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Abstract: The features of measurement and process noise are directly related to the optimal per-
formance of the cubature Kalman filter. The maneuvering target model’s high level of uncertainty
and non-Gaussian mean noise are typical issues that the radar tracking system must deal with,
making it impossible to obtain the appropriate estimation. How to strike a compromise between
high robustness and estimation accuracy while designing filters has always been challenging. The
H-infinity filter is a widely used robust algorithm. Based on the H-infinity cubature Kalman filter
(HCKF), a novel adaptive robust cubature Kalman filter (ARCKF) is suggested in this paper. There
are two adaptable components in the algorithm. First, an adaptive fading factor addresses the model
uncertainty issue brought on by the target’s maneuvering turn. Second, an improved Sage–Husa
estimation based on the Mahalanobis distance (MD) is suggested to estimate the measurement noise
covariance matrix adaptively. The new approach significantly increases the robustness and estimation
precision of the HCKF. According to the simulation results, the suggested algorithm is more effective
than the conventional HCKF at handling system model errors and abnormal observations.

Keywords: target tracking; H-infinity cubature Kalman filter; adaptive fading factor; Sage–Husa

1. Introduction

Target tracking is estimating motion parameters such as the tracked target’s position
and velocity in real time through measurement data [1]. It is a prerequisite for following
tasks like target recognition and data fusion. Radar tracking is the primary method of target
tracking. There are numerous methods, including infrared tracking, laser tracking, sonar
tracking, and other types of tracking, due to the development of associated technologies,
the diversity of the types of tracked objects, and the complexity of motion [2]. Target
tracking plays an essential role in many fields, such as vehicle monitoring [3], space attitude
perception [4], and missile guidance [5]. Many literature studies focus on efficiently tracking
high-speed maneuvering targets with fast flight speeds and complex trajectories [6–10].

The Kalman filter, an ideal recursive estimator created for linear Gaussian systems, is
the approach for target tracking that is most frequently used [11]. However, the system is
frequently nonlinear in practical engineering applications, particularly the measurement
equation. Scholars have proposed the extended Kalman filter (EKF), based on Taylor
series expansion, and the unscented Kalman filter (UKF), based on sampling distance
estimation, to suit the needs of practical nonlinear filtering better [12]. However, the
EKF has disadvantages such as poor stability, imprecision, and sluggish target maneuver
reaction. When faced with high-dimensional system states, the UKF is vulnerable to
dimensional disasters, which cause a sharp reduction in filtering performance and cause it
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to fall behind the target [13]. Regarding numerical accuracy and operational stability, the
cubature Kalman filter (CKF) [14] suggested by Arasaratnam is preferable to the algorithm
mentioned above. The sigma point sampling approach and weight distribution of the UKF
are optimized with the CKF using spherical integral and radial integral criteria, which
resolves the dimension disaster issue. The CKF is a case of UKF when the free parameter
equals zero. It offers a rigorous theoretical foundation for zero degrees of freedom in high-
dimensional state estimation. However, maneuvering targets usually do not maintain only
one motion mode, and the trajectories of maneuvering targets within the military domain
exhibit a heightened level of complexity, compounded by an unpredictable operational
environment, which often gives rise to indeterminate measurement noise. Therefore, the
CKF, like other nonlinear filters, will suffer a severe decline in tracking accuracy when
tracking targets under such conditions.

An H-infinity filter not based on the assumption of signal spectral characteristics is pro-
posed in [15] to increase the robustness of navigation and tracking systems. The H-infinity
filter is designed to minimize the impact of the worst disturbance on the estimation error
by incorporating the H-infinity norm into the filter design. In [16,17], the H-infinity filter,
which can be applied only to linear systems, is applied to nonlinear systems, maintaining
the advantages of the CKF and H-infinity filter. However, various circumstances, includ-
ing model uncertainty and external interference, will prevent information from fusing,
lowering the H-infinity filter’s estimation accuracy.

Academics have presented some adaptive techniques to further enhance the filtering
algorithm’s estimation performance. Zhou proposed a strong tracking filter (STF) that
can maintain the residual sequence orthogonal to solve the system model uncertainty
problem [18]. The STF method can be more robust when the system parameters or state
change. The authors of [19,20] proposed an improved STF method based on a point es-
timation nonlinear Kalman filter and confirmed its effectiveness in navigation tracking
systems. The Sage–Husa adaptive Kalman filter (SHAKF), based on maximum a posteriori
estimation, is a straightforward and helpful solution for the uncertain noise in the mea-
surement process [21]. The SHAKF algorithm can estimate the statistical characteristics
of noise in real time and reduce the filtering divergence. However, ensuring that SHAKF
will calculate the noise covariance matrix in a positive, definite manner can be challenging,
which could result in filtering divergence. Performance will also decrease if measurement
noise is mixed with non-Gaussian noise. The Mahalanobis distance (MD) is an index for
anomaly statistical detection [22]. The robust estimate approach can be used for robust
filtering when the observation value is abnormal, which can successfully lessen the impact
of abnormal model deviation and abnormal measurement [23].

The research presented in this paper develops an adaptive fading factor and noise
covariance estimation method with a robust strategy based on the traditional HCKF to
solve the issues mentioned earlier. A low-cost STF calculation method is adopted to solve
the problem of insufficient tracking accuracy caused by model errors. The MD-improved
Sage–Husa estimation method is used to estimate abnormal or non-Gaussian measurement
noise, further improving the robustness and tracking accuracy of the HCKF. The major
contributions of this paper can be summarized as follows:

1. A low-cost strong tracking fading factor is proposed. This method avoids the calcula-
tion of the Jacobian matrix and additional sampling operations, significantly reducing
the algorithm’s time complexity. At the same time, it also solves the problem of STF
failure caused by the large difference in the order of magnitude of each dimension of
the measurement system.

2. An MD-based method is proposed to correct the noise covariance of the Sage–Husa
estimate. Sage–Husa estimation decreases measuring system error by estimating
measurement noise in real time, but this method can easily lead to non-positive
definite matrices and filter divergence. The MD approach is used in this study
to construct the expansion factor, which is used to correct the measurement noise
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updated by the Sage–Husa estimate, limit the interference of outliers on the filter
results, and improve the algorithm’s robustness.

3. For the composite problems of model mismatch and measurement noise anomaly
that may occur in maneuvering target tracking, a new robust adaptive cubature
Kalman filter is proposed. The new method, which is based on the HCKF algorithm,
introduces the two new, enhanced methods mentioned above, and suppresses the
influence of system mutation and non-Gaussian noise. The simulation results show
that the proposed method achieves a similar impact as the interacting-multiple model
CKF (IMMCKF) algorithm in the face of a sudden change in maneuvering target
motion. It also exhibits improved robustness and tracking accuracy in the presence of
anomalous measurement noise compared with the CKF, HCKF, and Sage–Husa CKF.

The rest of this article is organized as follows. Section 2 describes the system model and
the problems to be solved. Section 3 gives the principle and process steps of the traditional
HCKF algorithm. Section 4 introduces an improved adaptive robust cubature Kalman
filter for high-speed maneuvering target tracking. In Section 5, the proposed algorithm’s
effectiveness is verified with various simulation experiments. Finally, the conclusion is
followed in Section 6.

2. Problem Formulation

Consider the following nonlinear discrete system:

Xk = f (Xk−1) + vk−1 (1)

Zk = h(Xk) + wk (2)

where Xk ∈ Rn is the system state quantity at time k; Zk ∈ Rm is the system measurement
at time k; f (·) and h(·) are the nonlinear functions of the system state equation and the mea-
surement equation, respectively; vk−1 and wk represent the process noise and measurement
noise of the system; the mean is zero; and the variances are Qk−1 and Rk, respectively.

According to the classic CKF, the system must be accurately modeled, and the process
and measurement noise must be Gaussian white noise with well-known statistical proper-
ties. The process state equation will unavoidably vary in the radar monitoring system due
to the maneuvering target’s easily modifiable trajectory. The measurement noise is typically
non-standard Gaussian noise due to external environment disturbance, and its statistical
features cannot be recognized in real time. The traditional filter algorithm will not be able
to estimate the state accurately in this situation, and divergence issues may even arise.

The problems solved in this paper are described as follows:

1. The high-speed maneuvering target has uncertain reentry motion, which is the main
reason for the significant decrease in tracking accuracy. An improved algorithm is
needed to solve the model error caused by maneuvering motion.

2. The statistical characteristics of non-Gaussian noise cannot be accurately estimated in
real time, and it is necessary to improve the system’s resistance to unknown noise as
much as possible.

3. Due to parameter settings, the proposed improvement approaches would interact
with one another during implementation, necessitating specific designs to avoid
system interference.

3. The H-Infinity Cubature Kalman Filter

The H-infinity filter is based on game theory, which aims to minimize the estimation
error for all disturbances with bounded energy. It is a particular form of Kalman filter [15].
For the nonlinear discrete system proposed in the previous section, the H-infinity filter
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design idea is that when Pk, Qk−1, and Rk reach the upper limit, there is a specific cost
function to minimize [24]:

J∞ =
∑N

k=1 |Xk − x̂k |2P−1
k

|X0 − x̂0 |2P−1
0

+ ∑N
k=1

(
|vk |2Q−1

k
+ |wk |2R−1

k

) (3)

where Pk represents the posterior covariance matrix and P0 and X0 are the initial covariance
matrix and the system’s initial state, respectively. The standard symbol operations used in
the formula are as follows: |x |2A = xT Ax.

The purpose of the H-infinity filter is to estimate x̂k minimized J∞. In general, the
analytical solution of the optimal H-infinity filter problem is challenging to obtain, so the
suboptimal solution is generally sought [25]. In the worst case, the boundary of J∞ satisfies:

sup(J∞) < γ2 (4)

where sup represents the upper bound and γ is a positive scalar parameter that limits the
estimation error of the system due to uncertainty. Based on Equation (4), the designer must
find x̂k such that sup(J∞) < γ2 holds for any perturbation in vk, wk, and X0.

The cubature Kalman filter is a nonlinear filter based on the third-order spherical-
radial cubature rule proposed by Arasaratnam [14]. The CKF regards the estimation of
nonlinear equations as the estimation of a probability distribution based on Bayesian
estimation, which dramatically simplifies the nonlinear problem and can be well applied
to high-dimensional nonlinear system filtering [26]. In order to apply H-infinity filtering
to nonlinear systems, a cubature Kalman filter (HCKF) based on H-infinity filtering is
proposed [16,27]. The algorithm steps are as follows:

Prediction Update:

(1) The system’s initial predictive value and covariance matrix are set to x̂0 and P0.
Calculate 2n cubature points Xi,cub from x̂k−1 and Pk−1:

Xi,cub = Sk−1ξi + x̂k−1 (5)

where Sk−1 is obtained with Cholesky decomposition of Pk−1. The cubature points
ξi =

√
n[In,−In]i and In represent the n-dimensional unit matrix.

The obtained cubature points Xi,cub are propagated through the nonlinear state function:

X∗i,k|k−1 = f (Xi,cub) (6)

(2) The prior prediction state value x̂k|k−1 and the prediction covariance matrix Pk|k−1
are calculated.

x̂k|k−1 = ω
2n

∑
i=1

X∗i,k|k−1 (7)

Pk|k−1 = ω
2n

∑
i=1

X∗i,k|k−1

(
X∗i,k|k−1

)T
− x̂k|k−1 x̂T

k|k−1 + Qk−1 (8)

where ω = 1/2n is the cubature points’ weight.
Measurement Update:

(3) The cubature points are calculated again according to the prior prediction x̂k|k−1 and
the prediction covariance matrix Pk|k−1 obtained in the previous step, and ẑk|k−1 is
obtained by nonlinear measurement function propagation.

Pk|k−1 = Sk|k−1ST
k|k−1 (9)
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X∗i,cub = Sk|k−1ξi + x̂k|k−1 (10)

Z∗i,k|k−1 = h
(

X∗i,cub

)
(11)

ẑk|k−1 = ω
2n

∑
i=1

Z∗i,k|k−1 (12)

(4) The autocorrelation covariance matrix Pzz and the cross-correlation covariance matrix
Pxz are as follows:

Pzz = ω
2n

∑
i=1

Z∗i,k|k−1

(
Z∗i,k|k−1

)T
− ẑk|k−1ẑT

k|k−1 + Rk = Pee + Rk (13)

Pxz = ω
2n

∑
i=1

X∗i,k|k−1

(
Z∗i,k|k−1

)T
− x̂k|k−1ẑT

k|k−1 (14)

(5) Calculate the Kalman gain Kk according to Pzz and Pxz:

Kk = PxzP−1
zz (15)

(6) Finally, the update state x̂k and update covariance matrix Pk of the system are calculated:

x̂k = x̂k|k−1 + Kk

(
Zk − ẑk|k−1

)
(16)

Pk = Pk|k−1 −
[

Pxz, Pk|k−1

]
R−1

e,k

[
Pxz, Pk|k−1

]T
(17)

where

Re,k =

[
Pzz + Rk PT

xz
Pxz Pk|k−1 − γ2 I

]
The threshold γ determines the robustness of the filter. When it approaches infinity, the

HCKF degenerates into the ordinary CKF. In other words, the Kalman filter is a particular
case of an H-infinity filter when its performance boundary is infinite. The adversary in
Kalman filtering is considered irrelevant from the game theory standpoint. The probability
distribution function of the noise is known when designing a Kalman filter, and it may be
used to create a statistically optimal state estimation. At the same time, the adversary does
not alter this probability distribution function to degrade the performance of the estimated
state. Therefore, while the Kalman filter minimizes the variance of the estimation error, it
does not guarantee the estimation error in the worst case; that is, it does not ensure the
boundary of the cost function in Equation (3). The H-infinity filter equation has a more
unambiguous interpretation than the Kalman filter equation. It is a filter that evaluates the
worst-case scenario. The opponent can maximize the estimating error by just using the
infinite X0, wk, and vk, which makes the game unfair. Thus, when defining J∞, X0 − x̂0, wk,
and vk are in the denominator. Even if using infinite X0, wk, and vk increases the estimation
error, the J∞ may not increase because the denominator also increases. Because the form of
J∞ prohibits the adversary from utilizing cruel means to maximize the estimation error, the
architecture of the H-infinity filter is robust.

4. Adaptive Robust H-Infinity Cubature Kalman Filter

The HCKF requires that all parameters and noise statistics of the system model must
be known, which is almost impossible in actual maneuvering target tracking. The trajectory
of a maneuvering target usually cannot be represented by a single kinematic model, and
the measurement system’s noise is usually heavy tailed. The above problems will lead to a
decrease in the estimation accuracy of the filter.
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In order to compensate for the modeling error and improve the ability of the filter
to deal with abnormal measurements, we introduce the STF and the Sage–Husa noise
estimator method based on Section 3 and propose a new adaptive robust cubature Kalman
filter (ARCKF). The STF corrects the prediction error covariance matrix by introducing an
adaptive fading factor to compensate for the modeling error and maintain the excellent
performance of the filter [28]. The Sage–Husa method is based on maximum a posteriori
estimation, which has a simple structure and good real-time performance. It is often used
to estimate the statistical characteristics of noise [29].

4.1. Fading Factor Based on Strong Tracking Filter

The strong tracking filter [18] is an algorithm based on EKF. This algorithm is based on
the orthogonality principle of output residual sequence. It introduces the adaptive fading
factor into the state prediction covariance matrix, which solves the problem that the EKF
cannot converge when the model error is significant. The strong tracking filter mainly modifies
the prediction covariance matrix Pk|k−1 by satisfying the following two equality conditions:

E
[
(Xk − x̂k)(Xk − x̂k)

T
]
= min (18)

E
(

εk+jε
T
k

)
= 0, (k = 0, 1, . . . ; j = 1, 2, . . .) (19)

where x̂k is the state estimation at time k, εk = Zk − ẑk|k−1 is the output residual at time
k, and ẑk|k−1 is the observation prediction at time k. Equations (18) and (19) are sufficient
conditions for STF. These two conditions are called the orthogonality principle. The filtering
performance index under the minimum variance estimation criterion is given by Equation
(18), which states that the output of the filter must meet the minimal mean square error;
Equation (19) shows that the residual sequence is orthogonal. That is, the residual sequences
at different times are not related. When the filter has a model mismatch problem, the
estimated value of the system state deviates from the actual state of the system, which
is reflected in the residual sequence. By adjusting the Kalman gain in real time to meet
Equation (19), it can ensure that the residual sequence always has Gaussian white noise
characteristics and improve the tracking ability of the system; when the system model is
accurate, Equation (19) is satisfied, and the filter is equivalent to the original filter.

Equation (19) is the core of the orthogonality principle. Equation (18) represents the
design standard the original filter must meet. When the original filter is combined with the
criteria of Equation (19), it exhibits the features of the STF. The STF modifies the prediction
covariance matrix to update the Kalman gain using the adaptive fading factor λk. The
following is the computation method [28]:

λk = max(λ0, 1) (20)

λ0 =
tr[Nk]

tr[Mk]
(21)

Nk = Vk − CkQk−1CT
k − Rk (22)

Mk = CkFkPk−1FT
k CT

k (23)

Vk =

{
ε1εT

1 (k = 1)
ρVk+εkεT

k
1+ρ (k > 1)

(24)

where Fk and Ck are the Jacobian matrices after the first-order Taylor expansion of the
state function and the measurement function, respectively; ρ(0 < ρ ≤ 1) represents the
forgetting factor, usually 0.95. The computational complexity of Jacobian matrix calculation
is high, and this method, using first-order Taylor expansion approximation, only applies
to weakly nonlinear systems, which significantly limits the application scenarios of the
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STF. Moreover, the fading factor calculates the ratio of the eigenvalues of each dimension
element of the measurement residual matrix to the theoretical output value of the filter. This
calculation method brings problems to the measurement system with significant differences
in the order of magnitude of each dimension. For example, the angle residual in the radar
tracking system is much smaller than the distance residual. When the maneuvering target
is mainly maneuvering at the angle, the small change in the angle residual may lead to
the failure of the fading factor. Therefore, it is necessary to improve the calculation of the
fading factor to better cope with the above problems.

Applying statistical linearization to the nonlinear observation equation [30], we can obtain

zk = Hk

(
xk − x̂k|k−1

)
+ ẑk|k−1 + vk (25)

where Hk = PT
xzP−1

k|k−1 is the statistical regression equation.
According to the theorem in [18], the sufficient condition for the orthogonality of the

output residual sequence is:
Pk|k−1HT

k − KkVk = 0 (26)

Using the definition of the cross-correlation covariance matrix Pxz, we can obtain:

Pxz = E
[(

xk − x̂k|k−1

)(
zk − ẑk|k−1

)T
]

= E
[(

xk − x̂k|k−1

)(
Hk

(
xk − x̂k|k−1

)
+ vk

)T
]

= E
[(

xk − x̂k|k−1

)(
xk − x̂k|k−1

)T
HT

k

]
= Pk|k−1HT

k

(27)

Equation (26) is rewritten as:

Pxz − KkVk = Pxz − PxzP−1
zz Vk = 0 (28)

Pzz −Vk = 0 (29)

It is known that the autocorrelation covariance matrix has the form

Pzz = E
[(

zk − ẑk|k−1

)(
zk − ẑk|k−1

)T
]

= E
[(

Hk

(
xk − x̂k|k−1

)
+ vk

)(
Hk

(
xk − x̂k|k−1

)
+ vk

)T
]

= HkPk|k−1HT
k + Rk

(30)

The fading factor λk is introduced to correct Pk|k−1 to ensure that the performance
index of Equation (29) is satisfied. Therefore, Equation (29) is further rewritten as:

λk(Pzz − Rk) + Rk = Vk (31)

Redefining Mk and Nk in accordance with Equation (31),

Nk = Vk − Rk (32)

Mk = Pzz − Rk = Pee (33)

where Pee was defined in Equation (13).
Therefore, rather than using Equations (22) and (23), we can determine the fading

factor λk using Equations (32) and (33). The original method of calculating the fading factor
is to compare the trace of the measurement residual to the theoretical output value (see
Equation (21)). Algorithm failure may happen when measurement systems have significant
variances in the order of magnitude of each dimension. In order to ensure that the fading
factor has the same sensitivity to different measurement dimensions, the maximum ratio of
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different measurement dimensions is considered the fading factor. Then Equation (21) is
changed to

λ0 = max
{
[diag(Nk)]i
[diag(Mk)]i

}
, i = 1, 2, . . . , m (34)

4.2. Robust Adaptive Strategy for Measurement Noise Estimator

The adaptive method for estimating the Rk matrix is a scaling method based on
residual covariance. It is calculated based on the difference between the actual measured
value obtained at time k and its estimated value. The recursive formula of the measurement
noise is expressed as [31]:

Rk = (1− dk−1)Rk−1 + dk−1

(
εkεT

k − Pee

)
(35)

where
dk =

1− b
1− bk+1 , 0 < b < 1 (36)

dk is a weighted coefficient to measure the influence of noise on the observed value,
and b represents the forgetting factor. The larger the value is, the stronger the influence of
the last measurement is. However, if the value of b is too small, the predicted noise will
oscillate. The forgetting factor b in this method is often set between 0.95 and 0.99 based on
numerical simulation attempts or experience (the frequency of changes in noise statistics).
The noise estimation in Equation (36) still needs to satisfy the Gaussian distribution, and
its resistance to abnormal noise needs to be increased. In order to further improve the
robust performance of the HCKF, the square of the Mahalanobis distance from Zk to ẑk|k−1
is considered the criterion [32]. The formula is as follows:

MD2
k =

(√(
Zk − ẑk|k−1

)T
(Pzz)

−1
(

Zk − ẑk|k−1

))2

= εT
k (Pee + Rk)

−1εk (37)

If the actual criterion index satisfies MD2
k > χ2

n,α, then the observed value Zk is marked
as an outlier, and the expansion factor µ also amplifies the covariance of the observed noise;
that is,

∼
Rk = µRk (38)

at this time should satisfy

MD2
k = εT

k

(
Pee +

∼
Rk

)−1
εk = χ2

n,α (39)

where χ2
n,α is the statistical detection threshold conforming to the chi-square distribution

and χ2
n,α = χ2(n). The problem of solving µk can be transformed into the following

nonlinear equation:

f (µk) = εT
k

(
Pee +

∼
Rk

)−1
εk − χ2

n,α = 0 (40)

Considering the use of a Newton iterative method to solve µk in Equation (40), the
recursive relationship can be expressed as follows:

µk(i + 1) = µk(i) +
MD2

k(i)− χ2
n,α

εT
k

(∼
Pzz(i)

)−1
Rk

(∼
Pzz(i)

)−1
εk

(41)

where i represents the number of iterations,
∼
Pzz(i) = Pee + µk(i)Rk, we set the initial value

of the iteration to µk(0) = 1, and the iteration ends only when the decision condition
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µk(i) ≤ χ2
n,α is satisfied. It can be considered that α is set to 0.99, which means that the

filter’s efficiency is 99%. According to the look-up table method, the chi-square distribution
χ2

2,0.99 of 2 degrees of freedom can be determined to be 9.21.
It should be noted that there are many reasons for the abnormal state prediction value.

The system’s modeling error and abnormal measurement noise will affect the final state

prediction value. The wrong use of the correction matrix
∼
Rk is likely to lead to misjudgment,

so that the STF algorithm and the robust estimation method of measurement noise work
simultaneously. However, it is easy to lead to the divergence of the filter. Therefore, the
calculation of the adaptive fading factor in Equation (34) uses the original Rk instead of the

modified
∼
Rk to prevent the

∼
Rk based on the Mahalanobis distance correction from affecting

the calculation in the presence of kinematic model errors.

Remark 1. Adding a fading factor and adjusting measurement noise are performed using a
scaling coefficient and positive definite matrix operation. Therefore, both the new approach and the
conventional HCKF may guarantee the positive definiteness of the error covariance matrix. Positive
definiteness may be lost in practice due to errors brought about by arithmetic operations carried
out on a digital computer with a finite word length. The number-sensitive operations that are most
likely to destroy the positive definiteness of the covariance include matrix square-rooting [see (5)
and (9)] and matrix inversion [see (15) and (17)]. When working with high-precision measurement
systems, numerically ill-conditioned is another possibility that could lead to a non-positive definite
covariance matrix. The most widely utilized methods to lessen the negative consequences that could
cause unstable or even divergent behavior include swapping out the CKF algorithm for SCKF and
substituting Cholesky decomposition with SVD decomposition. This paper does not examine this
section of the content because it is outside the purview of the work.

In summary, we give the adaptive robust correction strategy of the HCKF, and the
specific process steps of the algorithm are shown in Figure 1.
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5. Numerical Examples and Analysis

In order to verify the robustness and accuracy of the ARCKF algorithm proposed
in this paper, three possible situations in maneuvering target tracking are simulated and
compared with the estimation results of the CKF [14], HCKF [27], and Sage–Husa cubature
Kalman filter (SHCKF) [29]. It should be noted that in order to maintain robustness, the
conventional SHCKF method cannot concurrently perceive process noise and measurement
noise. Therefore, we consider improving the SHCKF with the method in Reference [8].
Although this approach trades some noise perception accuracy, it can guarantee that the
algorithm will maintain robustness and perform comparative experiments more effectively.
In the experiment, 100 Monte Carlo simulations were run to reflect the tracking capability
of these algorithms as accurately as possible.

In the simulation experiment, the radar position is set as the origin of the rectangular
coordinate system, and the measurement information of the radar is distance and azimuth;
then, the corresponding measurement equation is

Zk =

[
rk
θk

]
=

[√
x2 + y2

arctan y
x

]
+ wk (42)

The state vector of the system is X =
[
x, vx, y, vy, ω

]T , x, y is the position of the maneu-
vering target in x direction and y direction, vx, vy is the velocity of the maneuvering target
in x direction and y direction, and ω is the turning rate. In most cases, the maneuvering
target always maintains uniform motion during the cruise phase, so the system model
considering the filtering algorithm is set to the uniform motion model:

F =


1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

 (43)

The relevant parameters of the simulation experiment are given in Table 1. The
simulation results select the root-mean-square error (RMSE) as the performance index.
Position RMSE and velocity RMSE are defined as:

RMSEk
pos =

√
1
N

N
∑

j=1

(
xj

k − x̂j
k

)2
+
(

yj
k − ŷj

k

)2

RMSEk
vel =

√
1
N

N
∑

j=1

(
vxk

j − v̂j
xk

)2
+
(

vyk
j − v̂j

yk

)2
(44)

where N is the number of Monte Carlo simulations, j is the jth Monte Carlo simulation,
and k is the simulation time. The values

(
xj

k, yj
k

)
and

(
vxk

j, vyk
j) represent the true position

and velocity of the maneuvering target, respectively;
(

x̂k
j, ŷk

j
)

and
(

v̂x
j
k, v̂y

j
k

)
represent

the estimated position and velocity of the filter, respectively.
For filters, consistency is equally as crucial as accuracy because it can help us gauge

the algorithm’s robustness. The average normalized estimation error square (ANEES), the
consistency analysis index, can be calculated as follows [7]:

ANEESk =
1

nN

N

∑
i=1

∼
x

T
k P−1

k
∼
xk (45)

where
∼
xk and Pk are the state estimation error and covariance matrix at time k, respectively.

If ANEESk ∈ [lb, ub], the filter is considered consistent, where lb and ub are the lower and
upper bounds of the acceptance interval, respectively. If ANEESk < lb, then the filter is
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regarded as “pessimistic” (lacking confidence) because the posterior error covariance is
very high compared with the true value; if ANEESk > ub, then the filter is considered
“optimistic” (overconfident), and the covariance Pk|k is too small. Different probability
intervals can change the upper and lower bounds, but the overall acceptability range is
close to 1.

Table 1. Parameters for simulation.

Parameter Corresponding Value

Number of Monte Carlo simulations 100
Discrete sampling period T = 1 s
Process noise intensities q1 = 0.1 m2s−3, q2 = 1.75× 10−4 s−3

Initial process noise covariance matrix Qk−1 = diag([q1 M1, q1 M1, q2T]), M1 =
[
T3/3, T2/2; T2/2, T

]
Measurement noise intensities σr = 10 m, σθ = 3.1 mrad

Initial measurement noise covariance matrix Rk = diag
([

σ2
r , σ2

θ

])
Initial state of the maneuvering target X0 = [1000 m, 200 m/s, 8000 m, 10 m/s, 5◦/s]T

Initial state covariance matrix P0 = diag
([

100 m2, 10 m2/s2, 100 m2, 10 m2/s2, 0.001 rad2/s2
])

5.1. The System Model Does Not Match

A single kinematic model usually cannot express the motion characteristics of maneu-
vering targets, which may lead to the loss of targets in the target tracking system when
maneuvering orbit changes occur. The interacting-multiple model is a widely used and
effective method of dealing with model mismatch issues. As a result, we incorporated
IMMCKF as one of the comparison algorithms in this experiment. In this case, the ma-
neuvering target maintains an alternating motion state in 0~250 s, and the periods of
uniform motion are 0~70 s, 121~145 s, 161~200 s, and 226~250 s; the periods of maneu-
ver turning are 71~120 s, 146~160 s, and 201~225 s. Among these, the uniform motion
section satisfies Equation (43), the maneuvering turning section’s motion equation satis-
fies Equation (46), and the maneuvering turning rate ω = 5◦/s. Figure 2 displays the
maneuvering target’s trajectory.

Fct =


1 sin ωT

ω 0 cos ωT−1
ω 0

0 cos ωT 0 −sin ωT 0
0 1−cos ωT

ω 1 sin ωT
ω 0

0 sin ωT 0 cos ωT 0
0 0 0 0 1

 (46)
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Figure 2. Real trajectory of a high-maneuvering target.



Sensors 2023, 23, 6966 12 of 17

The RMSE of the position estimate and velocity estimation for various filtering algo-
rithms in Case 5.1 is shown in Figure 3. The filtering algorithm’s model and the initial
stage motion are uniform. As a result, these algorithms can produce accurate tracking
results. The filtering algorithm’s model and the target’s actual motion diverge significantly
when the target maneuvers. The CKF is entirely divergent at this moment and cannot trace
the target. The HCKF, based on the CKF, reduces the impact of outliers by a particular
function. Although the filter’s robustness is much better than the CKF’s, it still cannot
perform effective tracking during the model mismatch stage. The improved SHCKF outper-
forms the algorithm above at tracking performance. The estimation accuracy of the system
noise is nevertheless decreased to prevent algorithm divergence. As a result, when the
target changes its movement suddenly, it cannot be rectified in time, and accurate tracking
requires some time. By introducing an adaptive fading factor, the ARCKF fully utilizes
the useful information in the residual sequence and increases the algorithm’s resistance
to uncertainty modeling. The RMSE of the speed estimation only slightly increases when
the state changes abruptly, and the RMSE of the position estimation almost wholly ignores
the model mismatch. The ARCKF can achieve tracking accuracy similar to the IMMCKF.
However, the fundamental model and the Markov transition matrix significantly impact
IMMCKF performance. The IMMCKF’s filtering accuracy will be significantly decreased if
the trajectory of the maneuvering target does not follow the fundamental model.
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5.2. Non-Gaussian Measurement Noise

In general, the measurement system is susceptible to abnormal noise pollution. The
noise distribution cannot meet the Gaussian distribution and usually presents a heavy-
tailed distribution. Contaminated Gaussian distribution noise can be expressed as [22]:

wk ∼ (1− δ)N(0, Rn) + δ
(
0, Rp

)
(47)

where δ ∈ [0, 1] denotes the proportion of contaminated noise, Rn denotes the standard
measurement noise error covariance matrix, and Rp denotes the contaminated noise covari-
ance matrix, which can be any symmetric distribution. If Rp is also a Gaussian distribution
with a large standard deviation, the actual noise is also called Gaussian mixed noise, in
which the likelihood of abnormal noise grows with an increase in the weight δ of the
polluted noise Rp, and the variance of Rp determines the magnitude of the observation
deviation produced by the abnormal noise. In this experiment, we assume that Ru = 50Rn,
and the pollution ratio is 0.2.

Figure 4 shows the RMSE of the position and velocity estimation of different filtering
algorithms in Case 5.2. In this case, the HCKF has better filtering accuracy than CKF,
converging more quickly during the early filtering stage than CKF; the filtering accuracy of
the SHCKF and ARCKF is significantly higher than that of the above two algorithms, but
the convergence speed of the SHCKF in the initial stage of filtering is the slowest among the
algorithms, which is most obvious in the RMSE of position estimation. The ARCKF retains
the advantage that HCKF has the fastest convergence speed in the initial filtering stage.
The ARCKF can update the measurement noise covariance in real time, which improves
the filtering accuracy of HCKF, and the tracking effect is better than the other three filtering
algorithms. Figure 5 shows the estimation consistency of the various filtering methods in
Case 5.2. Only the consistency of the CKF is severely impacted by non-Gaussian noise.
The other algorithms offer good consistency, but only the ARCKF can do so at the initial
filtering stage.
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Figure 4. The position and velocity RMSE of each filtering algorithm under non-Gaussian measure-
ment noise.
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5.3. Variable Noise Covariance

When the measurement system tracks the target, sometimes the signal is unstable,
which will cause the noise covariance error to change. In this case, we mainly discuss when
the noise covariance matrix suddenly increases significantly. The measurement noise is
assumed to satisfy the Gaussian distribution, but it will sometimes change:

Rk+1 =

{
Rn t < 50s

10Rn t ≥ 50s
(48)

where Rn represents the standard measurement noise error covariance matrix, and t repre-
sents the simulation time.

Figure 6 shows the RMSE of the position and velocity estimation of the different
filtering algorithms in Case 5.3. When the noise covariance matrix becomes larger, the
robustness of the four algorithms decreases to a certain extent. However, the SHCKF
and ARCKF use the process of adaptively updating the measurement noise covariance.
Therefore, these two algorithms have the best resistance to abnormal noise interference
after the noise covariance matrix changes. However, when each state changes, the SHCKF
always takes a long time to make the algorithm converge. In the face of frequent and
complex state changes, the filtering algorithm’s divergence probability will be greatly
improved. While using Sage–Husa estimation to update Rk, the ARCKF introduces the
MD method to correct the Rk matrix that is easy to diverge, improving the algorithm’s
robustness. Figure 7 shows the estimation consistency of the various filtering methods in
Case 5.3. The first stage’s actual noise covariance is identical to that of R0. These algorithms
are relatively consistent, while the CKF and ARCKF can keep consistency more quickly. In
the second stage, the measurement noise increases, seriously impairing the consistency of
the CKF. Over time, the SHCKF can return to good consistency, but only the HCKF and
ARCKF can consistently maintain good consistency.
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Figure 6. The position and velocity RMSE of each filtering algorithm when the noise covariance
is variable.
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6. Conclusions

An adaptive robust cubature Kalman filter is proposed in this study to address the
problems of system model uncertainty and abnormal measurement noise in maneuvering
target tracking. Based on the traditional HCKF, the algorithm introduces a simplified adap-
tive fading factor to solve the problem of system model uncertainty. Sage–Husa estimation
is used to update Rk in real time to significantly increase the estimation accuracy of the
HCKF for the time-varying measurement noise covariance matrix. When an observation
value is heavily tailed or anomalous, the MD method includes a scaling factor to lower
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the observation weight, further enhancing the algorithm’s robustness. The simulation
results demonstrate that the proposed ARCKF method has good filtering and estimation
performance in tracking moving targets. It can produce results for the model mismatch
problem comparable to those of the IMM method, and it also performs better than the CKF,
HCKF, and SHCKF algorithms in terms of robustness to non-Gaussian measurement noise.
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