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Abstract: In high-speed railway operational monitoring network systems targeting railway infras-
tructure as its monitoring objective, there is a wide variety of sensor types with diverse operational
requirements. These systems have varying demands on data transmission latency and network
lifespan. Most of the previous research focuses only on prolonging network lifetime or reducing
data transmission delays when designing or optimizing routing protocols, without co-designing
the two. In addition, due to the harsh operating environment of high-speed railways, when the
network changes dynamically, the traditional routing algorithm generates unnecessary redesigns
and leads to high overhead. Based on the actual needs of high-speed railway operation environment
monitoring, this paper proposes a novel Double Q-values adaptive model combined with the existing
reinforcement learning method, which considers the energy balance of the network and real-time
data transmission, and constructs energy saving and delay. The two-dimensional reward avoids the
extra overhead of maintaining a global routing table while capturing network dynamics. In addition,
the adaptive weight coefficient is used to ensure the adaptability of the model to each business of the
high-speed railway operation environment monitoring system. Finally, simulations and performance
evaluations are carried out and compared with previous studies. The results show that the proposed
routing algorithm extends the network lifecycle by 33% compared to the comparison algorithm and
achieves good real-time data performance. It also saves energy and has fewer delays than the other
three routing protocols in different situations.

Keywords: high-speed rail; wireless monitoring system; routing; Q-learning; lifetime; latency

1. Introduction

With the rapid development of high-speed railway (HSR) networks, higher require-
ments have been placed on the safety and stability of high-speed trains, and the train
operating environment is directly related to the safety of high-speed trains in transit. Ways
to quickly find and solve basic faults is the focus of HSR systems around the world, and
high-speed train operation environment monitoring is an important guarantee for railway
safety operations [1]. The safety of high-speed railway systems can be significantly im-
proved through real-time monitoring and inspection. The high-speed railway operation
environment monitoring system includes the railway infrastructure monitoring system,
the high-speed railway natural disaster and foreign body intrusion monitoring system,
the EMU on-board dynamic monitoring system, and the EMU operation and maintenance
management system. At present, the wired communication network adopted by these
monitoring systems has been verified to be stable and reliable [2,3]. However, the high-
speed railway operating environment is complex, and the high cost of wired network is not
conducive to large-scale deployment of the global high-speed railway monitoring system,
and the complex terrain is inconvenient for wired network maintenance [4–7].

The development and maturity of wireless sensor network technology provides more
efficient and reliable, low-cost, easy-to-implement and maintain, high-tech means for the
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field of high-speed train operation environment monitoring. The use of wireless systems to
monitor the operating environment of high-speed railways can realize large-scale deploy-
ment along the railway, ensure the breadth and accuracy of data collection, and monitor
the condition of slopes, tunnels, roadbeds, bridges, and other facilities, which can effec-
tively meet the needs of high-speed trains. The need for comprehensive monitoring of the
operating environment reduces the cost of train operating environment testing and is suit-
able for large-scale deployment and long-term online monitoring in key areas and remote
areas along the high-speed railway. However, the energy resources of wireless devices are
strictly limited. The greatest challenge in wireless sensor networks is determining a way to
conserve energy, and the amount of time that the network lasts is a good measure of teh
quality of its performance [8,9].

In order to ensure the real-time performance of high-speed railway operating environ-
ment monitoring information and the energy utilization efficiency of the network system,
a protocol that adapts to the characteristics of the high-speed railway operating environ-
ment monitoring network is needed to efficiently utilize the limited energy resources of
the network system and provide more long-term energy efficiency [10]. The increase in
communication distance increases the energy consumption of some nodes and shortens
the network life. Each protocol chooses to increase the number of forwarding hops to
achieve a balance of energy consumption, and the overall energy consumption is evenly
distributed to more nodes to avoid premature death of some nodes. But the increase in
hop count inevitably increases the delay of information transmission, which is bad news
for the high-speed railway monitoring network [11,12]. In fact, it is difficult to guarantee
the real-time performance of the network and its maximum lifespan at the same time. Ex-
tending the lifespan and increasing the number of hops results in a large delay and affects
the service quality of the monitoring network. To this end, in the intelligent high-speed
railway monitoring system. The information in the network can be divided into several
parts: receiving, transmitting, processing, state evaluation and prediction, and control
decision-making. Generally speaking, the transmission of data along the shortest path
can minimize the energy consumption of the network, but this approach introduces the
problem of unbalanced energy consumption. The energy consumption of the sensor device
closer to the sink node is faster, which is the so-called energy hole phenomenon [13–15].

This phenomenon destroys the balance of energy consumption among nodes, affects
the life of the network, and also has a negative impact on the real-time performance of
data transmission, hindering the normal service of the network system. Therefore, in
addition to minimizing the network energy consumption, the energy consumption balance
among network nodes should also be considered when designing the routing algorithm to
extend the life of the network system. Therefore, when designing a routing protocol for a
high-speed railway operation environment monitoring network, it is necessary to minimize
and balance network energy consumption while reducing data transmission delay so as
to improve real-time performance and network energy utilization, and prolong network
service life. Therefore, the goal of this paper is to look into ways in which a high-speed
railway operation environment monitoring network can use an adaptive routing method
to meet the needs of different services [16,17].

Table 1 introduces some typical existing studies and evaluates them in terms of opti-
mization goals, adoption methods, network structures, and advantages and disadvantages.
Most of the research is aimed at improving the lifetime of network systems, and the strate-
gies to maximize network lifetime can be divided into deployment optimization, data
processing, and protocol design. Among them, routing protocol design optimization is a
more effective and widely used strategy, and protocol design can be divided into single-
hop, multi-hop, and clustering methods. However, for a typical linear network such as
a high-speed railway operating environment monitoring network, it is obviously more
appropriate to use a multi-hop routing protocol. In some studies, the network lifetime is
extended by minimizing the total network energy consumption (MTECR). However, its
shortcomings are also obvious. As mentioned above, the problem of unbalanced network
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energy consumption while minimizing energy consumption leads to network energy holes,
resulting in the premature death of some nodes, which affects the service life of the network.
In addition, some other research focuses on balancing the energy consumption of nodes in
the network, such as MVECR and AUMRP, and proves that their balancing scheme based
on the residual energy of nodes is more effective for prolonging the network lifetime.

Table 1. Existing methods and their characteristics.

Projects Description Contribution Structure

Hybrid Energy Efficient Distributed
Cluster (HEEDR) [18]

The cluster head is selected based on
the remaining energy of the node and

the cost of its communication

The residual energy-based strategy is
used in both intra-cluster

communication and inter-cluster
head communication, improving

network lifetime

Mesh

Energy saving distributed scheduling
algorithm (CLU-DDAS) [19]

An energy-efficient distributed
scheduling algorithm based on a
novel cluster aggregation tree is

proposed to minimize delay

Reduced data transfer delays in the
network while singing network

longevity
Tree

Routing Protocol to Minimize Total
Network Energy Consumption

(MTECR) [20]

Reducing the energy consumption in
the network by reducing the number

of data forwarding hops

Transmission of data with the
minimum number of hops reduces

forwarding energy consumption and
transmission delay

Linear

Minimize variance of network energy
consumption (MVECR) [21]

Minimize the energy consumption
variance of each node in the network
to achieve the purpose of improving

the network lifetime

Minimizing the variance of energy
consumption balances the energy
consumption of each node in the

network and increases the network
lifetime

Linear

Distributed Energy Efficient Cluster
Routing Protocol (DEECR) [22]

A routing protocol for heterogeneous
networks is proposed, which selects
cluster heads based on the ratio of
remaining energy to the average

energy level of the network

The strategy of selecting cluster
heads by residual energy and

average energy level successfully
improves the energy efficiency of the

network

Mesh

Adaptive Optimization of Multi-Hop
Communication Protocol

(AUMRP) [23]

Control the transmission power of
each node and minimize the energy
consumption of the node to achieve
the purpose of improving the life of

the network

Constrains the maximum energy
consumption of nodes in the network

so that the energy of nodes is
preserved and the life of the network

is improved

Linear

Energy Efficient Unequal Clustering
Routing Protocol (EEUCR) [24]

Inhomogeneous clustering and
dual-cluster head techniques are

used to solve hotspot problems, and
a hybrid rotation strategy based on

node time and energy is also
proposed to reduce energy

consumption

Mitigates hotspot issues in the
network with Rotational Forwarding Mesh

Improved energy Efficient Cluster
Head Selection Routing Protocol

(IEECHS-WSN) [25]

Elect two cluster heads within a
cluster and have them responsible,
respectively, for data transmission

and data fusion tasks, thereby
extending the network lifespan

The strategy of selecting dual cluster
heads and conducting data fusion

reduces the amount of network data
transmission and reduces network

energy consumption

Mesh

To the best of our knowledge, there are few studies on the co-optimization of life-
time and delay for high-speed railway operational environmental monitoring networks.
Traditional routing algorithms cannot ensure stable transmission services in dynamic envi-
ronments because they cannot cope with network dynamics and voids. The maintaining of
global routing information incurs great overhead, and the complex structure also reduces
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the efficiency of the current high-speed railway linear monitoring network. These issues
are addressed in this article.

2. Motiviation

Power supply and grid maintenance for high-speed rail operating lines are very
difficult. With the development and maturity of wireless sensor network technology,
high-speed train operation provides more efficient, reliable, and low-cost solutions in the
field of environmental monitoring and detection, and then implements high-tech manual
maintenance. Experts have conducted a lot of in-depth research on the coordination of
the routes of the plane network, but less on the coordination of the high-speed railway
network. If there is a general problem with the existing routing protocols, it is their lack
of applicability to monitoring regional environments. There are many types of sensors
in high-speed rail systems. Various sensors vary widely in terms of latency, transfer rate,
data volume, etc. Inspired by the above requirements and the existing work, this paper
proposes a heterogeneous network data aggregation model and adaptive routing algorithm
for high-speed railway monitoring network based on reinforcement learning. The overall
framework of the backbone routing communication protocol for high-speed railway state
monitoring wireless sensor network is depicted in Figure 1, consisting of four components:

1. Communication structure and data feature analysis, encompassing the analysis of
node energy information, monitoring device characteristics, monitoring functional
requirements, and data features;

2. Analysis of monitoring targets and requirements, including aspects such as operational
environment, track service status, and OCS (Overhead Catenary System) system status;

3. Aggregation strategy and intelligent routing modeling, constructing an adaptive
multi-objective optimization model based on the lifecycle and transmission delay
requirements of different network objects;

4. Adaptive routing algorithm, developing separate lifecycle and real-time evaluation
models for monitoring tasks, dynamically adjusting multi-hop transmission paths to
ensure the network fulfills both lifecycle and real-time requirements for various tasks
simultaneously.

Energy 
information

deployment 
features

Functional 
requirements

data 
feature

Communication structure & characteristics

environment 
condition

Track 
conditions

OCS 
conditions

operating 
conditions

Monitoring objects & requirements

Linear heterogeneous network transport model

Aggregation policy & intelligent routing design

Data characteristics & transmission requirements

Lifetime demands Delay demands

Data aggregation design

Comprehensive protocol of heterogeneous networks

maximum lifetime Minimize delay

Adaptive energy-saving routing algorithm based on Q learning

Degree of data 

aggregation

Nodal energy state

lifetime of network

•Lifetime model

Multiple hops 

number

Forwarding delay

Total network delay

•Real-time model

Receiving nodeSending node

Aggregated

packet

Packet 

reward

Adaptive routing algorithm

Figure 1. Overall scheme of adaptive routing protocol for high-speed railway monitoring network
based on reinforcement learning.
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The main contributions of this paper can be summarized as follows:

1. A lossless data aggregation transmission model for HSR networks is proposed, which
can effectively reduce the amount of data in the network and reduce the energy
consumption of data transmission;

2. A Double-Q-value model based on data aggregation is proposed. Forn the two Q
values, we consider the data aggregation degree, the remaining energy level, the link
strength, the distance from the node to the sink, and the forwarding delay to consider
the network lifetime and the real-time performance of data forwarding. The defined
reward function can capture the dynamic changes in the network in real time and
achieve dynamic control of the entire network with less overhead;

3. An adaptive energy-saving routing algorithm based on Double-Q-values is proposed
to classify HSR network devices according to their real-time requirements and life
cycle requirements. An adaptive control algorithm is adopted for different business
priorities. It meets the real-time requirements of the HSR network and prolongs the
network’s life and improves service quality.

The work arrangement of this paper is as follows. Section 3 presents the typical
structure of the high-speed railway monitoring network as well as the analysis of node
requirements and introduces the data aggregation scheme. Section 4 describes in detail the
proposed demand-aware energy-saving routing algorithm based on Q-learning. Section 5
discusses and analyzes the performance metrics of the proposed routing protocol through
simulation experiments. The conclusions are summarized in Section 6.

3. System Profile and Overall Scheme

The system involved in this paper consists of the following four parts:

1. Structure and characteristics of communication;
2. Keeping track of objects and requirements;
3. Policy of aggregation and intelligent routing design;
4. Algorithm for adaptive routing.

3.1. Communication Structure and Characteristics

The high-speed train operating environmental monitoring system based on the wire-
less sensor network is simply called HSR-N, which is used for the completion, replen-
ishment, or replacement of the transmission high-speed train operating environmental
monitoring system. The proposed wireless sensor network can be roughly considered a
linear network.

In HSR-N, its monitoring areas are wide and varied, and different monitoring targets
have great differences. Therefore, relevant parameters and network technologies need to
be designed for specific monitoring targets. With limited network energy, HSR-N needs an
energy-efficient transmission protocol that meets its requirements.

3.2. Monitoring Objects and Requirements

The monitoring objects of the railway infrastructure monitoring system mainly include
bridges, tunnels, roadbeds, contact networks, and rails. Obviously, different infrastruc-
tures have different monitoring challenges and requirements. For instance, in the health
monitoring of bridges, the system needs to use high-precision sensors to monitor bridge
structural cracks, deformations, and other conditions. Due to the non-maintainable nature
of the internal structure of bridges, this requires bridge monitoring sensors to have a longer
lifespan, with maintenance intervals preferably on a monthly basis. On the other hand,
due to the slow changes in bridge structures, monitoring data does not require real-time
updates. Therefore, bridge monitoring sensors have lower real-time requirements. Similar
to bridges, rails, roadbeds, and tunnels have similar monitoring requirements, but their
maintenance is relatively easier. Therefore, the lifespan requirements for sensors for the
latter three are not as strict as those for bridges. Monitoring the contact network requires
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the use of temperature or strain sensors. Since the contact network is a vital component of
the railway electrification system and directly affects train safety, sensors of this kind need
to upload monitoring data promptly and have higher real-time requirements.

Based on practical project experience, this article categorizes the lifecycle requirements
of monitoring equipment with maintenance cycles of one day, one week, and more than
one month into three levels: low, medium, and high. Similarly, the real-time requirements
of monitoring equipment with data sending frequencies higher than once every 10 min,
between 10 min and 1 h, and more than 1 h are divided into three levels: high, medium, and
low. Some monitoring objects and their corresponding characteristics are shown in Table 2.
The real-time requirements and life cycle requirements of monitoring objects are different.
We conduct a brief evaluation of their different functional requirements to provide support
for the following work. The evaluation is mainly allocated based on the urgency of the data
and the amount of data. For data types with high real-time requirements, we provide higher
real-time evaluation to reduce delay; for periodic data with low real-time requirements, we
base our calculations on the way the data are set up; the aggregation processing is designed
to provide the network with a longer life cycle [26–28].

Table 2. Monitoring objects and characteristics.

Monitoring Objects Sensor Type Life Cycle Demands Real-Time Demands

Longitudinal stress of steel rail Ultrasonic sensor high low
Rail deformation Deformation sensor high low

Rail integrity Ultrasonic sensor medium medium
Rail wear Video monitoring low low

Track switch extension pitch adjuster Fiber grating strain sensor high high
Rail stiffness Rail inspection car low low

Foreign body contamination limit Video monitoring high high
Track foundation submerges Leica total station monitoring system medium low

Track slope condition Laser laser scanner and fiber grating
strain sensor medium medium

Lead power supply system
Infrared temperature sensor, fire

detector, temperature and
humidity sensor

high high

Bow net service state
Acceleration sensor, ratchet deviation

Angle sensor, cable clip
temperature sensor

high high

Suspension tension, elasticity and
vibration

Tension measurement sensor, wire
vibration sensor, elastic

measurement sensor
medium medium

Pantograph image recognition Image and Video Signal Processing high high
Geological disasters Seismic detector, landslide detection low low

Meteorological disaster Laser monitoring equipment, video
and image processing low high

Meteorological watch Temperature sensor and
humidity sensor high high

3.3. Aggregation Policy and Intelligent Routing Design

For most of the monitoring requirements of chronic changes, we only need to collect
their data periodically and analyze it, while some monitoring requires only a large number
of repeated measurements as the train passes by. For these data with low real-time require-
ments, we consider data aggregation on the transmission path to reduce the transmission
burden of nodes to achieve the purpose of saving energy and prolonging the network life
cycle. A lossless data aggregation model is adopted in this study. This means that the
original data can be reconstructed by the sink node from the received aggregated data
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packets without any damage or loss of data. The data aggregation model is expressed
as follows:

DA{Qt
i(n)} =

{
Ut

m × log2(DPi(n) + 1) i f 0 < DPi(n)
0 i f DPi(n) = 0.

(1)

The data aggregation model is defined in this paper. The data buffer area of each
sensor is partitioned, and each sensor maintains storage areas of multiple data types. For
the same type of data, when the real-time requirement is low, the sensor performs data
aggregation before forwarding to optimize the data volume. When a packet of data type t
is transmitted in the network, each node transmits to the next hop after the interval SIt.
Obviously, the longer the waiting time for data aggregation, the greater the delay for the
data packet to reach the sink node. It can be seen from Table 2 that different types of sensors
have different real-time requirements for data. Therefore, in the design of routing protocols,
the real-time requirements of different nodes need to be considered when energy-saving
design is carried out [29,30]. This is explained in Section 4. The aggregation process design
is shown in Figure 2 and model parameters are listed in Table 3.
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Figure 2. Data aggregation transmission model.

Table 3. Aggregation model parameters.

Parameters Symbol

Sensor node i with sensor type t St
i

Sensing interval for type t SIt

Aggregation data by sensor node i for type t at time step n ADt
i(n)

Observed data by sensor node i for type t at time step n ODt
i(n)

Queue state of sensor node i for type t at time step n Qt
i(n)

Unit packet size of type t for aggregation model m Ut
m

Number of packets in the aggregation queue of node i at step n DPi(n)
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If the sensor node Si is the next hop selected by Sj, Sk, and Sl , the t1-type aggregated
data packets ADt1

j (n) from the node Sj and the t1-aggregated data packets ADt1
k (n) of

the Sk node are stored together with the t1 data packets ODt1
i (n) observed by the Si node

from the surrounding environment. After aggregating into data packets ADt1
i (n) in the

t1 data type queue Qt1
i (n) of node Si, they are sent to the next hop node Sp of the t1 type.

Similarly, the t2 type data packets ADt
k2(n) from nodes Sk and Sl , ADt2

l (n) is in the t2 data
of node Si. The data packets ADt2

i (n) are aggregated in the type queue Qt2
i (n) and sent to

the next-hop node Sq of type t2. After this aggregation process, the data of the same type
is first aggregated and sent to the next-hop node with the same data type until the data
packet is sent to the sink node to complete the aggregation and transmission of the data.

3.4. Adaptive Routing Algorithm

In the aggregation model described in Section 3.3, the aggregated data of each sensor
node are sent to the optimal next-hop node, and the next-hop node selection is determined
by the Q-learning adaptive algorithm proposed in this paper (see Section 4). The adaptive
routing algorithm consists of three parts: (1) The sending node selects the node with the
highest priority in the Q routing table to send the data packet; (2) The receiving node
feeds back the reward value information to the sending node according to the received
data packet; (3) The sending node accepts the reward value information and updates its Q
routing table.

4. Model and Methodology of the Adaptive Protocol

Q-learning is a model-free reinforcement learning algorithm whose core is the Q-value
and reward [31]. In order to maximize the network life cycle and meet the functional
requirements of various types of sensors, this section presents an adaptive communication
routing algorithm based on improved Q-learning, as shown in Figure 3.
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Figure 3. Double-Q-value adaptive algorithm framework.

The algorithm first defines dual Q-values using energy balance and real-time data
transmission as metrics. It then introduces an adaptive weighting factor to optimize the
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design based on the requirements of the business. Next, it constructs reward models
for energy saving and latency, and finally updates the Q-values based on the rewarded
data [32]. The parameters and definitions used in this section are shown in Table 4.

Table 4. Protocol parameters and definitions.

Parameter Representation

Eelec Energy consumed to transmit a unit of bit data
ε f s Power amplifier normal loss

εamp Power amplifier for multipath attenuation
d0 Distance constant
Eec The energy spent for computation

DA(s, a) The degree of data aggregation of node s to the node pointed to by its action a
Ea

s The remaining energy of the node pointed to by action a
La

s Link strength between node s and the node pointed to by action a
d(a, sin k) The distance from the node pointed to by action a to the sink

Ta
s Forwarding time from node s to the node pointed to by its action a

DAnor Data Aggregation normalized value
Enor Residual energy normalized value
Anor The normalized value of the number of hops to the sink node
Tnor Forwarding delay normalized value
Lnor Link strength normalized value

Recsp Received signal power
αw Adaptive weight factor

4.1. Energy Model

Nodes adopt a periodic sleep/active work mode. The main energy consumption of
nodes can be divided into two parts:

1. Energy consumption in an active mode. We use ωa, which denotes the energy con-
sumption rate in this mode.

2. Energy consumption when nodes send and receive data.

We adopt the typical WSN energy consumption model to calculate the energy con-
sumption of sending, receiving, and aggregated data, which is given by Equations (2)–(4),
respectively.

ET(l) =
{

l × Eelec + l × ε f s × d2, d < d0,
l × Eelec + l × εmp × d4, d ≥ d0,

(2)

ER(l) = l × Eelec, (3)

ED(l) = l × Eec, (4)

where Eelec represents the node’s energy consumption when sending, and d0 represents
the distance between nodes. When d < d0, the node energy consumption is in the normal
loss mode; when d > d0, the node energy consumption is gradually reduced; ε f s and εamp
represent the energy at different distances; Eec is the energy expended for computation; l is
the length of the data frame.

4.2. Double-Q-Value Learning Model

The Q-learning algorithm is a value function-based algorithm in RL, and for any finite
Markov decision process, Q-learning can find an optimal policy. Q-learning involves an
agent, a set of states S, and a set of actions A. By performing actions in the environment
that cause the agent to move from one state to another, the action in a particular state is
rewarded. That is, Q(s, a) is the expected reward for performing action a(ainA) in state
s(sinS) at a given time [33]. The algorithm used in this study is shown in Figure 4.
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Figure 4. Application of double-Q-learning algorithm in transmission between nodes.

4.3. Figures, Tables and Schemes
4.3.1. State and Action

In the proposed double-Q-value learning model for high-speed railway wireless
monitoring network routing, adjacent nodes exchange routing information in a cooperative
way to ensure that nodes in the network can dynamically follow network changes and
reduce the burden of maintaining the global routing table [34]. We define a sensor node’s
node set S, action ainA, and action state set A as follows when it sends a specific type of
data to the next hop node:

S = {s1, s2, · · ·, sn},
A = {A1, A2, · · ·, An}, Ai =

{
aj = sj|sj ∈ Fsi

}
,

(5)

where n is node number and Fsi is the set of forwarding nodes of node si.

4.3.2. Initialization of the Double-Q-Values

In Q-learning, the forwarding of data between nodes uses a Q-table to find the best
action, where the Q-value is the expectation of nodes when forwarding [35]. In the double
Q-value model designed in this paper, the action value functions are divided into life
cycle functions and real-time functions QL and QT . QL consists of three parts: data
aggregation degree, node energy status, and link strength. The first part aims to increase
the aggregability of forwarded data packets and reduce the data size to reduce the energy
loss caused by data transmission. The second part avoids selecting energy. Nodes with
low values are forwarded, and the third part aims to reduce communication overhead and
save energy. QT consists of two parts: the number of hops reaching the sink node and the
forwarding delay estimation, both of which aim to ensure the real-time performance of the
data packet reaching the sink node. As shown in (6), double-Q-values are initialized as a
weighted sum of the probabilities of their respective parts.

QL(s, a) = DA(s, a) + Ea
s + La

s ,
QT(s, a) = d(a, sin k) + Ta

s ,
(6)

where DA(s, a) denotes the degree to which node s aggregates data to the node indicated by
its action a; Ea

s is the remaining energy of the node pointed to by action a. The link strength
between node s and the node pointed to by action a is represented by Lsa. d(a, sink) is the
distance between the node indicated by action a and the sink. Ta

s is forwarding time from
node s to the node pointed to by its action a. Before starting, the Q-values are initialized
only by the initial energy and the distance to the sink, and other parameters are updated
after running.
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4.3.3. Double Q-Value Update

In this paper, QL,T(s, a) defines the possibility of state s acting a and provides various
types of businesses with a Q-table based on their business requirements, which is defined
as follows:

QL,T(s, a) =


Qt1

L,T(s, a)
Qt2

L,T(s, a)
...

Qtn
L,T(s, a)

. (7)

Among them, t1 − tn is the business type, QL is the life cycle measurement of an action,
and QT is the real-time measurement of an action.

When a node selects the optimal next hop in its Q-table to send a packet, it obtains
a reward from the receiving node and updates its Q-value accordingly. The new Q-value
is (8),

QL,T(s, a) = Q(s, a) + α{RL,T − γ ·Q(s, a)}, (8)

where α is the learning rate and γ is the discount factor for the future reward.

4.3.4. Explore Strategies

Usually, action selection relies only on the highest Q value, but this fixed selection can
become stuck in a local optimum. To achieve this, we use an epsilon-greedy algorithm that
makes it possible to escape local optima with partial probability.

a∗|s =

{
arg max Q(s, a) with probablity 1− ε

any action a with probablity ε
. (9)

4.3.5. Future Rewards

In this stage, rewards are given for the action performed in the previous step, which
can be divided into three situations.

(1) The node receiving data packets is not the sink node, and the energy level is
normal. We assign each component of double-Q-values its own reward scheme, calculated
as follows:

DAnor =


Qt

s′ (n)
ADt

s′ (n)
− 1 i f

Qt
s′ (n)

ADt
s′ (n)
− 1 < rmax

DA

rmax
DA else

Qt
s′ (n)

ADt
s′ (n)
− 1 > rmax

DA

, (10)

Enor = Es′
r /Es′

i , (11)

Ls(si, sj) =
Recsi p
Recsjob

,

Recsjob =
⌈

pr(d)
pr(d0)

⌉
db

= −10ρ log( d
d0
) + Xdb,

Lnor = ls(s, s′),

(12)

radv = d(s, si nk)− d(s′, si nk),
radvavg = ∑n

i=1 |radvi|/n,
Anor = radv/radvavg.

(13)

Tnor = T(s, s′)/Tavg (14)

(2) The receiving node is sink. The reward is a constant Rs when the chosen action
sends the data packet to the sink node.

R = Rs. (15)
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(3) The receiving node is not sink, and the energy level is lower than the average
energy of network nodes. In order to maintain the performance and life of the network, we
suggest not assigning the node the function of forwarding data when the energy level is too
low to ensure that the basic monitoring service of the network is normal [36,37]. Therefore,
we offer a negative reward to avoid packets from the neighbor nodes.

R = −Re. (16)

Based on the above definition, corresponding to the double-Q-values, the future
reward should also be divided into two parts to offer different rewards for its life cycle and
real-time performance. At the same time, in order to avoid increasing the probability of
forwarding to nodes far away from the sink, it is necessary to provide a discount value to
the reward. Rewards RL and RT for state s are calculated as follows:

RL =


αl × RDA + βl × RE + γl × RL s′ 6= si nk

Rs s′ = si nk
−Re Es′ is low

, (17)

RT =


αt × RA + βt × RT s′ 6= si nk

Rs s′ = si nk
−Re Es′ is low

. (18)

4.4. Adaptive Routing Protocol Based on Double-Q-Values

In order to meet different business needs, this section proposes an adaptive weighting
scheme based on the proposed double-Q-value model and the principles of maximizing
network lifetime and adaptively meeting the functional requirements of various types of
sensors, trying to consider both energy saving and delay reduction. Two methods are used
to adapt to different business objectives. The multi-objective function formula is as follows:

max Q = max(αw ×QL + (1− αw)×QT), (19)

where αw is a business adaptive weighting factor used to adjust the weight of a life cycle
and real-time goals. As shown in Table 2, different services in the system have different
requirements for life cycle and real-time performance. When the real-time performance
requirement of the monitoring object is low, that is, the frequency of the device sending data
is less than once an hour, it means that the object has higher requirements for the continuity
of data transmission. The adaptive weight factor increases with the improvement of life
requirements; and when the real-time requirement of the monitored object is high, that is,
the frequency of the device sending data is higher than once every 10 min, the algorithm
assigns priority to meeting its real-time requirements. Therefore, the design of the adaptive
weight factor is as follows: in this formula, low, medium, and high values are 0.2, 0.5,
and 0.8.

αw =



log(η×(D
s
l
/
Ds

t
))

log(η×max(D
s
l
/
Ds

t
))

Ds
t = 0.2

0.5×log(η×(D
s
l
/
Ds

t
))

log max(D
s
l
/
Ds

t
)

+ 0.5×1

1+e

(Ds
l −Ds

t )×Ds
t

(ξ−(Ds
l −Ds

t )×Ds
t )

Ds
t = 0.5

1

1+e

(Ds
l −Ds

t )×Ds
t

(ξ−(Ds
l −Ds

t )×Ds
t )

Ds
t = 0.8

, (20)
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where the life cycle demand amplification factor η and the real-time demand amplification
factor ξ are defined as follows:

η =
max Ds

l
max Ds

t
0 < Ds

l < 1, 0 < Ds
t < 0.5, (21)

ξ = max(Ds
t − Ds

l ) 0 < Ds
l < 1, 0.5 < Ds

t < 1. (22)

5. Performance Comparison and Validation

In this section, we compare and analyze the performance of the proposed Double Q-
value Adaptive Aggregation Routing Protocol (DQAAR) in terms of energy consumption,
network lifetime, transmission delay, and data retransmission energy loss. At present, there
is little research on multi-objective optimization of high-speed railway wireless sensor
network delay and life cycle. Due to MATLAB’s powerful computational capabilities
and rich reinforcement learning toolbox, the improved Q-learning algorithm proposed
in this paper can be easily implemented. Therefore, this paper uses MATLAB R2018b to
realize the simulation environment and compares it with the other three excellent routing
protocols [38]. They are MTECR, AUMRP, and MVECR.

5.1. Parameters Configuration

In this study, the node communication energy consumption adopts the space energy
loss model, and the simulation parameter configuration is shown in Table 5.

The initial energy of the sensor nodes involved in this paper is 0.5j, and the energy
of sink nodes is unlimited. According to the node types and business requirements in
Table 1, the network model is constructed proportionally to verify the performance of the
adaptive routing model in this paper. In the comparative analysis before, we introduced a
few concepts about performance indicators. (1) FND (the time at which the first node dies);
(2) HND (time when half of the nodes die); (3) CP Index (Comprehensive Performance
Index); the utility of a high-speed railway monitoring network is determined by its life
cycle and real-time performance. In this paper, we build a complete evaluation model for
life cycle and real-time performance:

U = λ× L
max(L)

+ (1− λ)
min(T)

T
. (23)

Table 5. Aggregation model parameters.

Parameter Representation Value

Eelec Energy consumed to transmit a unit of bit data 50 nJ/bit
ε f s Power amplifier normal loss 10 pJ/bit/m2

εamp Power amplifier for multipath attenuation 0.0013 pj/bit/m4

Ein Initial energy of nodes 0.5 j
d0 Distance threshold 87 m
Dl Lifetime requirements [0.2, 0.5, 0.8]
Dt Real-time requirements [0.2, 0.5, 0.8]

rmax
DA Maximum aggregation reward 1
α, γ Learning rate and discount factor 0.8, 0.9

η Magnification factor of lifetime 9
ξ Magnification factor of real time 0.8
R Network range 200 m

Data Network single packet size 200 bit

In the table, U is the comprehensive performance index, L is the life cycle, and T is
the delay.
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5.2. Results and Discussion

In order to verify the effectiveness of the adaptive routing protocol proposed in this
paper, we first verify the effect of extending the network life cycle of each protocol, and
then simulate environmental changes and different application scenarios by changing
some system parameters. Several aspects, such as extending the comprehensive efficiency
index, are compared with the three routing protocols mentioned above, which verifies the
superiority of DQAAR.

5.2.1. Lifetime Evaluation

Figure 5 shows the change in the number of surviving nodes for each routing protocol
with the network running time. For the high-speed railway monitoring network, the main
task is to collect as much on-site information as possible to ensure the safety of railway
operation, so we first focus on the life cycle of the network. Figure 5a shows that DQAAR
has a longer running time than MTECR, MVECR, and AUMRP under the same conditions.
Because MTECR only pays attention to the overall energy loss of the network and does not
care about the energy balance of the network, ithe death time of each node occurs in about
1000 s. MTECR, MVECR, and AUMRP impose some constraints on the overall energy
consumption balance of the network, but while prolonging the death time of the first node,
they also cause a large area of low-energy nodes to die in the network around 1500 s.The
DQAAR proposed in this paper delays the death time of the first node in the network to
about 2000 s, and then there is no continuous death of large-scale nodes, but a relatively
slow trend is maintained. This is because DQAAR offers dynamic rewards based on data
aggregation while paying attention to the balanced use of network energy, and each node
learns the best next-hop node. Efficient data aggregation paths greatly reduce the amount
of data transmitted over the network, which greatly delays node death times. Figure 5b
shows the FND and HND data of the four routing protocols, respectively. The FND and
HND of the worst-performing MTECR are 985 and 2024, respectively, and the AUMRP data
of FND are only 1565 and 2155, although it is effective. The node death time is delayed, but
the process from the death of the first node to the death of half of the nodes is not very slow.
The FND and HND of the DQAAR proposed in this paper are 1982 and 3016, respectively.
It can be seen that DQAAR provides better answers in terms of balancing network energy
consumption and improving network life.
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Figure 5. Protocol life cycle, FND and HND performance.

5.2.2. Latency Time

Figure 6 shows the real-time performance of DQAAR and the three protocols men-
tioned above. MTECR achieves the best real-time performance with an average latency of
1780 ms, but this is due to its advantage of reducing hop count at the expense of lifetime. In
the initial stage of the network, DQAAR is in the parameter adjustment stage with signifi-
cant delays. After a period of learning, its real-time performance is greatly improved, which
is not much different from MTECR. AUMPR and MVECR excessively pursue the balance
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of energy consumption between nodes and achieve node energy balance by increasing the
number of link hops. Long link hops greatly increase system latency.
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Figure 6. Delay performance of each protocol.

Compared with the other three routing protocols, the DQAAR delay in the stable
operation stage has better stability performance. That is to say, the initial high delay is
caused by the exploration behavior of DQAAR. In the stable operation stage, the real-
time performance of DQAAR far exceeds that of MVECR and AUMRP, achieving good
real-time performance.

5.2.3. Scenario Analysis

Case 1 verifies the impact of network size changes on its performance and the per-
formance of each routing protocol. Among them, a single data packet on the network
data = 200 bits. Figure 7 shows the performance of the life cycle, delay, and overall energy
efficiency of each routing protocol when the distance from the head end to the end of the
network changes from d = 100 m to d = 500 m. Figure 7a shows that with the increase in the
network range, the energy balance of the network system is destroyed, which also causes
the life cycle of each routing protocol to decrease significantly with the increase in d, but
MTECR, AUMRP, MTECR, MVECR and DQAAR have better performance in extending the
network life cycle. This is because MTECR minimizes the overall energy consumption of
the network as an optimization goal, and the number of link hops is significantly reduced
compared to the other three algorithms. This may lead to the emergence of local hotspots
in the network, which may affect the entire network lifecycle. When the network range
is expanded to 500 m, its lifetime is still about 30% higher than the worst performing
MTECR. Figure 7b shows the delay performance of each routing protocol as the network
range increases, and the time for each routing protocol data packet to reach the sink node
gradually increases as the communication distance increases. Among them, MVECR and
AUMRP lack the constraints on the delay, which leads to the rapid increase in the delay
when the distance increases, and DQAAR reduces the delay through dynamic learning
so that the network can obtain good real-time performance. In order to obtain better real-
time performance, MTECR reduces the number of hops of data packet forwarding in the
network, which greatly increases the energy consumption and shortens the network life.
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Figure 7. Performance of each protocol in Scenario 1.

Obviously, the DQAAR proposed in this paper is ahead of AUMRP, MTECR, and
MVECR in energy efficiency. When the network range is small, the life cycle of AUMRP
and MVECR is close to that of DQAAR, and their comprehensive energy efficiency is also
close to that of DQAAR. The life cycle index and delay index of the network system using
each protocol are shown in Figures 8 and 9.

Case 2 verifies the impact of changes in the amount of data in the network on its
performance and the performance of the four routing protocols. Among them, the network
range is d = 200 m. Figure 10 shows the network life cycle, delay and comprehensive energy
efficiency level of the DQAAR proposed in this paper and the other three routing protocols
(AUMRP, MVECR, and MTECR) when the single data packet size of the network node
changes from Data = 100 bit to Data = 600 bit. As shown in Figure 10a, an increase in the
amount of data in the network is accompanied by a rapid decrease in its life cycle, because
the sending and receiving of data consumes the most energy in sensor nodes. MVECR pays
too much attention to the energy consumption balance of each node in the network, but it
increases its total energy consumption, and the life cycle has a disadvantage compared with
AUMRP. The DQAAR transmission path planning based on data aggregation effectively
reduces the amount of data in the network and thus prolongs the life cycle of the network,
and its performance is higher than the other three routing protocols. The delay of the
network system using DQAAR is smaller than that using AUMRP and MVECR but slightly
larger than that using MTECR, and the delay increases with the increase in data volume,
which is caused by the increase in transmission time caused by the increase in data volume.
Data latency increases. Also, as the amount of data increases, the trend of delay growth
for DQAAR is not as fast as it is for AUMRP and MVECR. This shows that the data
transmission delay is reduced enough by the data aggregation strategy used in this paper
to make up for the time it takes to aggregate the data. It can be seen in Figure 10c that
DQAAR can effectively reduce the amount of data when the amount of data in the network
increases, while the delay does not cause a significant change. Its comprehensive energy
efficiency is much greater than that of the other three routing protocols. The cycle and
delay maintain stable performance with the increase in data volume.The lifetime index and
delay index of the network system using each protocol are shown in Figures 11 and 12.
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Figure 8. System lifetime utility of each protocol in Scenario 1.
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Figure 10. Performance of each protocol in Scenario 2.
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Figure 12. System delay utility of each protocol in Scenario 2.

Finally, the simulation verification results can be summarized into the following
three points:

(1) Compared with AUMRP, the life of the network system using DQAAR is improved
to a certain extent, and both MVECR and MTECR are improved to a certain extent, which
effectively prolongs the dead time of the first node in the network system. It ensures the
balance of network energy consumption and allows the longer survival of nodes with
heavy loads in the network when the energy level is low to ensure the monitoring quality
of the network.

(2) In the high-speed railway monitoring system, the life cycle of the network and
the delay of data transmission are both important performance indicators, and the single-
objective network optimization algorithm is difficult to meet the actual needs. The adaptive
routing algorithm based on double-Q-values proposed in this paper can effectively improve
the network life and obtain good real-time performance. The comprehensive energy
efficiency index is used to evaluate the routing protocol and verify the superiority of
DQAAR in these two aspects.

(3) The design of the adaptive operator and Q-value in this paper comes from the
business requirements of each sensor in the high-speed railway monitoring network system.
In different application scenarios, the adaptive operator and Q-value can be designed
differently. This ensures the multi-scene adaptability of the adaptive model based on
double Q-values established in this paper.

6. Conclusions

In this paper, we propose a Double-Q-value-based adaptive routing algorithm
(DQAAR) for the business requirements of high-speed railway monitoring network sys-
tems. The proposed method is different from most of the existing methods and offers
contributions described below.

First, we propose a Double-Q-value model based on data aggregation. For the two
Q-values, we consider the data aggregation degree, the remaining energy level, the link
strength, the distance from the node to the sink, and the forwarding delay to consider the
network lifetime and the real-time performance of data forwarding. The defined reward
function can track the network’s changes in real time and keep the whole thing under
control with less work.
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Second, an adaptive weight is proposed based on the different requirements of each
service for network lifetime and real-time performance. This makes the algorithm proposed
in this paper better able to adapt to different situations.

Finally, the algorithm proposed in this paper is verified in different scenarios. The
results show that DQAAR is better than AUMRP and MVECR in achieving network energy
balance and prolonging network life, and its real-time performance is also better than that
of these two routing protocols. Compared with MTECR, although the routing protocol
proposed in this paper is slightly insufficient in real-time performance, it is far better than
MTECR in extending network life. From the point of view of overall energy efficiency, the
DQAAR that is proposed in this paper is a lot better than other routing protocols.
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