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Abstract: Two-phase fluids are widely utilized in some industries, such as petrochemical, oil, water,
and so on. Each phase, liquid and gas, needs to be measured. The measuring of the void fraction is
vital in many industries because there are many two-phase fluids with a wide variety of liquids. A
number of methods exist for measuring the void fraction, and the most popular is capacitance-based
sensors. Aside from being easy to use, the capacitance-based sensor does not need any separation or
interruption to measure the void fraction. In addition, in the contemporary era, thanks to Artificial
Neural Networks (ANN), measurement methods have become much more accurate. The same can
be said for capacitance-based sensors. In this paper, a new metering system utilizing an 8-electrode
sensor and a Multilayer Perceptron network (MLP) is presented to predict an air and water volume
fractions in a homogeneous fluid. Some characteristics, such as temperature, pressure, etc., can have
an impact on the results obtained from the aforementioned sensor. Thus, considering temperature
changes, the proposed network predicts the void fraction independent of pressure variations. All
simulations were performed using the COMSOL Multiphysics software for temperature changes
from 275 to 370 degrees Kelvin. In addition, a range of 1 to 500 Bars, was considered for the pressure.
The proposed network has inputs obtained from the mentioned software, along with the temperature.
The only output belongs to the predicted void fraction, which has a low MAE equal to 0.38. Thus,
based on the obtained result, it can be said that the proposed network precisely measures the amount
of the void fraction.

Keywords: 8-electrode sensor; measuring; temperature; pressure; artificial intelligence; air-water
homogenous regime

1. Introduction

In various industrial sectors, such as the chemical, petrochemical, oil, and gas indus-
tries, two-phase flows involving combinations such as air-oil, water-oil, and air-water are
commonly encountered [1].

Accurately measuring the void fraction in these diverse fluid systems is a critical
challenge [2]. Flow measurement holds significant importance in industries for financial
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metering, process control, storage management, and other applications. Due to the complex-
ities associated with multi-phase fluids, accurately gauging such flows are challenging [3].
Conventional methods that separately gauge the amount of every fluid’s phase are proven
to be time-consuming and costly [4]. Consequently, it is necessary to develop a flow gauge
that can identify the flow type and measure its volume fraction inside the pipe without
causing disruption to ongoing processes [5,6].

To assess the volume of the air phase in any flow comprising gas (or air) and liquid,
a common approach is partitioning the phase containing air by the whole volume of the
flow. This technique enables the quantification of the flow’s volume phase. Multiple
methods exist for determining the void fraction, including radiation attenuation, ultrasonic
wave-based approaches, capacitance-based impedance measurements, wire mesh sensors,
and assessing volume through valve manipulation [5–11].

Among these techniques, capacitance-based sensors offer a promising solution for
void fraction measurement, eliminating the requirement to detach the phases or disturb
the ongoing operation. The arrangement of electrodes is vital for this kind of sensor, and
the selection of an appropriate electrode configuration greatly influences the accuracy
of the measurements. The choice of electrode arrangements, such as concave, ring, or
helix, depends on the fluid properties during transportation through the tube. Previous
investigations have primarily focused on two-phase flows within pipes: stratified, annular,
and homogeneous flows [12–15].

In a study conducted by Li and colleagues [16], they explored the error-measuring
matter in capacitance-based sensors and identified that the incorporation of homogeneous
sensibility can effectively decrease such errors. Subsequent endeavors were undertaken
to augment and establish a framework that ensures uniform sensitivity, wherein it was
ascertained that the helical electrode is the most efficacious means of attaining said objec-
tive [17–19]. An investigation was performed by Tollefsen and his co-workers [19] on a
two-phase, water and oil, system and found that the implementation of capacitive sensors
using direct plate surfaces is restricted by the regime and redistribution. In order to obtain
precise outcomes, it is of utmost importance to amalgamate the various flow components.
In instances where the dimensions of the bubbles are inferior to those of the matter, the
resultant mixture exhibits a state of near-homogeneity, whereby the individual constituents
intermingle to a significant degree. In a separate examination [20], some shapes, such as
helix, concave, and double ring, were scrutinized in an air and water scenario. Among
the aforementioned options, the second showcased unparalleled sensitivity. In previous
investigations, the utilization of capacitance sensors to quantify fluids consisting of dual-
phase compositions has been subjected to scrutiny, revealing a range of sensitivity levels
exhibited by said sensors. For instance, researchers noted [21] that while the concave
structure demonstrated the utmost sensitivity in a water-air flow with two phases, among
the examined configurations, it was observed that the double-ring arrangement was the
least sensitive. As deduced from the findings of a previous study [22], where a compre-
hensive evaluation of various electrode types, including concave, parallel plate, ring, and
helical, within an air and solid flow was conducted, it was ascertained that the concave
sensor exhibited the utmost degree of sensitivity. Sami and Aboulwafa [23] delved into
the treatment of a non-conductive liquid and air dual-phase flow. By undertaking a series
of experiments involving six discrete capacitors, researchers were able to discern that the
helical sensor, when employed for the detection of air-oil fluid, showcased unparalleled
sensitivity. Furthermore, their investigation revealed that the concave sensor excelled in
accurately identifying the annular regime, rendering it the most efficacious in this particular
context. In his study, Ahmed [24] utilized a capacitive sensor to discern the volume fraction
and discern the fluid type within a horizontally positioned pipeline conveying a dual-phase
air-oil mixture. The sensitivity of the capacitive sensor was thoroughly assessed by employ-
ing concave and ring electrodes, which revealed that the ring electrode exhibited superior
sensitivity compared to the concave electrode. Roshani et al. [25] conducted a comparative
analysis between two widely used sensors. The sensor technologies under consideration en-
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compass capacitance-based sensors and gamma-ray attenuation sensors, which employ the
attenuation of gamma radiation for measurement purposes. The investigation was carried
out in a scenario involving an annular flow of air and oil. The outcomes of the investigation
unveiled that, within the void fraction range of 0.8 to 1, the concave sensor demonstrated
superior performance when compared to the gamma-ray attenuation sensor in accurately
ascertaining void fractions. In a comprehensive study conducted by Chen et al. [26], an
examination of a two-phase flow was undertaken, employing a diverse series of sensors,
including concave, double-ring, and array sensors. The primary aim of their endeavor was
to quantify the void fraction while simultaneously unraveling aspects pertaining to flow
dynamics. In their study, Jaworek et al. [27] employed a sensor resembling the concave
sensor configuration to ascertain the void fraction within confined channels featuring diam-
eters that were less than 10 mm. To accomplish this, in order to evaluate the void fraction in
the two-phase flow, the researchers established a connection between the aforementioned
sensor and an intricate arrangement of components as a resonant circuit equipped with a
parallel inductance. The analysis of the high-frequency oscillator’s frequency deviation
served as the basis for assessing the void fraction. In their comprehensive investigation,
Bai et al. [28] quantified the void fraction in stratified air-liquid flow. To accomplish this,
they employed a capacitance probe that boasted multiple wires, thus expanding upon the
capabilities of the single-wire capacitance probe. With the aid of the multi-wire probe, the
researchers were able to assess both the average and local volume fractions by meticulously
observing the variation in water layer height at distinct circumferential positions within
the tube network.

The proliferation of ANN as a tool has experienced a substantial surge in popular-
ity spanning diverse disciplines, including but not constrained solely to the domains of
electrical engineering and control engineering [29–32].

Material properties such as temperature, pressure, and many others highly affect
the results obtained. That is why the aforementioned characteristics must be considered
during the measuring process. In light of these considerations, this paper proposes an
innovative methodology to deviate from conventional practices and utilizes novel avenues
of inquiry to harness the transformative potential of artificial intelligence (AI) to meticu-
lously ascertain the volume fraction within a multi-phase flow with unparalleled precision.
There are many applications related to AI, and a number of those previously studied were
conducted through machine learning. In this regard, the modeling of electrohydrody-
namic pumps, bidirectional electrohydrodynamic pumps, and fabric-type actuators can be
mentioned [33–35].

The employed methodology revolves around training the AI algorithm using an
intricately crafted data set generated through the utilization of the COMSOL Multiphysics
software. The simulations conducted entailed the modeling of a capacitance-based sensor,
which was an 8-electrode sensor. The simulations were performed on a water and air
homogeneous flow.

One of the pivotal characteristics of the fluid investigated was the static dielectric
constant, commonly referred to as the relative permittivity (εr), which was explored under
varying fluid characteristics such as pressure and temperature. This parameter holds
significant importance, exerting influence on the solvent behavior of water across diverse
environments and encompassing an expansive range of applications spanning both bio-
logical and industrial domains [36]. Over the years, scientists have devised a number of
mathematical formulations aimed at accurately forecasting the water’s εr, notable contribu-
tions have been made, utilizing the formulation proposed by Quist and Marshall, emerging
as a pioneering advancement within this field [37]. Continued efforts have been dedicated
to refining experimental outcomes, expanding the exploration of temperature and pressure
ranges, and proposing exploratory formulations aimed at providing alternatives to en-
hance the accuracy of predictions. Fernandez and colleagues [38] compiled an exhaustive
database encompassing the entirety of the accessible data on water’s εr. With meticulous
attention, they embarked upon a comprehensive evaluation of the diverse methodologies
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employed to deduce the εr, they diligently scrutinized the available data and handpicked
the most precise subset to be incorporated into the data correlation process. Leveraging a
specific portion of this selected subset, they introduced an innovative formulation that inte-
grates a statistical regression function, enabling a precise approximation of the εr within the
entire range of temperature and pressure encompassed by the experimental observations.
Their study provided a comprehensive compilation of water’s εr covering a temperature
spectrum ranging from 270 to 375 Kelvin and a pressure range spanning from 1 to 500 Bars.

The current investigation incorporates the data extracted from the COMSOL Multi-
physics software, derived from an 8-electrode sensor with different states. These collected
data, along with the temperature, served as inputs to train the proposed neural network
known as a Multilayer Perceptron network (MLP), implemented within the MATLAB envi-
ronment. Recent studies have also delved into the optimization of such sensors through
the application and exploitation of ANN [39–41].

The primary aim of this endeavor is to quantitatively determine the void fraction
considering the temperature changes within a homogeneous two-phase system consisting
of air and water, ensuring its independence from variations in pressure conditions. In
essence, the study introduces a metering system capable of accurately predicting the void
fraction, regardless of the pressure conditions. To attain this crucial objective, an essential
step involved the collection of data. Consequently, the COMSOL Multiphysics software
was employed to conduct simulations utilizing an 8-electrode sensor. The resulting data
were then utilized as inputs for the proposed MLP ANN. This MLP model, which leverages
a novel and precise predicting system, exhibited the capability to predict the void fraction
with a remarkable degree of accuracy while minimizing error.

The novelty of the presented metering system is that it measures the volume fraction
using an 8-electrode sensor and an ANN, considering temperature changes and indepen-
dent of pressure variations for a two-phase homogeneous fluid.

2. Validating and Simulations

In this section, a homogeneous regime is implemented in the COMSOL Multiphysics
software to be investigated by an 8-electrode sensor. This software is useful in designing
and implementing capacitance-based sensors. Three main regimes exist in some industries,
such as oil, petrochemicals, water, and so on. These fluids as homogeneous, annular, and
stratified fluids are shown in Figure 1a–c, respectively. In the authors’ previous works [42],
numerous experiments were conducted to benchmark the aforementioned software. The
outcomes derived from testing both the physically manufactured sensor and its simulated
counterpart exhibited strikingly similar trends, with only minimal variance in the error
rates. When two phases of fluid, air and water, are mixed thoroughly, a homogeneous
regime is created. To implement this kind of fluid in the software, by averaging the relative
permittivity of two phases in every volume fraction, the mentioned regime can be created.

In the following, the designed 8-electrode sensor is investigated in detail. In this study,
the principal objective lies in the precise measurement of the void fraction within a homo-
geneous system of air and water, eliminating any dependence on pressure fluctuations,
considering the temperature. The fact that there is a definite link between the behavior of a
liquid and its relative permittivity is obvious. Thus, it is essential for the amount of water’s
εr to be in different ranges of temperature and pressure. In pursuit of attaining the desired
quantities, the presented numbers in [38] are used for the simulations in this paper. The
utilized εrs are presented in Table 1 for a range of temperatures from 275 to 370 degrees
Kelvin. In addition, a range of 1 to 500 Bars has been considered for the pressure. As can
be seen in Table 1, there are 9 and 20 different numbers for the pressure and temperature,
respectively. For any situation, two various characteristics are considered, and then a
specific amount of εr exists. For instance, when the temperature and pressure are equal to
300 degrees centigrade and 100 Bars, respectively, the εr is equal to 78.11. To implement
different volume fractions in the software, after knowing the εr of water, by averaging both
phases’ relative permittivity, the correct amount of εr is considered. It is to be noted that



Sensors 2023, 23, 6959 5 of 15

there is a direct relationship between the pressure and the water’s εr. Conversely, there is
not any kind of direct relationship between the temperature changes and the εr of water;
the higher the temperature, the less relative permittivity.
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Some kinds of sensors exist and are popular such as concave, ring, and helix. The
designed sensor contains eight electrodes and is close to the common concave sensor.
The difference is that the 8-electrode sensor gives this opportunity to obtain more results,
which can help provide more inputs to train the network. Various views of the designed
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8-electrode sensor are presented in Figure 2. The liquid phase, pipe, and electrodes are
recognizable with light blue, dark blue, and yellow colors, respectively. In Figure 3, the
dimensions of the different parts of the 8-electrode sensor are named. The lengths of the
electrodes and pipe are equal to L1 = 12 cm and L2 = 18 cm, respectively. Moreover, the
distance between the electrodes is equal to D = 0.3 cm. In addition, about the other parts,
the inner radius, the outer radius, the outer radius of the electrodes, and the radius of
the isolated area in the software are equal to R1 = 2.6 cm, R2 = 3.2 cm, R3 = 3.3 cm, and
R4 = 5 cm, respectively. For electrodes, a copper plate with a high conductivity and, of
course, a thickness equal to 0.1 cm was utilized.
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As mentioned before, the 8-electrode sensor can produce more results, which are
helpful for training networks. Thus, each of the eight electrodes is named and determined
in Figure 4. To produce data, every pair of electrodes was considered and simulated
in the COMSOL Multiphysics 180 times (there were 9 and 20 different settings for the
pressure and temperature, respectively). As Figure 5 shows, there are four different states
for measuring the capacity between electrodes 1, 2, 3, 4, and 5, which are named 1–2, 1–3,
1–4, and 1–5 states, respectively. Some models are given in Figure 6, which belong to mesh,
volume, isosurface, and multislice, along with arrow surface, respectively. After simulating
all the aforementioned states for all ranges of temperature and pressure, 3780 different data
points were extracted. For the proposed network, 1134 data points were considered as test
data, 50 of which are given in Table 2 as samples.
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Table 2. Some of the test data which were obtained from all available states of the 8-electrode sensor.

T(K) Pressure
(Bar)

Void
Fraction εr 1–2 (pF) 1–3 (pF) 1–4 (pF) 1–5 (pF)
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325 10 0 69.36 10.137 8.0421 7.8797 7.842
325 1 50 35.16 9.74 7.4286 7.1831 7.123
365 200 40 35.404 9.7451 7.4364 7.1918 7.132
345 100 0 63.57 10.097 7.979 7.8074 7.7672
295 400 20 65.008 10.108 7.9956 7.8264 7.7869
325 200 60 28.608 9.5758 7.1829 6.908 6.8402
275 20 80 18.248 9.1398 6.5505 6.2101 6.1256
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345 200 70 19.873 9.2308 6.68 6.3519 6.2705
325 1 0 69.32 10.137 8.0417 7.8792 7.8416
295 200 0 80.29 10.198 8.1388 7.9908 7.9571
355 50 10 54.595 10.02 7.8585 7.6697 7.6249
335 20 70 20.581 9.267 6.7319 6.4089 6.3288
345 300 0 64.24 10.102 7.9868 7.8164 7.7765
295 20 70 24.586 9.441 6.9841 6.6871 6.6136
295 300 20 64.72 10.106 7.9924 7.8227 7.783
305 300 10 69.454 10.138 8.043 7.8808 7.8432
335 50 80 14.076 8.8407 6.1331 5.7573 5.6642
345 400 40 39.136 9.8166 7.545 7.3141 7.2579
325 10 40 42.016 9.8644 7.6179 7.3965 7.3428
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345 500 60 26.552 9.511 7.0869 6.8012 6.7306
305 1 20 60.992 10.077 7.9476 7.7715 7.73
355 400 30 43.497 9.8868 7.6522 7.4353 7.3829
355 200 10 55.054 10.025 7.8655 7.6777 7.6331

3. Artificial Neural Network

The concept of ANN has held a significant position in the field of artificial intelligence
since the 1980s. At its core, ANN is designed to abstract and mimic the intricate information
processing of the human brain’s neural network. Through this abstraction, a simplified
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model is established that is capable of being adapted into diverse network configurations,
achieved by employing varying connections [43]. The primary aim is to faithfully replicate
the brain’s neural network processing and effectively store memory information using
sophisticated information processing techniques. Within both engineering and academic
circles, these networks are commonly referred to simply as neural networks. Functionally, a
neural network operates as a powerful computational model characterized by a multitude
of interconnected nodes, or neurons [44]. Each individual node is associated with a specific
output function, known as the activation function. Meanwhile, the connections linking
these nodes are defined by weight factors, denoting the strength of signal transmission
along these interconnections. It is through these weights that the artificial neural network
effectively manages its memory [45]. Crucially, the network’s ultimate output is dictated
by its architectural design, the precise values assigned to the interconnected weights, and
the activation functions employed. Consequently, the neural network frequently approx-
imates complex algorithms or natural functions and can even express intricate logical
strategies [46]. The realm of artificial intelligence (AI) exhibits a vast array of applications
across diverse sectors [47–49]. This tool is an exquisitely refined mathematical method
that utilizes computing elements known as neurons, adroitly arranged in a manner that
encompasses singular or manifold layers of computational prowess [50]. The ANN frame-
work exhibits different kinds of useful networks, each harboring a distinct feature. Among
these, the multilayer perceptron (MLP) emerges as a preeminent exemplar, having garnered
widespread recognition for its unswerving precision and extraordinary capacity to approxi-
mate data points with utmost fidelity [51]. The MLP model encapsulates two indispensable
datum subsets, called the train set and the test set. The first one constitutes a limited pool
of meticulously curated datum points, adroitly employed to train the model’s cognitive
faculties, whereas the latter embodies unfamiliar data that serves as an evaluative metric to
gauge the network’s efficacy and accuracy [52]. To achieve the optimal ANN configuration
that has a low Mean Absolute Error (MAE), an exhaustive suite of networks varying across
a panorama of architectural attributes, including epoch quantities, hidden layers, and
activation functions, were painstakingly evaluated. Ultimately, the best configuration,
as a novel and optimal metering methodology, was presented. In the present study, the
MLP network, conceived as a meticulous model, has a 5-input configuration, wherein
the capacities obtained from the 8-electrode sensor and the temperature act as inputs. In
Table 2, there are 50 different rows as test data, and each row belongs to each tempera-
ture, pressure, void fraction, relative permittivity, and the obtained capacities of all four
different states. Through the employment of COMSOL Multiphysics software, an exhaus-
tive repertoire of 180 simulations was meticulously orchestrated, encompassing diverse
temperature and pressure ranges, while effectuating incremental modifications to void
fractions spanning the gamut from 0 to 100 percent, in which 5 percent was incremented.
From this assemblage of simulations, 2646 cases (constituting 70% of the aggregate) were
randomly earmarked as the train data, while 1134 cases (constituting 30% of the aggregate)
were sequestered as test data. Following extensive experimentation involving the testing of
diverse network configurations that encompassed different numbers of neuron quantities
and stratified layers, the configuration that proved to have the lowest MAE emerged as
the definitive network, with its detailed specifications outlined in Table 3. The architecture
of the proposed network and visual representation of the proposed metering system are
portrayed in Figures 7 and 8, respectively. In the quest for the most suitable network ar-
chitecture, extensive exploration has been undertaken to identify the network exhibiting
the lowest mean absolute error. Diverse network configurations have been meticulously
examined, encompassing variations in crucial parameters including the number of neurons,
epochs, hidden layers, and even the activation functions employed. Through a rigorous
and iterative process, various components of the network were meticulously scrutinized,
modified, and adjusted until arriving at the ultimate selection of the proposed network.
The culmination of this meticulous investigation led to the identification of the network
that displayed superior performance. As it is clear from Figure 8, after measuring the
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various capacities of different states and the temperature, the results are given as inputs to
the presented network. This way, the model predicts the amount of void fraction.
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Table 3. Configuration of the presented MLP ANN model.

Neural Network MLP

Number of neurons in the input layer 5

Number of neurons in hidden layer 1 8

Number of neurons in hidden layer 2 12

Number of neurons in the output layer 1

Number of epochs 600

Activation function of neurons in hidden layer 1 Tansig

Activation function of neurons in hidden layer 2 Tansig

Activation function of neurons in the input and
output layers Purelin

Method of training Levenberg-Marquardt [53,54]

4. Results and Discussion

Material properties such as temperature, pressure, and many others highly affect the
accuracy of the obtained results. This is why the aforementioned characteristics have to be
considered during the measurement process. In light of these considerations, simulations
were performed by the COMSOL Multiphysics software in different ranges of temperature
and pressure. These characteristics affect the water’s εr and this issue highly impacts the
accuracy of capacitance-based sensors. So, it is obvious that there is a clearly recognizable
correlation between these considerations and the attainment of precise measurements in
practical applications. To produce more data related to the liquid passing through the tube,
an 8-electrode sensor was utilized. The resulting data from this sensor (1–2, 1–3, 1–4, and
1–5 states) were then fed into an ANN for predicting the void fraction with maximum
accuracy. It is important to note that, despite each state possessing its own specific capacity,
the objective of this investigation is to predict the void fraction independent of fluctuations
in the pressure variation, considering the temperature changes. Consequently, the design of
the measuring electrodes was meticulously crafted with the aim of obtaining as much detail
as possible related to the liquid phase for training the presented ANN as well as possible.
Volume fraction measurement using the introduced network is illustrated in Figure 8. As
previously mentioned, a total of 3780 data points were accumulated through simulations
employing COMSOL Multiphysics. Among these outcomes, 70% of the total (2646 cases)
were allocated for training the proposed network, while the remaining 1134 data points
(30% of the total) were reserved for testing the performance of the network. This division
of data was performed randomly, ensuring a fair distribution across the training and
test sets. The optimal structure of the network was determined over numerous assays,
wherein various networks with diverse characteristics were evaluated. Figure 9 shows the
regression diagrams for both groups of data, illustrating the outcomes of the proposed
model. Compared to previous related studies, recently in [41], a homogeneous regime
was investigated, which reported the MAE equal to 4.723 and 4.868 for the train and test
data, respectively. Due to the use of an optimized sensor, a more appropriate model, and
more inputs compared to the mentioned study, the current network demonstrated much
better performance. Although there was a vast collection of 3780 distinct data points, a
considerable portion of them were in remarkable proximity, which led to a low amount of
error, the presented network was accurate. For both data sets, the train and test, the MAE
values are determined as 0.36 and 0.38, respectively. The objective of this research was to
gauge the void fraction considering temperature and variation independent of pressure
changes within a homogeneous fluid consisting of air and water. The presented measuring
system demonstrated a low MAE, indicating a high level of accuracy.
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As previously indicated, the ANN is exposed to two distinct types of data: the train
data and the test data. The training data serves as the foundation for instructing and
constructing the network model, encompassing information that the network processes
during its training phase. Subsequently, the trained model undergoes rigorous testing.
During this evaluation process, the predicted values of both the training and test data are
compared against the corresponding real values from their respective datasets. Notably, the
comparison reveals a noteworthy absence of over-fitting and under-fitting issues associated
with the network under consideration.

5. Conclusions

In this study, a new metering system was presented to measure the amount of void
fraction. Measuring fractions is vital in a number of industries. So, the presented system
was utilized for an air and water homogeneous regime. An MLP ANN was created to
achieve the aforementioned goal. This network had five inputs; four different inputs were
obtained from simulating the 8-electrode sensor in COMSOL Multiphysics and another
input was the temperature ranging from 275 to 370 degrees Kelvin. Based on every different
amount for both temperature and pressure, there were various amounts of the εr of the
liquid phase of the two-phase fluid, which was water. The simulations iterated a total of
180 times, resulting in the collection of an extensive dataset comprising 3780 distinct data
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points, 70 percent of which were utilized as training data and the remaining used as test
data. The proposed neural network exhibited the capability to quantitatively assess the
void fraction regardless of variations in pressure magnitude (from 1 to 500 Bar), thereby
exhibiting its independence from pressure effects with a very low MAE equal to 0.38.
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