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Abstract: With the increasing use of automated vehicles (AVs) in the coming decades, government
authorities and private companies must leverage their potential disruption to benefit society. Few
studies have considered the impact of AVs towards mode shift by considering a range of factors at the
city level, especially in Australia. To address this knowledge gap, we developed a system dynamic
(SD)-based model to explore the mode shift between conventional vehicles (CVs), AVs, and public
transport (PT) by systematically considering a range of factors, such as road network, vehicle cost,
public transport supply, and congestion level. By using Melbourne’s Transport Network as a case
study, the model simulates the mode shift among AVs, CVs, and PT modes in the transportation
system over 50 years, starting from 2018, with the adoption of AVs beginning in 2025. Inputs such
as current traffic, road capacity, public perception, and technological advancement of AVs are used
to assess the effects of different policy options on the transport systems. The data source used is
from the Victorian Integrated Transport Model (VITM), provided by the Department of Transport
and Planning, Melbourne, Australia, data from the existing literature, and authors’ assumptions.
To our best knowledge, this is the first time using an SD model to investigate the impacts of AVs
on mode shift in the Australian context. The findings suggest that AVs will gradually replace CVs
as another primary mode of transportation. However, PT will still play a significant role in the
transportation system, accounting for 50% of total trips by person after 2058. Cost is the most critical
factor affecting AV adoption rates, followed by road network capacity and awareness programs. This
study also identifies the need for future research to investigate the induced demand for travel due to
the adoption of AVs and the application of equilibrium constraints to the traffic assignment model to
increase model accuracy. These findings can be helpful for policymakers and stakeholders to make
informed decisions regarding AV adoption policies and strategies.

Keywords: system dynamics; driverless vehicles; future transportation; transport policy; smart mobility

1. Introduction

Automated driving technologies (e.g., artificial intelligence and remote sensing) have
received much attention for their research and developments [1]. Automated driving
technologies can transfer vehicle driving functions from human drivers to computers,
and the automation level is divided into six levels [2]. Simply defined, level 0 means no
driving automation, while level 5 demonstrates full driving automation without any human
intervention. Moreover, AVs could improve road safety by eradicating traffic accidents,
as most accidents are due to human errors, such as driving too fast and driver fatigue. In
short, the upcoming automated vehicles will benefit the broader society by decreasing
traffic congestion, offering new mobility choices, and reducing road accidents [3].

The rise in AVs is expected to significantly affect the transportation sector by changing
the way people travel. AVs have the potential to revolutionise mobility by reducing traffic
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congestion, improving road safety, and increasing energy efficiency [4]. However, there are
concerns that the widespread adoption of AVs could lead to an increase in vehicle kilometres
travelled and a decrease in the use of public transport (PT) and active transportation modes,
ultimately increasing energy consumption, emissions, and congestion [4]. Therefore, it is
important to investigate the potential mode shift between AVs, CVs, and PT to evaluate the
effect of AVs on the transportation system and plan accordingly. Most studies employed
a static approach to investigate the effect of AVs on the transportation system without
considering the dynamic interactions between different travel modes and the feedback
loops that could affect the mode shift behaviour [5,6].

If we want to manage future road networks to meet the demands of automated vehicle
trips due to the shift from public transport and conventional vehicle trips, we need to
understand how AV trips change over time due to a range of reasons, such as policy
implementation, AV cost, and psychological factors. As such, the main contributions of this
study are as follows:

1. We developed a system dynamic (SD)-based model to explore the mode shift between
conventional vehicles (CVs), AVs, and public transport (PT) by systematically consid-
ering a range of factors, such as road network, vehicle cost, public transport supply,
and congestion level. This model addresses the knowledge gaps on the impact of AVs
towards mode shift by considering a range of factors at the city level.

2. Inputs such as current traffic, road capacity, public perception, and technological
advancement of AVs are used to assess the effects of different policy options on the
transport systems. An SD approach has been adopted for the present study because it
can incorporate the dynamic interactions [7] between different travel modes and the
feedback loops that could affect the mode shift behaviour. To our best knowledge, this
is the first time using an SD model to investigate the impacts of AVs on mode shift in
the Australian context.

3. The SD model provides a valuable contribution to the methodological understanding
of the effects of AVs on transportation by considering various system-level factors.
The model can be used to explore the effects of AV adoption on mode shift, changes in
traffic congestion, and other transportation-related factors, supporting policy decision
making to achieve a sustainable, equitable, and accessible transport system, especially
for the long term. This model also presents significant advantages. The SD model not
only comprehensively considers various factors and their quantitative relationships,
but it also allows for sensitivity analysis of individual variables. This capability
enables us to thoroughly investigate the influences of each variable, enhancing the
model’s comprehensiveness and utility. Additionally, the SD model is a powerful
tool for analysing the complex interactions between different components of the
transportation system and identifying potential solutions to the challenges posed
by AV adoption. By providing a detailed analysis of the effects of AV adoption on
modal shift behaviour, the proposed model can help policymakers develop policies
that promote the adoption of AVs while also minimising the negative effects on PT
and congestion.

The paper is organised as follows. Section 2 presents the literature review for the
transport modelling and system dynamics approach. It is followed by Section 3 that
describes the SD model developed for this study, while Section 4 discusses the results for
different scenarios. A list of the abbreviations used in this study is shown in Table 1.
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Table 1. A list of abbreviations used in this study.

Abbreviation Explanation

AVs Automated Vehicles
CVs Conventional Vehicles
PT Public Transport
LoS Level of Service

CAVs Connected and Autonomous Vehicles
VITM Victorian Integrated Transport Model
EVs Electric Vehicles
SD System Dynamic

VISTA Victorian Integrated Survey of Travel and Activity
EVs Electric Vehicles
DTP Department of Transport and Planning
CBD Central Business District
VKT Vehicle Kilometre Travelled

2. Literature Review

In this section, we review the relevant works under two subsections: transport mod-
elling and system dynamics modelling.

2.1. Transport Modelling

Some past studies investigated the effects of AVs on traffic flow and traffic safety
using microscopic traffic simulations of individual vehicles [8,9]. Other interesting studies
also investigated the effects of AVs using microscopic traffic modelling. For example, [10]
researched lane assignment strategies of AVs and their effects on overall traffic efficiency
and safety in a highway scenario. Reference [11] used the traffic simulation package VISSIM
to investigate the congestion effects of shared AVs on urban traffic by modelling the peak
morning period in 2040. Several shared AV market penetrations were modelled: 0 per
cent, 3 per cent, 25 per cent, 50 per cent, and 100 per cent. Similarly, [12] developed an
efficient stochastic optimisation framework to find optimal shares between CVs and AVs
by considering factors of CAVs (e.g., VKT, the value of time, and automation cost). This
framework was successfully applied to the Chicago network, and the system costs were
optimised. Reference [13] studied a mixed traffic system to control the density and ratio of
CVs and AVs to avoid large-scale traffic congestion using a cellular automation model. It
was suggested that the findings would have practical implications for traffic management
control. From a traffic safety perspective, mixed traffic flow was simulated to identify
the frequency of dangerous situations and the value of time to collision under different
penetration levels [14]. The results revealed that smooth driving increases with the CAV
penetration rate. Another study conducted a detailed assessment of the effects of CAVs on
a freeway using a microsimulation [15]. The findings showed that CAVs could reduce delay
and emissions by 38 per cent and 52 per cent in shared lanes. Shared lanes performed better
at low traffic volumes, while dedicated lanes performed at high volumes. A recent study
by [16] used SDs to optimise mobility by understanding mode choice between rail, car, bus,
and air. In addition, the SD method was implemented in EV adoption by incorporating cost,
infrastructure supply, vehicle technology, and social utility [17]. In policy developments,
various factors (e.g., GDP, capital investment, and solid waste emission) were modelled in
SDs to evaluate policy effects on the urban economy [18].

Further, a study by [19] proposed a multi-stage modelling approach to enhance net-
work performance to cater to the growing demand for AVs. While the AV-related subnet-
work could improve network performance, it also increased the total travel distance. In
a recent study, [20] proposed a new business model for AVs called ‘AV crowdsourcing’,
which involved renting out privately owned AVs to gain profits. The study tested the
feasibility of this business scenario using an equilibrium model. However, the optimal
price for AV crowdsourcing needs to be investigated further by considering individuals’
sensitivity to the utility function and additional costs associated with AVs. This business
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model has the potential to provide a high return for private AV users. However, more
research is needed to fully understand its effect on the adoption rate of AVs and the overall
transportation system. Reference [21] predicted that urban households would see a 2.8 per
cent increase in commuting trips using private AVs by coupling North Carolina’s demand
and choice models to capture household preference. However, the result varied by different
penetration rates and fuel types.

In summary, most past studies explored the effects of AVs on traffic flow, efficiency,
and safety using microsimulations. Given that Australia will establish an AV safety law in
2026 to facilitate the deployment of AVs [22], this suggests a need for further research into
the external factors affecting future AV trips. However, few studies have considered the
effect of AVs on mode shift by considering a range of factors at the system level.

2.2. System Dynamics Modelling

This literature review primarily focuses on the application of SD modelling to transport
planning, especially the effects of AVs and EVs. Reference [23] examined the possible
implications of implementing AVs by employing an SD approach to three scenarios: (1) no
change in behaviour and ownership, (2) change in behaviour and no change in ownership,
and (3) complete change in ownership in which all vehicles are shared AVs. However, the
investigation did not consider the adoption process, including factors such as penetration
level and level of service, which may change over time. Additionally, the data were gathered
through a workshop setting. In addition, while a study conducted in the Netherlands
used an SD modelling approach to examine the adoption process and policy tests across
four scenarios (i.e., AV in bloom, demand, doubt, and standby), it failed to account for
the potential traffic congestion resulting from AV usage and the associated policy effects,
such as congestion charging policies [24]. A comparable study by [25] employed an SD
modelling approach to assess the effects of AVs on mode choice, focusing on levels 1 to
3. The study analysed two scenarios: AVs and cooperative/connected vehicles, which
can communicate with infrastructure and other vehicles. However, the base year data
used in the study were from 2013, which may not accurately reflect the current state of AV
technology, as it has been rapidly advancing in recent years. Some past research leveraging
SD modelling to solve complex interactive transport problems is shown in Table 2.

Table 2. System Dynamic Approaches Review.

Purpose Variable Strength Conclusion Future Study
Suggestion/Limitation

To evaluate the construction
scale of urban rail for traffic,

economy, and society [26]

GDP, population, accident,
gas emission, congestion
degree; construction scale

was a policy variable

Presented the effect of the
urban rail system on urban

traffic, economy, society, and
environment; guided

transportation
infrastructure planning

As the mileage of urban rail
increased, the number of cars

increased; appropriate
construction of urban rail

would help

Some variables need more
research, such as sociology,

economics, and demography

To evaluate the effects of AVs
on mode choice and broader
transportation system [23]

Travel time, public transit
fare, traffic volume, adequacy

of PT, etc.

Three different scenarios to
investigate the effect on mode

choice and mobility

Better to obtain public
acceptance of AVs as

shared-use vehicles or PT
tools before establishing the
mindset of private vehicles

Public discussion should be
initiated to fully understand
views on AVs when AVs are

in the market

To evaluate the innovation
diffusion of AVs in the long

term [24]

Technology maturity, research
and development funds,

attractiveness, purchase price,
and fleet

Complex and dynamic
innovation systems of AVs

and six levels of AVs
were represented

System was highly uncertain
due to different market
penetration levels and

policies adopted

Further research could focus
on gaining more knowledge

of factors affecting the
diffusion of AVs by

leveraging this model

To evaluate the mobility
effects of AVs [25]

Mode choice, travel time, and
time of day choice

Uncertainties were
incorporated into penetration

rates, capacity, and value
of time

AVs could cause increased car
trips and level of congestion

Extend the model by
considering travel time

reliability, road pricing policy,
and ride-sharing

A useful approach for
optimising individuals’

mobility and guiding city
planners [16]

Rail, car, bus, and air
customers (mode choice)

What factors influence
people’s choices and can
model their behaviours;
several scenarios were

included (sensitive to price,
trip duration, and need to

stay overnight)

Customers were not sensitive
to price, trip duration, need to
stay overnight, or need to use
additional means of transport

Future research should be
parametrised to identify more

details for
individual platforms
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Table 2. Cont.

Purpose Variable Strength Conclusion Future Study
Suggestion/Limitation

Adoption of EVs [17]

Economic utility (cost,
infrastructure convenience,

and vehicle technology) and
social utility

Complex interaction and how
feedback can affect

EV adoption

Consumers’ vague
perceptions and pilot of EV
projects led to delays in EV
adoption; however, social

commerce helped

Future research should focus
on EV adoption through

combinations of
incentive plans

To evaluate the effects of AV
adoption on greenhouse gas

emissions [27]
Emissions, fleet, and adoption

Life cycle assessment to
assess the various scenarios
in the medium to long term

To decrease greenhouse gas
emissions, the government

should manage vehicle travel
speeds, provide subsidies,

and increase the renewable
electricity supply

Further research needs to
focus on developing the

model in conjunction with
other methods to support the
investigation of greenhouse

emission process

As shown in Table 2, in previous studies, SD modelling has been used to explore
various facets of AV adoption and its influence on transport planning. However, few
studies considered factors, such as network capacity and current transport characteristics,
to evaluate the adoption of AVs at the system level (i.e., city level). As AV technology is
continuously evolving and maturing, it is crucial to conduct further research into adoption
rates of AVs compared with trips from other modes, such as PT and CVs, in a city-level
context. Currently, there is a lack of a comprehensive framework to systematically consider
mode shift change due to the upcoming AVs, especially in an Australian context.

3. Methods

The SD model in this study considers the interaction of AV and CV adoption in a
mixed-vehicle fleet along with PT. It is developed using VENSIM PLE (version 8.2.0) and
simulated from 2018 to 2068, with AV adoption starting in 2025 [28]. The model dynamically
computes parameters through feedback loops to determine their impact. System dynamics
modelling involves the creation of stock-and-flow models, where flows are divided into
inflows and outflows, representing the rates at which quantities are added or subtracted
from a specific stock. Consequently, the integral of the net flow, combined with the initial
stock value at time “a0”, yields the total stock at time “a”. The net flow, calculated by
subtracting outflows from inflows, represents the derivative of the total stock concerning
time, as shown in Equation (1).

Stock (a) =
∫ a

a0
[in f low(a)− out f low(a)]da + Stock(a0) (1)

3.1. Description of the System in This Study

The system under consideration is described in Figure 1. External factors are important
in determining future AV demand, such as technological advancement and infrastructure
capacity of AVs. In this study, AVs represent level 2 and above. Different policies can affect
an individual’s mode of choice between PT, AVs, and CVs. In addition, if more individuals
use CVs or AVs instead of PT, the results could prevent them from using private vehicles
because of increased travel time. Thus, the government will adjust the policy (dotted line)
once more network traffic is causing congestion. Therefore, policy decision making is
important to achieve a sustainable, equitable, and accessible transport system by satisfying
equilibrium in the system.

3.2. Model Explanation
3.2.1. Data Input

We obtained the transport data from VITM developed by the Victorian Department
of Transport and Planning (DTP), Melbourne, Australia. VITM is a strategic four-step
transport demand model developed to predict future travel demand and travel patterns
as a result of land use changes, population changes, travel behaviour changes, and major
infrastructure projects [29]. VITM is based on the Victorian Integrated Survey of Travel and
Activity, including individual trips within family households. The model incorporates the
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complicated interactions within the transport system (e.g., private vehicle trips, PT, and
other modes) and land use changes. Specifically, the VITM is a comprehensive transport
demand model that operates on multiple time periods, trip purposes, and modes of travel.
This model encompasses car, public transport, and active transport modes and is designed
to estimate transportation demand over a typical school day. Employing population,
employment, and enrolment projections, VITM assesses the forthcoming impacts of changes
in Victoria’s road and public transport infrastructure. Further, we considered data from the
existing literature [30,31] and the national survey conducted in Australia [32], and where
the relevant data were unavailable, we made realistic assumptions, which are shown in the
following tables.
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Figure 1. System effects in this study.

3.2.2. Calculations

The study proposed a stock-and-flow-based SD model to simulate the distribution of
trips among CVs, AVs, and PT. The model incorporates four sub-models: network capacity,
CV trips, AV trips, and PT trips, as shown in Figure 2. As shown in Figures 3–5, the stocks
(e.g., CV adopters) are represented by boxes, while the double-lined arrows represent
flows (e.g., the total delay in the network). The ‘tap’ symbol denotes flow rates (e.g., from
CV adopters to AV adopters), and the single-lined arrows represent influence links (e.g.,
local collectors influencing road infrastructure). An encircled R represents the reinforcing
feedback loop, while an encircled B represents a balancing feedback loop. The model takes
inputs and time series data to generate outputs. The simulation model was used to explore
the effects of AV adoption on the transportation system at a city level, including the shifts
in mode share and changes in traffic congestion. The model outputs include CV adopters,
AV adopters, and PT adopters, representing any 15 min period during a typical weekday
AM (7 am to 9 am) peak, signifying that the system dynamics model simulates 15 min
segments within the AM peak of a standard weekday. Consequently, we have performed
a straightforward calculation to derive 15 min boardings, achieved by dividing the 2 h
duration by 8. The simulation period is 50 years, starting from the base year.
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Figure 3. Public transport adoption sub-model. (Notes: 1. <> symbols signify their repeated
occurrence within the system dynamics model, whereas variables lacking <> symbols appear only
one time in the system. 2. <min per h> denotes a conversion factor of 60 min per h, facilitating unit
conversion within this model).
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3.3. Sub-Model Explanation

The sub-model of the study includes public transport, network capacity, and CV
transitions to AV, which are used to evaluate the various factors influencing AV adoption
in a closed transportation system.

3.3.1. Public Transport Sub-Model

Figure 3 shows the public transport sub-model. The trips generated by public transport
depend on the adoption by AV and CV users. Table 3 shows the sub-model’s equations,
values, and units for the key variables and stocks.

The utility function determines the number of people who choose PT as their primary
mode of transportation [33]. The choice of PT as a primary mode of transportation is
influenced by various factors, including travel time, travel cost, and standard deviation of
travel time. In this study, VITM was used to determine the total PT travel time, which was
used to obtain the average PT travel time by dividing the total PT boarding. The average
PT travel time also included the average out-of-vehicle travel time, such as the time spent
walking to the tram/train station. For example, the “PT utility function” hinges on two
pivotal factors: the “PT trip cost” and “PT travel time”. The “PT trip cost” element can be
influenced by the uptake of PT by individuals, denoted by “PT adopters” and “PT adopters
initial”, thereby influencing what we term as “PT cost reduction”. Furthermore, the “PT
travel time” is sourced from the VITM model’s 2018 dataset. As more individuals embrace
PT, it might drive the “PT investment rate”, thereby impacting “PT capacity growth” and,
subsequently, the number of “PT adopters”. Additionally, ‘PT utility function’ refers to a
mathematical construct employed for assessing passenger modal preferences, while ‘PT
utility fraction’ utilises this function to ascertain the likelihood of selecting the PT mode
over AV and CV modes.
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Figure 5. Transitions between CV and AV sub-model. (Notes: 1. <> symbols signify their repeated
occurrence within the system dynamics model, whereas variables lacking <> symbols appear only
one time in the system. 2. ‘AV trip cost’ is represented as a stock due to its dependency on other
variables like ‘AV trip cost initial’ and ‘AV cost reduction’. In contrast, ‘CV trip cost’ maintains a more
consistent cost due to its mature technology. Consequently, ‘AV trip cost’ is categorised as a stock,
while ‘CV trip cost’ is a variable unaffected by other factors).
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Table 3. The public transportation sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

Sum utility N/A EXP (CV utility) + EXP (AV
utility) + EXP (PT utility) Utility function [34].

PT change required N/A

Percentage changes in
individuals opting for public

transport as their primary
mode during each

simulation interval.

PT utility function N/A

−0.049 × (PT initial travel
time × min per h/”PT

passenger total boardings
(2 h)”) − 0.05 × PT average
out-of-vehicle travel time −

0.0038 × PT trip cost

Probability of choosing PT as
commuting mode based on
travel time and cost during

any 15 min at AM peak.

PT initial travel time Person × hour 165,795

Collective travel duration via
various modes such as trains,
trams, and buses, as supplied
by the VITM model from DTP

for input into this system
dynamics model.

PT passenger total boarding (2
h) Person 508,420

Cumulative count of person
boardings on public transport
encompassing train, bus, and
tram trips. This information is
furnished by the VITM model

from DTP during the AM
peak period spanning 2 h.

PT average out-of-vehicle
travel time Minute 11 VISTA provided by DTP.

PT travel time Minute

PT initial travel time × min
per h/“PT passenger total

boardings (2 h)” + PT average
out-of-vehicle travel time

PT travel time includes
in-vehicle travel time and
out-of-vehicle travel time.

PT fleet travel time Person × hour PT trips per 15 min per person
× PT travel time/min per h

Total public transport fleet
travel time including trains,

trams, and buses.

PT trips per 15 min per person Person Passenger trips per
15 min × PT adopters

It is to determine the number
of people who choose PT

modes across total people.

PT investment rate Dmnl/Year/Person/dollar 1 × 10−9
Amount by which ‘PT

capacity’ grows each year for
each dollar spent on PT.

PT capacity max Dmnl 0.5 Fraction of passenger travel
that PT can ultimately service.

PT capacity growth Dmnl/Year

PT trip cost × PT trips per
15 min per person × PT

investment rate
× (PT capacity max − PT

capacity)/PT capacity max

The adoption of PT by users can contribute to PT-related revenue, which can then be
used to increase PT capacity by providing more services. The PT investment rate is the
amount by which PT capacity grows each year for each dollar spent on PT. However, the
PT capacity max sets the maximum proportion of individuals who will adopt PT as their
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primary mode of transportation for commuting purposes. For instance, if the PT capacity
max is set at 0.6, it means that a maximum of 60 per cent of all adopters (i.e., AV, CV, and
PT) are PT adopters.

This study highlights the importance of considering various factors when modelling
PT demand. The results can be used to inform policy decisions and transportation planning.

3.3.2. Network Capacity Sub-Model

The road network capacity sub-model is illustrated in Figure 4. In this model, the
variable ‘road capacity’ represents the total number of cars in the road network that can
travel without congestion, and its unit is cars. Level of service is a qualitative measure
used to evaluate traffic flow based on factors such as speed, congestion, and density. As a
result, the number of vehicles in a given time period in level C condition, “road capacity”,
is calculated by multiplying the road length by the level of service C. This sub-model
plays a significant role in determining the capacity of the road network and its ability to
accommodate the increased use of AVs and CVs. It also assists in identifying potential
road congestion and areas where road infrastructure may require upgrades to handle the
influx of AVs and CVs. The network capacity sub-model evaluates the combined length
of distinct road types within Melbourne. It establishes the overall road capacity, a critical
factor influencing the adoption of CVs and AVs, and subsequently impacts the volume of
individuals choosing for these vehicle types as the number of trips grows. Table 4 shows
the sub-model equations, values, and units for the key variables and stocks.

Table 4. Network capacity sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

Local collector density Car/km 11.2 LoS C standard (HCM 2016)

Local collector length km 5572.5 VITM provided by DTP

Secondary arterial density/
Rural unsealed density/Ramp

terminal density/Primary
divided density/Primary

undivided density/CBD density

Car/km 13.7 LoS C standard

Secondary arterial length km 3626.84 VITM provided by DTP

Rural unsealed length km 741.2 VITM provided by DTP

Level crossing length km 84.83 VITM provided by DTP

Ramp terminal length km 29.58 VITM provided by DTP

Freeway density Car/km 16.2 LoS C standard (HCM 2016)

Freeway length km 2707.51 VITM provided by DTP

Primary divided length km 4113.7 VITM provided by DTP

Primary undivided length km 4010.57 VITM provided by DTP

CBD length km 64.04

Sourced from the VITM model to
provide input for this analysis,

signifying the road length within
Melbourne’s central business
district (CBD) in kilometres

CBD density Car/km 13.7

Acquired from the traffic
engineering standard, specifically
the level of service C standard, to

ascertain the optimal traffic
density for vehicle movement to

travel smoothly

Notes: DTP (Department of Transport and Planning); VISTA (Victorian Integrated Survey of Travel and Activity).
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3.3.3. CV Transitions to AV Sub-Model

Figure 5 shows the CV transitions to the AV sub-model, which presents the transition
model between CVs and AVs, where the number of trips generated by each mode depends
on the trip cost and time spent. Therefore, if AVs can travel faster and become cheaper and
AVs are more attractive than current CVs, people change from public transit (e.g., PT) to
auto-based modes [35].

A previous study used two-stage stochastic programming that assumed AV cost and
commuting travel time would simultaneously affect AV ownership and adoption rates [36].
Similar to the study conducted by [28], this research assumed that AVs would be available
in the market after 2025.

The utility function determines the proportion of people who choose AVs or CVs as
their primary mode. ‘AV trip cost’ is expected to decrease over time, represented by the ‘AV
trip cost min’ variable and ‘AV trip cost reduction time’ variable. Similarly, ‘AV confidence’
is expected to increase over time with more people adopting AVs and matured technology.
‘AV trip cost’ and ‘AV confidence’ are the two main factors affecting the adoption of AVs
compared to the adoption of CVs.

Additionally, the actual VKT will decrease as the ‘car average speed’ decreases due to
congestion. The threshold of VKT is determined by the level of service C, called ‘congested
VKT per 15 min’, which is calculated based on the total road network capacity (‘Road
capacity LOS C’) and the fraction of frequently used road networks during the AM peak
(please refer to Section 3.3.2). In contrast, the ‘car desired VKT per 15 min’ variable
represents the actual VKT, including both CVs and AVs, which affects the ‘car average
speed’. The ‘car average speed’ and ‘Car desired VKT per 15 min’ then influence the
‘CV travel time’ and ‘AV travel time’, ultimately affecting the proportion of individuals
choosing these modes (‘CV/AV utility function’). Further, the ‘AV confidence influence
rate’ refers to the proportion of individuals positively influenced to choose AVs. This is
because those interested in owning AVs tend to rely on their friends for information and
recommendations [37].

Therefore, the variables in the transition model are interconnected, and the changes in
one variable will affect the other variables, affecting users’ mode choices. Table 5 shows the
sub-model equations, values, and units for the key variables and stocks.

3.4. Testing

Different tests build confidence for stock-and-flow models [38]. To ensure the reliability
and validity of the model, we conducted a series of tests, as recommended by [38], including
a model structure test, behavioural test, and boundary test. The model structure test
assessed the parameters, boundaries, and overall structural adequacy of the model. For
instance, in structure assessment, all the parameters align with the actual system, such as
increasing the AV trip cost could make less people choose the AV mode. Similarly, for the
boundary assessment, the stock-and-flow model behaviour is sensitive to the removal of
existing endogenous elements but insensitive to adding new endogenous elements.

The behavioural test examined the model’s ability to capture and simulate the be-
haviour of the transportation system realistically. For example, we have changed the value
of a single parameter (e.g., PT investment rate) in extreme conditions. Then, the model
performs realistically, as the impacted variable (e.g., PT adopters) is within range.

Finally, the boundary test evaluated the sensitivity of the model to changes in the input
parameters and boundaries. By passing these tests in the present study, the researchers
were confident in the model’s ability to represent the transportation system and evaluate
different policy scenarios realistically.

Figures 6 and 7 illustrate the sensitivity analysis conducted on AV occupancy and AV
initial trip cost. In Figure 6, different scenarios for AV occupancy—low (average 1.1 person
per AV car), medium (average 1.3 person per AV car), and high (average 1.5 person per
AV car)—were evaluated. Interestingly, there was minimal variation in AV adoption rates
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across these scenarios, suggesting that AV occupancy has a minor influence compared to
factors like cost, travel time, and social influence.

Table 5. CV transitions to AV sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

AV/CV desired VKT per 15 min Car × km AV/CV trips per 15 min × Car average speed LoS C ×
“15 min”

Maximum car capacity in the network
that does not lead to congestion

AV/CV occupancy Person/Car 1.1 Average number of persons per car

AV/CV trips per 15 min Car AV/CV trips per 15 min per
person/AV/CV occupancy

Number of AV/CV trips for any 15 min
during AM peak

AV/CV trips per 15 min per person Person Passenger trips per 15 min × AV/CV adopters
Number of AV/CV trips among total

trips generated by private vehicle trips
and PT trips

AV/CV fleet travel time Car × hour AV/CV desired VKT per 15 min/Car average speed Vehicle × km/km/h equals vehicle × h

AV/CV travel time Minute AV fleet travel time × min per h/AV trips per 15 min Average AV/CV travel time per vehicle

AV/CV utility function N/A −1.55–0.066 × AV/CV travel time − 0.004 × AV/CV
trip cost

It is an AV/CV utility function to
determine the probability of choosing

AV/CV mode

Car average speed km/hour

Car average speed LoS C − (Car desired VKT per 15
min − Congested VKT per 15 min)× (Car average

speed LoS C − Car average speed gridlock)/(Gridlock
VKT per 15 min − Congested VKT per 15 min)

Vehicle speed decreases as VKT exceeds
the congestion threshold

Car average speed LoS C km/hour 48.1 VITM provided by DTP

Congested VKT per 15 min Car × km Road capacity LoS C × Road use fraction × Car
average speed LoS C × “15 min”

Threshold for congestion in a network
level depends on average vehicle speed

(travel in a smooth way) and road
capacity

Road use fraction N/A 0.62
This is the assumed value as there are
some roads that are seldomly used in

Victorian network

AV adopters initial Dmnl 0.01
This must be greater than zero to avoid a
‘floating point error’ due to division by

zero in ‘AV travel time’ at t = 0

Notes: AV (automated vehicle); CV (conventional vehicle); DTP (Department of Transport and Planning); VITM
(Victorian Integrated Transport Model); and VKT (vehicle kilometres travelled).
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Figure 7. Sensitivity test of AV initial trip cost.

In Figure 7, the sensitivity test explored AV initial cost through high (800), medium
(700), and low (600) scenarios in comparison to the CV trip cost (400). The high-cost scenario
exhibited a slow growth in AV adoption rates from 2018 to 2048 due to fewer individuals
embracing AVs at a higher cost. However, after 2048, all scenarios converged to the same
AV adoption rate, aligning with the decreasing cost trend. Consequently, these sensitivity
tests regarding “AV occupancy” and “AV trip cost initial” enhance the model’s credibility
and reinforce its validity.

3.5. Scenarios

Table 6 outlines the scenarios tested in the model and their respective assumptions.
In the base scenario, the maximum fraction of AV adopters remained at 90 per cent, while
PT capacity was assumed to be at a 50 per cent fraction level, and the minimum AV trip
cost was set at 400. Setting the maximum fraction of AV adopters at 90% is a practical
choice, considering that not everyone may fully switch to AVs due to personal preferences
or concerns about new technology. As technology improves and people become more
confident, a significant portion of the population is expected to embrace AVs. So, in
practice, we assume 90% AV adoption instead of 100%. Choosing 50% for PT capacity
makes sense because many big cities with well-used public transportation, like New York
and London, hover around this utilisation level. Thus, we assume Melbourne’s PT capacity
to be 50%, given the city’s current PT usage being below 30%. Additionally, we set AV trip
cost min equal to CV trip cost (400) to ensure AV trips remain affordable and competitive,
aligning with the cost of conventional trips.
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Table 6. Various scenarios implemented in the model.

Scenario Parameter Name Unit
Value

Low Neutral High

Baseline

AV adopters max N/A 90%

AV trip cost min N/A 400

PT capacity max N/A 50%

1a

AV adopters max Fraction
40%

1b 60%

1c 100%

2a
AV trip cost min

N/A 360

2b N/A 430

3a
PT capacity Fraction

30%

3b 60%

Lower

AV adopters max Fraction 40%

AV trip cost min N/A 430

PT capacity max Fraction 60%

Upper

AV adopters max Fraction 100%

AV trip cost min N/A 360

PT capacity max Fraction 30%
Notes: AV, automated vehicle; na, not applicable; and PT, public transport.

Over time, the model predicted that more CV adopters would transition to AV adopters
as trust in AV technology increases and the cost of AVs decreases due to technological ad-
vancement. The model also predicted that as network congestion increases, the percentage
of trips taken via PT would increase. Other scenarios tested included varying the AV trip
cost, PT investment rate, and PT capacity max assumptions to evaluate their effects on
mode choice and travel behaviour. These scenarios provide insight into potential future
outcomes and the effects of different policy and technological interventions on the adoption
of AVs and travel behaviour in Melbourne.

Scenario 1 in the model included the base case with a neutral assumption of 60 per
cent for ‘AV adopters max’ because approximately 60 per cent of participants surveyed
who had heard of AVs held a positive view of them [32]. The high scenario assumed that
‘AV adopters max’ would be 100 per cent, as it was believed that 100 per cent of individuals
could adopt AVs in the next 50 years. In contrast, the low scenario assumed that only
40 per cent of individuals would adopt AVs [32].

In scenario 2, the base case for ‘AV trip cost min’ for calculating the utility function
was assumed to be 400 (baseline scenario), the same as the ‘CV trip cost’. However, the
Australia-wide survey results showed that around 20 per cent of respondents preferred
shared AVs for daily work, reducing the average cost of an AV trip [32]. Thus, the ‘AV
trip cost min’ for the low scenario was set to 360. Conversely, for the high scenario, the
Australia-wide survey results revealed that the respondents thought AVs were worth more
than CVs [32]. As a result, the ‘AV trip cost min’ for the high scenario was assumed to be
430. It was essential to consider preferences and perceptions towards AVs in determining
the AV trip cost, as these play a significant role in influencing the adoption rate of AVs.
Cost factor was one of the critical factors affecting the adoption rate of AVs. Thus, it was
necessary to examine various scenarios to identify the potential effects of AV trip costs on
the adoption rate of AVs.

Scenario 3 examined the effect of PT capacity on the transportation system. The
assumption for the base case (same as the baseline scenario) was that 50 per cent of the
adopters would choose PT as their primary mode, and the PT capacity max was set at
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50 per cent. For the low scenario, the PT capacity max was decreased to 30 per cent because
currently, PT trips only account for 30 per cent of total trips during the morning peak in
Melbourne. This is due to research finding that individuals who already rely on PT as their
primary mode of transportation are more inclined to continue using it in the future [39].

The high scenario assumed that 60 per cent of trips were generated by PT in Melbourne
for the 24 h period from VITM 2018, and the PT capacity max was set at 60 per cent during
the AM morning peak. These assumptions reflect the potential for increased PT usage and
the need to ensure that PT capacity can meet growing demand.

The lower and upper scenarios in the study represent the minimum and maximum
possible scenarios for AV adopters based on three variables: AV adopters max, AV trip cost
min, and PT capacity max. These scenarios help to explore these variables’ potential effects
(boundary) on the adoption of AVs and the use of PT.

Table 7 presents the various scenarios for road expansion rates. The low scenario
denotes an annual growth of 1 per cent in terms of road network capacity; whereas, the
high scenario denotes a growth rate of 3 per cent.

Table 7. Road expansion and awareness program implemented in the model.

Scenario Parameter Name Unit
Value

Baseline Low Neutral High

Road expansion program Road expansion rate Fraction

0%

1%

2%

3%

AV awareness program AV confidence influence rate Fraction

40%

60%

80%

100%

Notes: AV, automated vehicle.

4. Results

In this section, we discuss the outcomes under three subsections: baseline scenario,
other scenarios, and road expansion and awareness program scenarios.

4.1. Baseline Scenario

Using the data presented in Tables 3–5 and the baseline scenario in Table 6, Figure 8
displays the fluctuation of adoption rates among AVs, CVs, and PT within the 50-year
simulation period. In the base year 2018, CV trips accounted for 78 per cent of total trips,
while PT trips accounted for 22 per cent. After the trips stabilised in year 30, CV and
AV trips by people accounted for 31 per cent and 19 per cent, respectively. The fraction
of PT trips remained the same (50 per cent) after year 40, slightly increasing from year 0
(20 per cent). This indicates that after year 30, CV, AV, and PT trips reach equilibrium, and
their adoption rates remain stable.

Interestingly, the adoption rates of CVs and PT decrease over time while the adoption
rate of AVs increases. This could be due to the technological advancement (lower cost) of
AVs and their increased acceptance by the public. As AVs become more affordable and
reliable, individuals may switch from CVs to AVs. Similarly, with increasing road network
congestion, individuals may shift from CVs and AVs to PT, resulting in a slight increase in
PT trips per person until year 40.
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Overall, the findings suggest that AVs will gradually replace CVs as another primary
mode of transportation in Melbourne. However, PT will still play a significant role in the
transportation system, accounting for 50 per cent of total trips by people after year 40. It
is noteworthy that alterations in the “PT capacity max” parameter (currently set at 0.5)
will impact the proportion of individuals opting for public transport after convergence.
Furthermore, while results can fluctuate due to modifications in road capacity, i.e., the
utility function and costs of PT, AVs/CVs, confidence gains, and other factors, the overall
trend of these travel choices remains consistent. Figure 8 suggests that while the adoption
of AVs is projected to increase over time, PT remains pivotal within the transportation
network. Consequently, AVs could be effectively integrated as a solution for first- and
last-mile connectivity, contributing to the overall efficiency of the transportation system.

4.2. Other Scenarios

Figure 9 presents the fraction of AV adopters for 10 scenarios from Table 6, including
baseline, lower, and upper cases. Due to road network capacity constraints, the graph
shows around 16 to 24 per cent of AV adopters among the 10 scenarios, with the lowest
adoption rate from the lower case and the highest from the upper case. The adoption rate
of AVs started to increase around year 8, due to the assumption that people would start
accepting AVs from 2026 (base year 2018), and stabilised around year 34 (2052). Except for
the lower and upper scenarios, the lowest adoption rate (17 per cent) was in the scenario
‘AV trip cost min (high)’, while the highest adoption rate (22 per cent) was in the scenario
‘AV trip cost min (low)’. These results show that the cost of AV trips is an important factor
in determining the adoption rate of AVs.

Compared with the scenario ‘AV trips cost min(high)’ and ‘PT capacity max(high)’,
the AV adopters rate of scenario ‘AV adopters max(low)’ exceeded these two scenarios
after year 32. This indirectly proves that the cost of AV trips is the most important factor
compared with ‘AV adopters max’ and ‘PT capacity max’. The second- and third-highest AV
adopters rate scenarios were ‘PT capacity max(low)’ and ‘AV adopter max(high)’, meaning
PT demand might reach a high level due to lower capacity, resulting in more people
switching to AVs. Therefore, it is essential to consider the balance between PT capacity
and AV adoption rate to ensure a smooth transition to AVs. The evaluation of these
10 scenarios, featuring different values for “AV adopters max”, “AV trip cost min”, and
“PT capacity max”, reveals a spectrum of adoption rates spanning from 16% to 24%. This
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implies that these variables introduce relatively minor uncertainties in the results. These
findings indicate that cost, whether through financial incentives or subsidies, emerges as
the primary determinant influencing the number of individuals who opt for AV adoption
once the adoption rate stabilises. These findings can be helpful for policymakers and
stakeholders to make informed decisions regarding AV adoption policies and strategies.
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4.3. Road Expansion and Awareness Program Scenarios

Figure 10 shows the adoption rate of AVs under different road expansion and aware-
ness program scenarios. For the road expansion program, the baseline scenario assumed a
1 per cent annual growth rate in road network capacity, while the high scenario assumed a
3 per cent growth rate. The baseline scenario showed an AV adoption rate of 19 per cent,
while the high scenario showed a rate of approximately 24 per cent that continued slightly
even after year 50. This suggests that a 1 per cent increase in road network capacity could
lead to a 2 per cent increase in the AV adoption rate. However, higher road expansion rates
can result in a longer time for AV adoption to stabilise due to increased space on the road.
Interestingly, there is little difference in AV adoption rates between road expansion scenar-
ios in the first 20 years. This could be because road network capacity is not a significant
determining factor, and cost remains the most critical factor influencing AV adoption.

Further, the study suggests that awareness programs could be more effective than
road investment programs in increasing AV adoption rates, particularly between years
4 and 24. However, even with the low and high scenarios for the influence rate, the AV
adopter rate remained lower than the low road expansion scenario, at 19.3 per cent and
19.7 per cent, respectively. Therefore, although awareness programs could lead to a more
rapid increase in adoption rates, road investment programs are more likely to result in
higher adoption rates in the long term.



Sensors 2023, 23, 7388 19 of 23

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24 
 

 

people switching to AVs. Therefore, it is essential to consider the balance between PT ca-

pacity and AV adoption rate to ensure a smooth transition to AVs. The evaluation of these 

10 scenarios, featuring different values for “AV adopters max”, “AV trip cost min”, and 

“PT capacity max”, reveals a spectrum of adoption rates spanning from 16% to 24%. This 

implies that these variables introduce relatively minor uncertainties in the results. These 

findings indicate that cost, whether through financial incentives or subsidies, emerges as 

the primary determinant influencing the number of individuals who opt for AV adoption 

once the adoption rate stabilises. These findings can be helpful for policymakers and 

stakeholders to make informed decisions regarding AV adoption policies and strategies. 

4.3. Road Expansion and Awareness Program Scenarios 

Figure 10 shows the adoption rate of AVs under different road expansion and aware-

ness program scenarios. For the road expansion program, the baseline scenario assumed 

a 1 per cent annual growth rate in road network capacity, while the high scenario assumed 

a 3 per cent growth rate. The baseline scenario showed an AV adoption rate of 19 per cent, 

while the high scenario showed a rate of approximately 24 per cent that continued slightly 

even after year 50. This suggests that a 1 per cent increase in road network capacity could 

lead to a 2 per cent increase in the AV adoption rate. However, higher road expansion 

rates can result in a longer time for AV adoption to stabilise due to increased space on the 

road. Interestingly, there is little difference in AV adoption rates between road expansion 

scenarios in the first 20 years. This could be because road network capacity is not a signif-

icant determining factor, and cost remains the most critical factor influencing AV adop-

tion. 

 

Figure 10. AV adopters in different road expansion and awareness program scenarios. 

Further, the study suggests that awareness programs could be more effective than 

road investment programs in increasing AV adoption rates, particularly between years 4 

and 24. However, even with the low and high scenarios for the influence rate, the AV 

adopter rate remained lower than the low road expansion scenario, at 19.3 per cent and 

19.7 per cent, respectively. Therefore, although awareness programs could lead to a more 

rapid increase in adoption rates, road investment programs are more likely to result in 

higher adoption rates in the long term. 

  

Figure 10. AV adopters in different road expansion and awareness program scenarios.

5. Discussion

In this section, we discuss the following three aspects: AV adoption, awareness
program, and cost.

5.1. AV Adoption

A study conducted by [40] developed a framework to forecast the adoption of AVs
in Nashville, US. The study projected that AVs would likely capture a 50 per cent market
share by year 18 and an 80 per cent market share by year 31, which differs from our
study’s findings (10 per cent market share by year 18 and 23 per cent after year 30). This
variance may be attributed to the difference in the transportation culture between Australia
and the US. Unlike Australia, the US has a car-centric culture, which may lead to a more
rapid adoption of AVs. Similarly, [41] proposed a simulation-based framework using a
multinomial logit model to predict Americans’ adoption of CAVs under different scenarios.
The authors found that privately owned AVs would be 24.8 per cent in year 30, compared
with 18 per cent in the present study, and this result was based on an annual 5 per cent
price decrease and the same willingness to pay value.

Additionally, a dynamic approach for designing AV subsidies to accelerate the early
deployment of AVs was developed by [42]. The present study also highlights the impor-
tance of cost as a critical factor for adoption, which can be addressed through optimal
subsidies. Reference [43] used a discrete choice model by incorporating it into the dynamic
model with AV subsidies and infrastructure investment as inputs. That study concluded
that the optimal subsidy increased from USD 10,000 in year 1 to USD 20,000 in year 60,
when AV market penetration was 50 per cent.

In contrast to our study, [44] employed agent-based modelling and considered the
reduced value of time of AVs caused by parking restrictions and increased congestion.
The study concluded that AVs would decrease transit ridership by 75 per cent, which
differs from the present findings that showed an increase in public transit ridership due to
congestion and reduced AV costs. In a similar study, [23] used SD modelling to discover
that traffic volume would considerably increase, leading to higher congestion equilibrium
levels and more VKT. It is, therefore, imperative for the present study to consider the
induced traffic volume, as we assumed a relatively stable total number of trips.

Automated on-demand mobility services, such as Uber and taxis, could potentially
see a reduction in PT trips by 9–10 per cent in Singapore during peak hours with the
introduction of AVs alongside private vehicles [45]. This is because some individuals may
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shift from PT to AVs due to lower costs compared with existing taxis and on-demand
mobility services.

This study’s findings suggest that policymakers and stakeholders need to consider
the effect of congestion levels on AV adoption rates when developing policies to promote
AVs. It is essential to address current congestion levels, as this can influence the adoption
rate of AVs. Therefore, road expansion and awareness programs could be a more effective
approach to promoting AV adoption. Further, cost is the most important factor in deter-
mining the adoption rate of AVs, and optimal subsidies could be used to make AVs more
affordable and competitive in the market.

5.2. Awareness Programs

According to [46], social influence and public acceptance are two crucial factors neces-
sary for the widespread adoption of AVs. To encourage the adoption of AVs, governments
should work with manufacturers to promote their usefulness and create favourable condi-
tions that foster social influence and public acceptance.

Ref. [47] used SD modelling to find that a lack of customer acceptance was the main
barrier to AV adoption. The authors suggested that awareness programs can address
this issue, which can help increase the adoption rate. As suggested by [48], the societal
dimension of AVs as part of governance processes is important for the transition from CVs
to AVs. These recommendations from past studies are consistent with the present study’s
finding that an awareness program could increase AV adoption rates more quickly than a
road investment program.

Although awareness programs can drive an initial surge in AV adoption rates (e.g.,
from 2028 to 2048), this study indicates that their effect may diminish over time. Therefore,
policymakers should consider longer-term strategies, such as investment in AV infrastruc-
ture (e.g., charging stations), especially when future cars become electric AVs, to sustain
and increase adoption rate.

5.3. Cost

In this study, cost was identified as the most significant factor affecting adoption rates.
Similarly, in a study conducted by [49], a lab experiment was carried out in a mixed traffic
environment consisting of AVs and CVs to explore the mode preferences of individuals.
Participants who received complete information about mode and cost considered perceived
cost and inertia during the decision-making process. According to [50], various trade-offs,
such as travel time cost, waiting time cost, miles travelled, and operational cost, were
captured by considering AVs in private and shared mobility systems. The researchers
concluded that technological advancement is necessary to promote AV adoption due to the
lower cost of AVs, which aligns with this study’s findings.

Additionally, [42] found that optimal subsidies can serve as both an incentive for
AV manufacturers to innovate and improve their products and a means of providing
competitive pricing to attract potential consumers. Moreover, the research conducted
by [51] showed that individuals tended to be more responsive to the cost of the vehicle
and the provision of exclusive lanes, which is consistent with the findings of the present
study regarding AV trip costs and road expansion programs. The cost factor could also
significantly influence individuals’ decisions to adopt AVs in Ireland [52].

Therefore, policymakers could consider providing optimal subsidies to AV manu-
facturers to innovate and improve their products and offer competitive pricing to attract
potential consumers. Further, governments could invest in AV infrastructure, such as
exclusive lanes, to provide a more seamless and efficient travel experience for AV users.
Policymakers should also consider the balance between PT capacity and AV adoption rates
to ensure a smooth transition to AVs, which could lead to a reduction in private car usage
and, consequently, contribute to reducing greenhouse gas emissions.
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6. Conclusions

This study used an SD modelling approach to investigate the effect of AVs on the mode
shift between CVs, AVs, and PT in Melbourne, Australia, by systematically considering a
range of factors, such as road network, vehicle cost, PT supply, and congestion level. The
study also highlights the importance of cost as a critical factor in adoption, which can be
addressed through optimal subsidies. Further, the adoption rate of AVs was found to be
affected by road network capacity and awareness programs. While higher road expansion
rates could result in a longer time for AV adoption rates to stabilise, awareness programs
could lead to a more rapid increase in adoption rates. However, road investment programs
are more likely to result in higher adoption rates in the long term. Therefore, it is important
to facilitate the transition from CVs to AVs in a seamless manner so that road network can
accommodate both types of vehicles during the transition period.

The increasing prevalence of AVs in Australia may have significant implications for
mobility patterns, particularly in ride-hailing services [53]. This could result in a more
congested network, as future travel demand is expected to be primarily carried out via
private AVs, with most passengers using shared patterns [6]. Therefore, it is crucial
to investigate the adoption rates of AVs in various potential scenarios, including those
involving ride-hailing services. Understanding the potential effect of AVs on ride-hailing
services will help policymakers develop strategies to manage traffic congestion and ensure
a sustainable transportation system.

The SD model developed in this study has the potential to assist planners, policymak-
ers, and researchers to evaluate the potential effect of AVs on the transportation system
and plan accordingly to minimise adverse effects and maximise the benefits of AVs. Like-
wise, analogous to the approach described in reference [54], the adaptation of monitoring
strategies in response to evolving conditions holds applicability in making well-informed
decisions regarding mode shifts within dynamic transportation systems. However, this
study has several limitations that need to be addressed in future research. First, the study
only considered a single metropolitan area and assumed that AVs would be available to
everyone equally. In reality, AV adoption rates may vary across regions due to factors such
as urban design, travel patterns, and demographic characteristics. Thus, future studies
should explore the adoption rates of AVs in different regions and the factors that influence
them.

The study made three assumptions regarding AV adoption rates in Melbourne, Aus-
tralia, including a constant 2 per cent growth rate in total trips over time. However, in
reality, AVs may induce demand for travel by providing more convenient and accessible
transportation, increasing total trips. Thus, future research should explore the potential
induced demand due to AV adoption. Additionally, applying equilibrium constraints to
traffic assignment models could enhance the model’s accuracy by characterising route
choice behaviour and vehicle preference, as suggested in the literature [36].
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