0.9446 0.9540

Table 5. Ten-fold cross validation accuracies of GreenViT for the included datasets.

Fold
Dataset

PV DRLI PC

1 0.9837 0.9647 0.9665
2 0.9543 0.9736 0.9603
3 0.9795 0.9713 0.9401
4 0.9681 0.9802 0.9540
5 0.9696 0.8450 0.9552
6 0.9812 0.9669 0.9620
7 0.9791 0.9425 0.9590
8 0.9828 0.9669 0.9580
9 0.9716 0.9337 0.9666

10 0.9698 0.9004 0.9574

Average Test Accuracy 0.9740 0.9445 0.9579

Figure 2 illustrates the confusion matrix of the GreenViT method trained on different
benchmark datasets. The dark green diagonal corresponds to TP, while the saturation
indicates accurate classifications. The proposed GreenViT demonstrates superior overall
classification accuracy compared with the SOTA models, although there are some misclas-
sifications within both categories. The training accuracy and loss graphs are visualized in



Sensors 2023, 23, 6949 10 of 14

Figure 3. The vertical axis represents accuracy and loss, while the horizontal axis represents
the total number of epochs. It is evident from Figure 3 that GreenViT effectively detects
plant diseases. As the number of training and validation iterations increases, the line
graphs of training and validation accuracy change, as depicted in Figure 3a. The proposed
GreenViT converges at seven epochs, achieving training and validation accuracies of 100%,
98% and 99% on the PV, DRLI and PC datasets, respectively. Similarly, the training and
validation loss values change and decrease to 0.0 and 0.09, respectively, as depicted in
Figure 3b. In addition, the suggested GreenViT is compared with the other pre-trained
models in Table 3. The results indicate that the proposed GreenViT outperforms the other
pre-trained models listed in Table 3.

(a) (b)

(c)

Figure 2. Confusion matrices of the proposed GreenViT for all the included datasets. (a) PlantVillage.
(b) Data Repository of Leaf Images. (c) Plant Composite.
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Figure 3. Training and validation accuracy and loss of the proposed GreenViT method on PC dataset.
(a) Accuracy. (b) Loss.
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3.3. Qualitative Results

We performed a visual analysis to determine the qualitative results of the proposed
GreenViT model in distinguishing images with infection from those that are healthy plants
based on class activation. The results, as shown in Figure 4, demonstrate the robustness
of GreenViT in detecting diseased regions within a given input image. Figure 4 showcases
the visual outcomes of the proposed GreenViT model for the samples obtained from the
all three included datasets. The first row represents the input images from the PV dataset.
The second row depicts the images from DRLI dataset. The third row contains images from
the newly created PC dataset. All the samples are quite different from each other in type,
size, geometry and color schema. The fourth row represents the ground truth (GT) labels
which are the actual labels for each input image, while the last row shows the predicted
label by the proposed GreenViT model. The infected images are highlighted in red, while the
healthy samples are denoted by blue. The analysis depicted in Figure 4 offers compelling
evidence of the remarkable capabilities of the proposed GreenViT model in accurately
detecting infected and healthy regions of plant leaves. The visual representation vividly
showcases the model’s proficiency in this aspect.

PV
D

R
LI

PC

GT Infected Healthy Infected Healthy Infected
GreenViT Infected Healthy Infected Healthy Infected

Figure 4. The objective of plant disease detection is to identify the presence of infections, but certain
unique leaf images present challenges to the human eye and are not easily distinguishable without
assistance. In our study, we addressed this issue by utilizing GreenViT to visually compare its
performance on various datasets. The included figure displays a series of sample leaf images from
different datasets. The first row consists of images from the PV, the second row showcases images
from the DRLI and the third row represents images from the PC dataset. The second last row
contains ground truth (GT) labels, where healthy samples are highlighted in blue text, while infected
samples are indicated in red text. Through this visual comparison, we evaluated the effectiveness of
GreenViT in detecting plant diseases across different datasets.

3.4. Time Complexity

In order to evaluate the effectiveness, performance and suitability for deployment of
a DL model, it is crucial to conduct real-time assessments on various devices, including
small edge device like the RPi 4 (Model B+), which incorporates a Central Processing
Unit (CPU). The RPi 4B+ features a quad-core Cortex-A72 64-bit processor with 1.5 GHz,
also comes with four GB of main memory. The specifications of the CPU analyzing the
Frames Per Second (FPSs) of the proposed GreenViT model can be found in Section 3 of
this paper. The established criterion for evaluating the model’s performance in optimal
applications achieves an FPS of 30 or higher, which is considered optimal for real-world
scenarios according to References [38,45]. To assess the model’s performance, the authors
recorded a brief video of plants using a mobile phone. The FPSs obtained for the proposed



Sensors 2023, 23, 6949 12 of 14

GreenViT model when utilizing the RPi 4B+ and CPU are 0.34 and 22.19, respectively.
Table 6 presents a comparison of the proposed GreenViT model’s FPS with that of several
baseline models.

The experimental findings demonstrate the FPS achieved with different models,
namely VGG19, VGG16, EfficientNetB0 and MobileNetV1, when employing the RPi 4B+
and CPU. For the VGG19 model, the obtained FPS values are 0.47 and 9.49. Similarly,
the FPS for the VGG16 model is 0.62 and 11.09, while the EfficientNetB0 model achieves
FPS values of 2.69 and 19.74. As for the MobileNetV1 and MobileNetV3Small model,
the respective FPS values are 8.23, 22.96 and 7.43, 27.94. Comparing the inference speed
of the ViT base variant and the proposed GreenViT, it becomes evident that the proposed
model performs more favorably than the ViT Base and the modified GreenViT is a more
suitable option for edge devices. This whole comparison supports the notion that the
execution of the newly proposed GreenViT method is satisfactory. Therefore, the model
exhibits a capability for real-time processing and operation.

Table 6. An assessment of the proposed GreenViT FPS against several other DL models. This
analysis provides the relative performance of each model in terms of inference speed. The proposed
GreenViT model is highlighted in blue. The downward arrow (↓) illustrates that smaller value is better
while upward arrow (↑) depicts higher value is better.

Model Parameters (M) ↓ Size (MB) ↓
FPS ↑

RPi 4B+ CPU

VGG19 200.25 229.0 0.47 9.49
VGG16 147.15 168.0 0.62 11.09

EfficientNetB0 4.05 46.9 2.69 19.74
MobileNetV1 3.23 37.1 8.23 22.96

MobileNetV3Small 1.53 18.0 7.43 27.94
Vit Base 86.00 345.0 0.21 19.83
GreenViT 21.65 247.0 0.34 22.19

4. Conclusions

According to the proposed study, it introduces a plant disease and infection detection
method based on transformers that outperform existing SOTA studies. Additionally, to
enhance the performance of the method, the proposed GreenViT was fine-tuned to bring
down the number of parameters from 86 M to around 21.65 M. A total of three datasets,
namely, the PV, DRLI and PC datasets, were employed to evaluate the proposed GreenViT.
The study also showcases a comprehensive quantitative and qualitative analysis to prove
the model generalization ability in real-world scenarios. In order to validate the efficacy
and efficiency of the proposed approach, future experiments will utilize edge devices
or drones that utilize a variety of leaf diseases. In the context of intelligent edge devices,
the application of an attention-based model shows promise as a viable avenue of exploration
that could be explored effectively.

Author Contributions: Methodology, S.P.; Writing—original draft, S.P.; Writing—review & editing,
N.D.; Visualization, N.D.; Formal analysis, T.M.A.; Supervision, J.W.L.; Project administration, J.W.L.;
Funding acquisition, N.S.A. and J.W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by the Ministry of Trade, Industry and Energy
(MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International
Cooperative R&D program (Project No. P0016038) and was supported by the MSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2022-RS-2022-00156354) supervised by the IITP (Institute for Information and Communica-
tions Technology Planning and Evaluation) and by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R40), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.



Sensors 2023, 23, 6949 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. Link to the
PV: https://github.com/spMohanty/PlantVillage-Dataset and DRLI: https://data.mendeley.com/
datasets/hb74ynkjcn/1 (accessed on 5 July 2023).

Acknowledgments: The authors acknowledge the financial support by the Ministry of Trade, In-
dustry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through
the International Cooperative R&D program (Project No. P0016038) and the support by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2022-RS-2022-00156354) supervised by the IITP (Institute for Information
and Communications Technology Planning and Evaluation) and by Princess Nourah bint Abdulrah-
man University Researchers Supporting Project number (PNURSP2023R40), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Bank. World Bank Survey. 2021. Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS (accessed on

5 June 2023).
2. World Food Clock. 2014. Available online: http://worldfoodclock.com/ (accessed on 5 June 2023).
3. Thilagavathi, M.; Abirami, S. Application of image processing in diagnosing guava leaf diseases. Int. J. Sci. Res. Manag. 2017,

5, 5927–5933.
4. Gavhale, K.R.; Gawande, U.; Hajari, K.O. Unhealthy region of citrus leaf detection using image processing techniques. In

Proceedings of the International Conference for Convergence for Technology-2014, Pune, India, 6–8 April 2014; pp. 1–6.
5. Padol, P.B.; Yadav, A.A. SVM classifier based grape leaf disease detection. In Proceedings of the 2016 Conference on Advances in

Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 175–179.
6. Masazhar, A.N.I.; Kamal, M.M. Digital image processing technique for palm oil leaf disease detection using multiclass SVM

classifier. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application
(ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–6.

7. Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector
machine. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor,
ON, Canada, 30 April–3 May 2017; pp. 1–4.

8. Agrawal, N.; Singhai, J.; Agarwal, D.K. Grape leaf disease detection and classification using multi-class support vector machine.
In Proceedings of the 2017 International Conference on Recent Innovations in Signal Processing and Embedded SYSTEMS (RISE),
Bhopal, India, 27–29 October 2017; pp. 238–244.

9. Parikh, A.; Raval, M.S.; Parmar, C.; Chaudhary, S. Disease detection and severity estimation in cotton plant from unconstrained
images. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal,
QC, Canada, 17–19 October 2016; pp. 594–601.

10. Suresha, M.; Shreekanth, K.; Thirumalesh, B. Recognition of diseases in paddy leaves using knn classifier. In Proceedings of the
2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 663–666.

11. Vaishnnave, M.; Devi, K.S.; Srinivasan, P.; Jothi, G.A.P. Detection and classification of groundnut leaf diseases using KNN
classifier. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking
(ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5.

12. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

13. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016,
7, 1419. [CrossRef]

14. Chouhan, S.S.; Singh, U.P.; Kaul, A.; Jain, S. A data repository of leaf images: Practice towards plant conservation with plant
pathology. In Proceedings of the 2019 4th International Conference on Information Systems and Computer Networks (ISCON),
Mathura, India, 21–22 November 2019; pp. 700–707.

15. Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied for
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