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Abstract: Smart grids (SGs) play a vital role in the smart city environment, which exploits digital
technology, communication systems, and automation for effectively managing electricity generation,
distribution, and consumption. SGs are a fundamental module of smart cities that purpose to leverage
technology and data for enhancing the life quality for citizens and optimize resource consumption.
The biggest challenge in dealing with SGs and smart cities is the potential for cyberattacks comprising
Distributed Denial of Service (DDoS) attacks. DDoS attacks involve overwhelming a system with a
huge volume of traffic, causing disruptions and potentially leading to service outages. Mitigating
and detecting DDoS attacks in SGs is of great significance to ensuring their stability and reliability.
Therefore, this study develops a new White Shark Equilibrium Optimizer with a Hybrid Deep-
Learning-based Cybersecurity Solution (WSEO-HDLCS) technique for a Smart City Environment.
The goal of the WSEO-HDLCS technique is to recognize the presence of DDoS attacks, in order
to ensure cybersecurity. In the presented WSEO-HDLCS technique, the high-dimensionality data
problem can be resolved by the use of WSEO-based feature selection (WSEO-FS) approach. In addition,
the WSEO-HDLCS technique employs a stacked deep autoencoder (SDAE) model for DDoS attack
detection. Moreover, the gravitational search algorithm (GSA) is utilized for the optimal selection
of the hyperparameters related to the SDAE model. The simulation outcome of the WSEO-HDLCS
system is validated on the CICIDS-2017 dataset. The widespread simulation values highlighted the
promising outcome of the WSEO-HDLCS methodology over existing methods.

Keywords: smart grids; DDoS attacks; cybersecurity; feature selection; deep autoencoder; smart cities

1. Introduction

Smart grids (SGs) are an evolving technology, which provides intelligent monitoring,
inters connectivity of multiple modes of generation, two-way data transmission, and im-
proved resource utilization [1]. By raising the number of connected devices, it is tedious for
the SG to access the distributed network. Therefore, the Internet of Things (IoT) is being
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used in the energy sector to enable bidirectional data transmission [2]. It involves the de-
ployment of sensors, actuators, Radio-frequency Identification (RFID), and microcontrollers
for communication and computation, to accomplish a two-way communication process [3].
If IoT is combined with SGs, it creates a widespread network of a cyber-physical system,
which can be used to monitor and control connected devices remotely. Several countries
have already implemented this technology, but approaches to implementation might differ
based on the goals and policies of a country [4,5].

The interconnection of several devices from the domestic to the commercial level
creates a communication network in the SGs. The physical component includes highly
predictable, less technical, and few challenging issues, because of tedious human access and
organized maintenance intervening with the faults instigated by material and equipment
damage. At the same time, the challenging issues posed by the cyber network are highly
complex, recurrent, and less predictable. Therefore, cyber-security has been regarded
as a major power industry security target [6]. Cyber security in SGs is needed, as the
embedded and general-purpose systems linked to it should be secure from cyber-attacks.
Utilities need to ensure that cybersecurity in SGs for preserving the massive data flow and
control signals indispensable to the SG for reaping the operational benefits derived from
its implementation [7]. As SGs are a critical national infrastructure, cybersecurity in SGs
should manage every possible threat from user errors and equipment failures.

Intrusion Detection is a technique for detecting attacks before or after they attain
access to a security network. Integrating this method as to gateway is the fastest manner to
combine it [8]. Deep Learning (DL), data mining, Machine Learning (ML), fuzzy logic (FL),
evolutionary techniques, and other related approaches are comprised in Artificial Intelli-
gence (AI). ML has become increasingly significant to researchers for risk recognition [9].
Researchers have utilized ML techniques, namely neural networks (NNs), support vector
machines (SVMs), and random forests (RFs), for identifying jamming attacks. Researchers
have used the ML approach for detecting social engineering attacks [7]. This method
employs unsupervised learning; hence, it does not need that used for cyber-attacks in order
to detect them.

This study develops a new White Shark Equilibrium Optimizer with a Hybrid Deep-
Learning-based Cybersecurity Solution (WSEO-HDLCS) technique for a Smart City Envi-
ronment. The goal of the WSEO-HDLCS technique is to recognize the presence of DDoS
attacks, in order to ensure cybersecurity. In the presented WSEO-HDLCS technique, the
high-dimensionality data problem can be resolved by the use of a WSEO-based feature se-
lection (WSEO-FS) approach. In addition, the WSEO-HDLCS technique employs a stacked
deep autoencoder (SDAE) model for DDoS attack detection. Moreover, the gravitational
search algorithm (GSA) is utilized for the optimal selection of the hyperparameters related
to the SDAE model. The experimental evaluation of the WSEO-HDLCS algorithm is vali-
dated on the CICIDS-2017 database. The widespread simulation values highlighted the
promising outcome of the WSEO-HDLCS method over existing approaches.

2. Related Works

Ali and Li [10] introduced an effective DDoS attack detection method that depends on
multi-level AE-based feature learning. The authors learned of multiple levels of shallow
and DAE in unsupervised learning that can be utilized for encoding the trained and
test information in feature generation. The ultimate combined identification technique is
learned by integrating multiple-level features utilizing an effective multiple kernel learning
(MKL) method. Monday et al. [11] proposed a technique for detecting DDoS attacks
on the SG framework. Continuous wavelet transform (CWT) has been employed in the
proposed method to transform 1D traffic data to a 2D time-frequency domain scalogram
as the input to a wavelet CNN (WavCovNet) for detecting anomalous performance, with
information by differentiating attack features in standard outlines. Diaba and Elmusrati [12]
suggested a hybrid DL approach, which focused on DDoS attacks on the transmission
framework of SGs. The recommended technique is hybridized by the GRU and CNN
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methods. Nagaraj et al. [13] introduce graph learning techniques to identify and detect
DDoS attacks in SDN_SGC systems (GLASS). Network model statistics have been applied
to model SDN_SGC graphs that are trained GCN for extracting hidden representations
caused by DDoS attacks.

Ebojoh and Yeboah-Ofori [14] introduced an agent-based model of offensive botnet
connections in an SG method, and studied the amplification attack strategy of FDIA and
DDoS on SGs. Primarily, the authors examine that botnet agent attacks methods utilizing
ABS influence collaborative protection in FDIA and DDoS attacks. Secondarily, the authors
implemented an attack model utilizing the GAMA tool for determining offensive botnet
interactions within an SG system. Lastly, the authors suggested control methods for
preventing offensive botnets on the SG network. In [15], a model that depends on ML to
identify SG DDoS attacks was suggested. The model initially gathers network information,
then FS, applies PCA for reducing the data size and, lastly, utilizes the SVM approach to
detect the abnormality.

Ma et al. [16] recommended an innovative DDoS attack identification technique that
only applies unlabeled abnormal network traffic information to make the recognition
system. This approach primarily utilizes the Balanced Iterative Reducing and Clustering
utilizing the Hierarchies technique (BIRCH) for pre-clustering the anomalous network
traffic data and, after examining AE, to make the identification method in unsupervised
learning depends on clustering subsets. Khoei et al. [17] present a CNN-based approach, a
ResNEt with 50 layers. In this method, the tabular information is modified to images for
enhancing the model performance.

3. The Proposed Model

In this study, we have designed and developed a WSEO-HDLCS methodology for
cybersecurity in an SG environment. The major purpose of the WSEO-HDLCS system is to
recognize the presence of DDoS attacks, in order to ensure cybersecurity. In the proposed
WSEO-HDLCS system, three main sub-processes are contained in the WSEO-FS technique,
SDAE-based classification, and GSA-based hyperparameter selection. Figure 1 exemplifies
the overall flow of the WSEO-HDLCS method.

3.1. Design of WSEO-FS Technique

To choose a subset of features, the WSEO-FS technique is used. The WESO algorithm
is derived by the use of a White Shark Optimizer (WSO) with an equilibrium optimizer
(EO) [18]. In this work, the EO was used to increase the population of the worse solution
and improve the WSO’s searching abilities. Due to its higher performance, the EO is applied
to deeply search in the rugged search space by maintaining the balance among local as
well as global searches. The study implements the EO to improve the worse solution
by arranging the population and allowing for the second half as its population. The EO
enhances the worse half of the population and returns it to the WSO for re-evaluating the
population and selecting the better solution.

Initialization of parameters WSO and EO: This step is used for initializing the WSO
and EO parameters. For EO, the parameters are GP and V. For the WSO, the parameters
are v, u, l, τ, f min, f min, pmin, and pmax.

Initially, the initial population is produced. The population is randomly produced
similar to other swarm-based optimizers, which consider the starting time st and the
number of SAs (m).

Population =


st1

1 st2
1 . . . st1

m
st1

2 st2
2 . . . st2

m
...

... . . .
...

stN
1 stN

2 . . . stN
m

, (1)

Next, the fitness value (FV) of the solution is assessed. Consequently, the WSO
assigned the fittest outcome with the best values to ωgbest. The searching agent of the WSO
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is used for updating the solution from the population and searching for the best schedule
for the FS. Once it evaluates the FV for each solution from the population and allocates
the fittest outcome to ωgbest, the WSO operation can upgrade and produce novel solutions
based on the ωgbest. If they have optimum FV, then a new solution will replace the worst
solution. Next, based on the FV, the solution from the population was ranked, where the
best solution was highly ranked, and the worst solution was lowly ranked. After ranking
the solution, the EO takes the solution with the low rank from the WSO population for
additional improvement. The low-ranking solution is utilized as an initial population for

the EO. The EO allocates the fittest four solutions to
→
Ceq(1),

→
Ceq(2),

→
Ceq(3), and

→
Ceq(4) for

generating
→
Ceq.pool . Consequently, the EO updates the population to enhance the FV and

search for the best schedule. Consequently, the EO returns the novel solution to the WSO
population. The fitness function (FF) assumes the classifier accuracy and the FS counts. It
maximizes the classifier accuracy and minimizes the fixed size of FSs. Then, the following
FF can be employed for measuring individual performances, as expressed in Equation (2).

Fitness = α ∗ ErrorRate + (1− α) ∗ #SF
#All_F

(2)

whereas ErrorRate stands for the classifier rate of errors employing the FSs. ErrorRate
denotes the measured percentage of incorrect classification to the count of classifiers made,
expressed as a value among zero and one. #SF refers to the count of FSs and #All_F denotes
the entire count of elements from the original database. α is utilized for controlling the
impact of classifier quality and subset length.
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3.2. Design of SDAE Classifier

For the identification of DDoS attacks, the SADE model is applied. In DAE, any
trained parameters can be employed and written as the input vector xi(1, 2, . . . , N) and
as the hidden state hi [19]. An input vector calculates xi and a joint probability distribution
function of hi. It can be employed as the matrix weighted on the primary phase. Figure 2
portrays the infrastructure of SDAE. The estimate of the probability distribution function is
provided as:

p(hi = 1|x) = σ

(
bi + ∑

j
wijxi

)
(3)

whereas σ denotes the sigmoid function. The sigmoid function was determined as:

σ =
1

1 + e−z (4)
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The input data to a network can be provided as z, and the resultant data of the network
are provided as hw,b(z), and wij(i, j = 1, 2, . . . , N) signifies the primary weighted data.
An input data point z can be stimulated using the mapping function to offer m f as:

m f = sigm(wiz + bi) (5)

in which sigm refers to the activation function, recognized as a sigmoid function:

sigm =
1

1 + e−z (6)

The reconstructed signal in the decoded phase is expressed as:

x̂i = hw,d(z) = g
(

wt
i m f + bi+1

)
(7)

The abovementioned formula, the weighted matrix and bias amongst the states (hid-
den and output) are defined as w and b.
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The resultant features X attained later, and the decoded and the input data x attained
before the encoded features, are the most important conditions of AE, and where the error
appeared, reconstruction is provided by probability function:

l(x, x̂) =
1
2
|xi − x̂i|2 (8)

SDAE contains several layers of encoded and decoded features, generating a deeper
network. All layers of the encoded features decrease the data size, and all the layers of
decoded features gradually reform the data back to its original size. The intermediate layer
procedure is the compressed representations, and it develops gradually towards abstraction
as it keeps moving deeper into a network.

The training of a SDAE is normally performed in a layer-by-layer method. It contains
all the layers trained separately as AEs first. If the lower layers can be trained, they can be
integrated as a single network and more fine-tuned as an end-to-end method.

3.3. Process Involved in GSA-Based Hyperparameter Tuning

Finally, the hyperparameters of the GSA model can be chosen by the use of GSAs.
The GSA is inspired by the optimization strategy improved by the law of gravity [20]. In
this technique, particles represent the object, while masses are used for the performance
measurement. The particles communicated by using the laws of action and Newton’s law
of gravity. Consider a solution that contains N particles (masses).

xi =
(

x1
i , . . . . . . xd

i . . . . . . xD
i

)
f or i = 1, 2, 3 . . . .n (9)

In Equation (9), xd
i indicates the position of particle i at d dimension, and D denotes

the overall amount of dimensions. All the performances of the particles are defined by the
mass and measured by a vigor process. The gravity and inertial masses of each particle
were modernized and equalized with all the iterations:

.Mai = Mpi = Mii = Mi (10)

mi =
f iti − worst
best− worst

(11)

Mi =
mi

∑N
j=1 mj

(12)

where f iti shows the ith particle FV, and best and worst denotes the particles’ highest and
lowest fitness scores.

Maximization challenges are characterized as follows:

best = max
jε{1,......N}

f itj (13)

worst = min
jε{1,......N}

f itj (14)

Considering the reducing issues, which are different and are evaluated as follows:

best = min
jε{1,......N}

f itj (15)

worst = max
jε{1,......N}

f itj (16)
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The gravity Fd
ij exerted on ith particles from jth particles is computed using Equation (17):

Fd
ij = G

Mpi ×Maj

Rij + ε
×
(

xd
j − xd

i

)
(17)

where Maj shows the kinetic gravity energy of jth particles and Mpi is the sedentary
gravity potential of ith particles. ε denotes the teeny invariant. G is designated the gravity
acceleration. Rij shows the Euclidean space within two particles,

G = G0e−α t
T (18)

In Equation (18), GO and α are adjusted initially and gradually decreased to control
the search accuracy, T shows the max iteration. The force used on ith particles in d size is a
random weight matrix of other gravitational forces of the particles.

Fd
i = ∑

j∈Kbest,j 6=i
rrandjFd

ij (19)

where rrandj shows the constant random parameter within [0, 1]. During the search
process, keeping equilibrium is crucial to avoid becoming trapped in the local optimal and
to strike the symmetry within exploitation and exploration. Solely, particles Kbest with
the most important fitness weights are used to have a gravitational attraction on another
particle.

Kbest = N ×
per +

(
1− t

T
)
× (100− per)

100
(20)

where per represents the particles’ proportion that efficiently contributes towards different
particles in the final analysis. The rate of ith particles in d size at t iteration can be defined
as follows:

ad
i =

Fd
i

Mii
(21)

Now, Mii shows inertial mass of the ith particles. The velocity of the particle at d
dimension is the proportion of current speed and velocity.

vd
i = randi × vd

i + ad
i (22)

Now, randi denotes the invariant arbitrary variable within [0, 1] and provides the
search for the random characteristic. In addition, the following equations evaluate the next
location of the particles in dimension d.

xd
i = xd

i + vd
i (23)

Fitness choice is a key aspect of the GSA system. Solution encoding can be utilized to
assess a better solution for candidate performances. In this work, maximum accuracy can
be considered as the fitness function, as given below.

Fitness = max(P) (24)

P =
TP

TP + FP
(25)

in which FP and TP imply the false and true positive values.
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4. Results Analysis

In this study, the DDoS attack detection performance can be validated using the
CICIDS-2017 dataset [21]. It holds 113,270 samples with two classes, as represented in
Table 1.

Table 1. Description of database.

Class No. of Samples

BENIGN 67,343

DDoS 45,927

Total Samples 113,270

Figure 3 reveals the classifier outcome of the WSEO-HDLCS algorithm on the test
dataset. Figure 3a portrays the confusion matrix attained by the WSEO-HDLCS system on
80% of the TR set. The outcome inferred that the WSEO-HDLCS system has recognized
53,244 instances under the benign class and 35,420 instances under the DDoS class. More-
over, Figure 3b exemplifies the confusion matrix attained by the WSEO-HDLCS system on
20% of the TS set. The results signified that the WSEO-HDLCS methodology has recognized
13,282 instances under the benign class and 8927 instances under the DDoS class. Following
this, Figure 3c represents the PR curve of the WSEO-HDLCS system. The outcome inferred
that the WSEO-HDLCS system has achieved greater PR outcomes in two classes. But
Figure 3d displays the ROC curve of the WSEO-HDLCS system. The result outperformed
that the WSEO-HDLCS approach has led to capable performances with enhanced ROC
values on two class labels.

Table 2 represents the DDoS attack detection results of the WSEO-HDLCS technique.
Figure 4 inspects the overall results of the WSEO-HDLCS technique with 80% of the TR set.
The outcomes inferred that the WSEO-HDLCS technique reaches enhanced identification
of attacks. With the benign class, the WSEO-HDLCS technique offers accuy, precn, recal ,
Fscore, and AUCscore values of 97.85%, 97.66%, 98.74%, 98.20%, and 97.64%, respectively.
Additionally, with the DDoS class, the WSEO-HDLCS approach attains accuy, precn, recal ,
Fscore, and AUCscore values of 97.85%, 98.12%, 96.53%, 97.32%, and 97.64%, respectively.

Figure 5 examines the overall outcomes of the WSEO-HDLCS methodology with 20%
of the TS set. The outcome inferred that the WSEO-HDLCS algorithm gains improved
recognition of attacks. With the benign class, the WSEO-HDLCS methodology provides
accuy, precn, recal , Fscore, and AUCscore values of 98.04%, 97.75%, 98.96%, 98.35%, and
97.83%, respectively. Moreover, with the DDoS class, the WSEO-HDLCS methodology
achieves accuy, precn, recal , Fscore, and AUCscore values of 98.04%, 98.47%, 96.69%, 97.57%,
and 97.83%, respectively.

Table 2. DDoS attack detection outcome of WSEO-HDLCS approach on 80% of TR set/20% of TS set.

Class Accuy Precn Recal FScore AUCScore

Training Phase (80%)

Benign 97.85 97.66 98.74 98.20 97.64

DDoS 97.85 98.12 96.53 97.32 97.64

Average 97.85 97.89 97.64 97.76 97.64

Testing Phase (20%)

Benign 98.04 97.75 98.96 98.35 97.83

DDoS 98.04 98.47 96.69 97.57 97.83

Average 98.04 98.11 97.83 97.96 97.83
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Figure 6 inspects the overall average result of the WSEO-HDLCS algorithm with 80%
of the TR set and 20% of the TS set. The simulation outcome denoted that the WSEO-
HDLCS system gains greater detection of attacks. On 80% of the TR set, the WSEO-HDLCS
method achieves average accuy, precn, recal , Fscore, and AUCscore values of 97.85%, 97.89%,
97.64%, 97.76%, and 97.64%, respectively. On 20% of TS set, the WSEO-HDLCS algorithm
reaches average accuy, precn, recal , Fscore, and AUCscore values of 98.04%, 98.11%, 97.83%,
97.96%, and 97.83%, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 5. DDoS attack detection outcomes of WSEO-HDLCS approach on 20% of TS set. 

Figure 6 inspects the overall average result of the WSEO-HDLCS algorithm with 80% 
of the TR set and 20% of the TS set. The simulation outcome denoted that the WSEO-
HDLCS system gains greater detection of attacks. On 80% of the TR set, the WSEO-HDLCS 
method achieves average 𝑎𝑐𝑐𝑢  , 𝑝𝑟𝑒𝑐  , 𝑟𝑒𝑐𝑎  , 𝐹𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶    values of 97.85%, 
97.89%, 97.64%, 97.76%, and 97.64%, respectively. On 20% of TS set, the WSEO-HDLCS 
algorithm reaches average 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶   values of 98.04%, 
98.11%, 97.83%, 97.96%, and 97.83%, respectively. 

 
Figure 6. Average outcome of WSEO-HDLCS approach on 80% of TR set/20% of TS set. Figure 6. Average outcome of WSEO-HDLCS approach on 80% of TR set/20% of TS set.

Figure 7 illustrates the training accuracy TR_accuy and VL_accuy of the WSEO-HDLCS
approach. The TL_accuy is defined by the assessment of the WSEO-HDLCS system on the
TR dataset, whereas the VL_accuy is calculated by estimating the solution on a separate
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testing dataset. The outcomes display that TR_accuy and VL_accuy enhance with an
increase in epochs. Thus, the outcome the WSEO-HDLCS system obtains is greater on the
TR and TS dataset with a rise in the count of epochs.
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In Figure 8, the TR_loss and VR_loss curves of the WSEO-HDLCS system are exposed.
The TR_loss demonstrates the error among the predictive solution and original values on
the TR data. The VR_loss signifies the evaluation of the performance of the WSEO-HDLCS
technique on individual validation data. The outcomes point out that the TR_loss and
VR_loss tend to be less with increasing epochs. It represented the improved solution of the
WSEO-HDLCS technique and its ability to produce an accurate classification. The minimal
value of TR_loss and VR_loss reveals the improved outcome of the WSEO-HDLCS method
on capturing patterns and relationships.
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A comprehensive PR analysis of the WSEO-HDLCS algorithm is depicted on the test
database in Figure 9. The simulation outcome inferred that the WSEO-HDLCS system
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outcomes enhanced the values of PR. Furthermore, it could be noticed that the WSEO-
HDLCS algorithm attains greater PR values on two classes.
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In Figure 10, a ROC curve for the WSEO-HDLCS methodology on the test database
is shown. The simulation value explained that the WSEO-HDLCS system gives rise to
increased ROC values. Also, it can be observed that the WSEO-HDLCS algorithm extends
greater ROC values on two classes.
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Finally, the improved performance of the WSEO-HDLCS technique can be ensured
by studying the comparisons in Table 3 and Figure 11 [12,22–24]. The simulation values
portrayed that the hybrid deep belief and network GRU-recommended models have shown
poor performance. Along with that, the ANN, SVM, KNN, RF, and NB approaches have
reported moderate solutions.
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Table 3. Comparative outcome of WSEO-HDLCS approach with other methods.

Algorithms Accuy Precn F1score

ANN Algorithm [22] 96.94 95.45 96.90

SVM Model [22] 97.80 96.93 97.80

K-NN Algorithm [22] 97.44 95.16 97.40

Random Forest [22] 97.94 94.28 97.01

Hybrid Deep belief [23] 94.14 93.57 93.68

Network GRU Recommended [12] 95.93 95.89 95.94

Naïve Bayes [24] 97.74 96.65 95.04

WSEO-HDLCS 98.04 98.11 97.96
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Nevertheless, the WSEO-HDLCS algorithm exhibited superior performance, with a
maximum accuy of 98.04%, precn of 98.11%, and Fscore of 97.96%. These results confirmed
that the WSEO-HDLCS technique can identify the DDoS attacks in the SG effectually.

5. Conclusions

In this manuscript, we have designed and established a WSEO-HDLCS algorithm for
cybersecurity in the SG environment. The major purpose of the WSEO-HDLCS technique
is to recognize the presence of DDoS attacks, in order to ensure cybersecurity. In the
proposed WSEO-HDLCS system, the three main sub-processes contained are the WSEO-FS
technique, SDAE-based classification, and GSA-based hyperparameter selection. The GSA
is utilized for the optimal selection of the hyperparameters related to the SDAE model.
The simulation value of the WSEO-HDLCS system was validated on the CICIDS-2017
database. The widespread simulation outcome highlighted the promising solution of the
WSEO-HDLCS approach, compared to other methods. The proposed model offers various
benefits in real-time applications, such as enhanced network resilience, reduced downtime,
less service disruptions, reduced economic loss, effective resource utilization, and resilience
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against evolving threats. In future, the adaptability of the proposed model can be improved
on evolving attacks using ensemble models. Additionally, real-time monitoring can be
developed for the detection of DDoS attacks promptly. In addition, automated systems can
trigger alarms or mitigation actions when suspicious traffic patterns are detected. Finally,
flow-based monitoring and analysis approaches can be developed to gain insights into
traffic flows, recognize suspicious activity, and isolate the sources of DDoS attacks.
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