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Abstract: Traditionally, freight wagon technology has lacked digitalization and advanced monitoring
capabilities. This article presents recent advancements in freight wagon digitalization, covering the
system’s definition, development, and field tests on a commercial line in Sweden. A number of
components and systems were installed on board on the freight wagon, leading to the intelligent
freight wagon. The digitalization includes the integration of sensors for different functions such
as train composition, train integrity, asset monitoring and continuous wagon positioning. Commu-
nication capabilities enable data exchange between components, securely stored and transferred
to a remote server for access and visualization. Three digitalized freight wagons operated on the
Nässjo–Falköping line, equipped with strategically placed monitoring sensors to collect valuable
data on wagon performance and railway infrastructure. The field tests showcase the system’s po-
tential for detecting faults and anomalies, signifying a significant advancement in freight wagon
technology, and contributing to an improvement in freight wagon digitalization and monitoring.
The gathered insights demonstrate the system’s effectiveness, setting the stage for a comprehensive
monitoring solution for railway infrastructures. These advancements promise real-time analysis,
anomaly detection, and proactive maintenance, fostering improved efficiency and safety in the do-
main of freight transportation, while contributing to the enhancement of freight wagon digitalization
and supervision.

Keywords: railway; digitalization; freight; monitoring; wagon; infrastructure

1. Introduction

In the freight train sector, there is a significant lack of knowledge about the state of
deterioration of the railway infrastructure and the trains themselves, mainly due to the
absence of digitization and advanced monitoring. Reliant solely on manual inspections and
visual assessments, the industry has faced significant challenges in optimizing maintenance
and ensuring operational efficiency. However, recent advancements in freight wagon
digitalization have brought about a paradigm shift in this sector.

The digitalization of freight trains is a crucial advancement aimed at creating modern
functionalities that provide a cost-effective and appealing service, while also offering
improved operational opportunities to operators and infrastructure managers. These
modern functionalities encompass intelligence, detection, actuation, and communication
capabilities.

Moreover, the digitalization of freight trains aligns closely with the principles of In-
dustry 4.0, ushering in a new era of interconnected and intelligent systems. Embracing this
transformative approach, the freight train sector can harness the power of well-established
technologies such as sensor deployment and element virtualization. These technologies,
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already matured and successfully applied in domains like Industry 4.0, offer great potential
for revolutionizing the railway industry [1]. By strategically integrating sensors, the digi-
talization process enables real-time monitoring of vital aspects such as train composition,
train integrity, wagon asset condition, and continuous wagon positioning. The seamless
communication facilitated by these advanced technologies fosters a data-driven ecosystem
that empowers operators and infrastructure managers with valuable insights for enhanced
decision-making and proactive maintenance strategies. Thus, the utilization of these mature
technologies becomes a cornerstone in advancing the efficiency, reliability, and safety of
freight services in the contemporary railway landscape.

According to its principles, the transport industry must significantly enhance the cost
competitiveness and dependability of freight services to fulfil the ambitious goals outlined
in the Transport White Paper [2] for the advancement of rail freight. These goals include
nearly doubling rail freight usage compared to 2005, achieving a 30% shift of road freight
over distances exceeding 300 km to modes such as rail or waterborne transport by 2030, and
surpassing a 50% shift by 2050. Consequently, it is crucial to improve the cost-effectiveness
and reliability of freight services to meet these objectives successfully.

Rail freight must adopt a cost-effective and appealing approach to entice shippers
and divert freight from the congested road network. The challenge at hand entails two
key aspects:

• Establishing a new service-oriented profile for rail freight services that prioritizes
punctual deliveries at competitive prices. This entails integrating operations with
other modes of transportation, incorporating innovative value-added services to cater
to customer needs, and striving for operational excellence.

• Enhancing productivity by addressing existing operational and systemic weaknesses,
including interoperability issues. This can be achieved by seeking cost-effective solu-
tions, optimizing the utilization of current infrastructure, and embracing technology
transfer from other sectors to enhance rail freight operations.

By addressing these challenges, rail freight can position itself as a reliable and efficient
alternative, contributing to the shift of freight from the congested road network while
providing a cost-effective and attractive service to shippers.

The freight railway environment presents a set of formidable challenges characterized
by its extensive geographical distribution, harsh environmental conditions, and stringent
energy considerations.

This article presents a comprehensive overview of the recent developments in freight
wagon digitalization, focusing on the definition, development, and field tests conducted
on a commercial line in Sweden. With the integration of a wide range of components
and systems, the concept of the intelligent freight wagon has emerged. This digitalization
process involves the strategic installation of sensors that enable various functionalities,
including train composition, train integrity, wagon asset monitoring, and continuous wagon
positioning. Furthermore, advanced communication capabilities facilitate seamless data
exchange between these components.

To validate the effectiveness of this digitalization approach, field tests were carried out
on three freight wagons operating on the operational line between Nässjo and Falköping
in Sweden. These wagons were equipped to monitor the behavior of the train, enabling
the detection of faults or anomalies in both the wagons and the railway infrastructure.
This integrated approach not only enhances safety but also lays the foundation for a
comprehensive monitoring solution for railway infrastructures, enabling real-time analysis,
anomaly detection, and proactive maintenance.

The remaining sections of this article are organized as follows. First, the existing
work on the digitalization of freight wagons is described (Section 2). Subsequently, a
comprehensive overview of the developed system, including its services and functionalities,
is provided (Section 3). Following that, the test campaign is presented, outlining the
methods and procedures employed (Section 4). The results and discussions are then
presented in Section 5, offering valuable insights and highlighting the significance of
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data acquisition. In Section 6, the main results and their implications are summarized,
together with suggestions for future research and potential areas for improvement based
on the findings.

2. Related Work

This section describes the related work for on-board monitoring for rolling stock and
infrastructure condition determination found in the literature and in EU research projects.

Shift2Rail [3] is the first European rail initiative to seek focused research and innovation
(R&I) and market-driven solutions by accelerating the integration of new and advanced
technologies into innovative rail product solutions. Shift2Rail promotes the competitiveness
of the European rail industry and meets changing EU transport needs. R&I carried out
under this Horizon 2020 initiative develops the necessary technology to complete the Single
European Railway Area (SERA).

One of the main objectives of TD3.8 Intelligent Asset Management Strategies (IAMS)
is to shift towards a tailor-made maintenance approach by using the necessary tools for
information management and decision support. This enhances the need to digitalize
railway assets. Information is derived from the data obtained on board and on field.
One of the most needed digitalizations is in the freight railway subsector, focused on the
IP5 pillar for Shift2Rail. These activities are mostly based on the successful progress of
TD5.1 fleet digitization and automation and mostly TD5.3 smart freight wagon concepts.
For condition monitoring on the freight subsector, TD5.3.3 extended market wagons and
TD5.3.4 telematics and electrification have made the greater efforts and they have been
delivered on the documentation, demonstrations and results presented.

As for EU Rail, FP3 [4] and FP5 [5] are the pillars concerned and they have just started
their activities, so there is no published information nor are there any conclusions related
to railway onboard and infrastructure condition monitoring.

From the academic and scientific point of view, Figure 1 presents the time evolution
of the research papers related to on-board monitoring for rolling stock and infrastructure
condition determination. The increasing number of papers since 2016 proves the growing
interest in this field in the past few years. It also shows that the technology and techniques
are in the right place to serve the needs of the railway industry. Research works such as the
one discussed in [6] show that the deployment of sensors on freight wagons allows, indeed,
the detection and transmission of multiple status information regarding the maintenance
and safety of these rolling elements.

The most cross-cited papers from the comprehensive list of references [7–46] represent
the current state of the art in the field of condition monitoring for railway infrastructure.
These articles primarily focus on advanced monitoring techniques and track quality as-
sessment, including the findings of supervised experiments conducted on Polish railway
lines using the electric multiple unit (EMU-ED74) equipped with a prototype track quality
monitoring system [17]. The system incorporates a track quality indicator (TQI) algorithm,
which utilizes a given transformation to preprocess the acceleration signals. This prepro-
cessing is employed to extract the fundamental dynamics from the measured data, enabling
a more comprehensive evaluation of the geometrical track quality. A comparative analysis
is conducted to assess the performance of the proposed approach against other existing
methods. This solution is the core of a track inspection system on board an electrified unit,
which is a first step but it is not directly employable on freight wagons mainly due to power
and location constraints. In addition, this paper presents further advanced features for
freight train operation.

The second most cited [14], from 2021, is a survey which presents a comprehensive
examination of the current literature conducted to provide an updated and content-driven
analysis. This theoretical analysis is also of great interest to the research presented in this
paper as it identifies the key contributors who have significantly influenced the progress
of research in the specific area of interest. Using a coupled methodology that combines
bibliometric performance analysis and a systematic literature review, the authors are able
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to identify the influential researchers, journals, and papers in the field. The findings of this
study not only highlight the research trends pertaining to the analyzed area but also shed
light on future research directions, particularly from an engineering standpoint. The main
trends have also been considered in the research presented in this paper.
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The following list discloses the different referrals and nuances collected by this research
for the definition of “condition monitoring”:

• Direct measurement of relevant signals with time and/or frequency domain signal
processing. Collection and real-time recording of digital and analogue signals using
distributed transducers.

• Detecting and identifying deterioration in component structures and infrastructure
performance in operating conditions. Continuous or periodic monitoring options.

• Alarm tool for maintenance. Distinguishing between normal and abnormal conditions
and thresholding techniques for alarm systems.

• Implementing proactive condition monitoring technology. Tracking technical degrada-
tion and implementing preventive activities.

• Fault detection and diagnosis systems with intelligent algorithms. Condition-based
monitoring for prognosis and diagnosis of component degradation.

• Ensuring safe and cost-effective train operation.
• Gathering and processing data for design, availability, reliability, and maintenance

support.
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Enhanced infrastructure monitoring of various elements such as bridges, viaducts,
tunnels, crosses, rail gaps, frozen soil, and leaky feeders can yield significant benefits
in terms of efficiency and safety. Neglecting safety and security monitoring of railway
infrastructure poses risks such as train collisions, derailments, terrorism, and wagon
failures. Notably, infrastructure or rolling stock failures still account for 35% of train delays,
indicating the potential for substantial performance enhancements through intelligent
systems in railway freight management [28].

From the alternatives listed above, refs. [40] and [23] categorize them into three levels
here introduced and expanded in the picture below:

• Level 1 Data Logging and Event Recording Systems. When major incidents occur, they
are used primarily to provide conclusive evidence. Equipment and operations are
generally recorded digitally. This type of system can be used to detect faults in certain
assets whose operation time or logic changes under fault conditions. Such systems
are generally devoid of any data analysis. Typically, remote access is available to the
systems, and data are logged locally.

• Level 2 Event Recording and Data Analysis Equipment. In addition to Level 1, this
offers basic data analysis options, including statistical or sequence analysis. It is
generally equipped with additional communication modules for remote access to data
and analysis. In general, these systems are used for fault detection or the investigation
of allegations but are unable to predict future failures.

• Level 3 Online Health Monitoring Systems. These systems are defined as the highest
level of condition monitoring. These devices gathers digital and analogue (digitized)
signals from monitored equipment, analyze them into characteristic signatures, com-
pare them with an internal database of healthy and simulated faulty operation modes,
and signal alarms and fault diagnosis information to operators. Expert systems,
knowledge bases, and look-up tables are standard analysis techniques.

As a complement, Figure 2 illustrates an example of an intelligent infrastructure frame-
work for railways [47]. It completes the level categorization with examples of uses and services
that could be served with the equipment and strategy put in place for the monitoring.
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The main conclusion from the analysis shown in this section is that a connected,
distributed, and integrated system, with more layers and distributed acquisition and
processing subsystems, is able to provide more useful information. The work presented in
this paper is the result of the work performed in the TD5.3 smart freight wagon concepts
topic and the result is part of the final demonstration performed as the conclusive activity
for condition monitoring.

3. Perspective of the System: A High-Level Overview

The digitalization framework for freight wagons presented in this section is applicable
to wagon assets and infrastructure monitoring and is designed to acquire and monitor data



Sensors 2023, 23, 7448 6 of 19

from various sensors installed on the wagons, enabling efficient and reliable operation. The
monitoring with several sensors on each bogie is complemented with train composition,
train integrity and positioning, which data are combined and converged for more accurate
processing of the raw data. The visual representation, displayed in Figure 3, provides a clear
and concise overview of the system’s architecture. It showcases the various components
and their interconnections, offering a comprehensive understanding of how the system is
designed. By referring to Figure 3, one can easily grasp the hierarchical structure, the flow
of data, and the relationships between different modules within the system.
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The locomotive on-board unit (LOBU) is responsible for controlling and enabling all
communications. The LOBU serves as a central hub, storing and processing data received
from all the connected wagons. It plays a crucial role in coordinating data exchange and
ensuring seamless integration of information.

The system architecture comprises several hardware components that work together
to enable data acquisition, storage, and analysis. Each freight wagon is equipped with a
wagon on-board unit (WOBU), which serves as a local data storage and communication
device. The WOBU collects and stores persistent information about the wagon, such as its
identification, type, and available functionalities. It also acts as a gateway for sensor data
acquisition.

The HW definition of the wagon on-board unit system deployed in each wagon is
presented below; this is a connected multiprocessing platform. This architecture consists of
two controllers for processing, which are a mainstream microcontroller (STM32F105RC)
and a system on module (SOM) (iMX8-based), a series of devices for sensorization, com-
munications and the power supply system [20].

A customized card was employed, featuring an SODIMM type connector, to interface
with a VAR-SOM-MX8M-MINI [20]. It incorporates a certified railway connector, designed
for railway applications, to enable the wiring of a CAN bus in addition to the Ethernet and
USB interfaces. Figure 4 depicts the block diagram of the designed hardware (HW). The
mechanical dimensions measure 150 mm × 95 mm × 45 mm.
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Connectivity between the LOBU and WOBU, as well as between multiple WOBUs, is
established through a scalable communication infrastructure. This ensures efficient data
exchange and synchronization, enabling real-time monitoring and analysis capabilities.

In addition to the LOBU and WOBUs, the system includes a driver desk, which
provides a user interface for direct connectivity to the on-board system. The driver desk
allows for efficient interaction and communication with the system, facilitating control and
monitoring of various functionalities.

Furthermore, the system incorporates the control center, a centralized platform for
control and monitoring. The control center retrieves data from the cloud storage and
enables remote monitoring and analysis of the acquired information. It serves as a compre-
hensive management tool, providing insights into train performance, wagon behavior, and
infrastructure evaluation. Advanced algorithms can be applied within the control center to
derive valuable conclusions and optimize decision-making processes.

The system encompasses essential functionalities such as train composition, train
integrity, continuous wagon positioning, and spring monitoring. These functionalities
play a crucial role in organizing wagons, ensuring connectivity and safety, tracking wagon
location, and detecting spring faults.

In the following sub-sections, the specific functionalities implemented within the
system are explored, providing detailed explanations of their capabilities and the benefits
they offer for comprehensive freight wagon digitalization and condition monitoring.

3.1. Train Composition

This functionality is a pivotal aspect of freight train operations. It involves strategically
organizing and assembling wagons to create an efficient transport unit. Its importance
lies in optimizing various aspects of freight operations, such as weight distribution, load
balancing, and overall train performance. By carefully arranging wagons and ensuring
seamless connectivity between them, logistics managers can achieve optimal resource allo-
cation, streamlined logistics processes, and enhanced operational efficiency. Additionally,
efficient train composition reduces stress on rail infrastructure, minimizing wear and tear.
Accurate identification and tracking of wagons within the train formation enable real-time
monitoring, cargo identification, and efficient resource utilization.

In the developed system, each wagon is equipped with a wagon on-board unit (WOBU)
that stores essential information such as wagon identification, type, number of bogies, and
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available functionalities. This WOBU functionality is triggered upon request from the
driver desk, as mentioned earlier in this subsection. The driver desk initiates a discovery
process through the LOBU (locomotive on-board unit), which communicates with the
connected wagons. In response, each wagon provides persistent information along with
the real-time status of the connected sensors. The LOBU processes these data to establish
the current composition of the train and subsequently notifies the driver desk to display the
updated train information as shown in Figure 5. This streamlined process ensures effective
communication and seamless coordination between the different components of the system.
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This advanced train composition functionality offers a comprehensive solution for
managing the composition of freight trains. Leveraging digitalization technologies, our
system provides real-time insights into train formation, enabling logistics operators to
make informed decisions regarding load distribution, coupling order, and overall train
configuration. This not only optimizes train performance but also enhances safety, reduces
operational costs, and improves the overall efficiency of freight transportation.

3.2. Wagon Positioning

The integration of a position stamp in freight wagon monitoring services is crucial
for accurate evaluation and efficient tracking. It provides timestamped records of wagon
locations throughout their journey, enhancing safety, optimizing operations, and enabling
digitalization in freight transportation.
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Accurate and real-time location tracking is a primary reason for implementing a
position stamp. It allows stakeholders to precisely track wagon locations, ensuring safety
and enabling proactive measures in response to deviations or incidents. Real-time tracking
also facilitates efficient resource allocation, optimized loading/unloading operations, and
informed decision-making.

The use of a position stamp optimizes maintenance schedules and resource allocation.
Continuous monitoring helps identify maintenance requirements, minimizing breakdown
risks and maximizing operational efficiency. The data from position stamps provide
insights into wagon utilization patterns, informing resource allocation decisions, routing
optimization, and fleet management practices.

The integration of position stamps supports comprehensive digitalization. Time-
stamped position data enable efficient documentation, data-driven decision-making, and
advanced analytics. Leveraging this data, including machine learning algorithms, helps
identify optimization opportunities, improve route planning, and enhance supply chain
visibility.

To provide time-stamped position data, the proprietary hardware of WOBUs (wagon
on-board units) employs single-frequency multi-constellation GNSS receivers. These re-
ceivers translate satellite signals into messages and estimated satellite receiver distances.

The algorithm utilizes GPS and Galileo observables to estimate WOBU positions
along the train’s route. Due to suboptimal satellite visibility caused by the GNSS antennas’
lateral location between freight containers, a least squares estimation algorithm is em-
ployed. This algorithm allows recalculation of positions based on the required information,
without considering past measurements or results. It provides positions despite harsh
railway environments. Multiple WOBUs offer position redundancy for post-processing
and error analysis. Figure 6 shows the driver desk visualization of the wagon positioning
functionality.
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3.3. Train Integrity

The monitoring of the integrity of a freight train has turned out to be an essential
requirement to operate the train in a safe way. To have the confirmation of the integrity
of the train, the operator ensures that the full train is travelling towards its destination
and no goods have been left in the way. Moreover, if this system is used as part of the
safety critical signaling system used for the operation of the railway, the occupancy of the
lane can be increased due to knowledge of the position and completeness of the train and
its wagons. This subsection introduces the different train integrity classes defined in the
X2RAIL-4 project [48] and how they could be used alone, or in a combined way to ensure
the integrity of the freight train.
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X2RAIL-4 project defined three train integrity classes depending on the technology
used to measure it:

• Train integrity class 1: This relies on wired net connectivity. All the wagons are wired,
forming a net that goes from the locomotive to the tail of the train. The LOBU, placed
in the locomotive, is continuously monitoring the wired composition functionality
to verify that all the WOBUs connected at the beginning of the operation are still
connected to the network. Any fault detected in the aforementioned network generates
an alarm message in the train integrity class 1 function.

• Train integrity class 2: This relies on the coherence between the velocities measured
at the head and tail of the train. The velocity of the train is continuously measured
both at the head and tail of the train. These velocities are then compared. If there is a
difference bigger than a threshold programmed for the lane in which the freight train
is operating, a train integrity class 2 alarm is raised in the system.

• Train integrity class 3: This relies on the distance measured between wagons. The
head and the tail of each of the wagons are equipped with an ultra-wideband (UWB)
anchor. These anchors are used to calculate the distance between the tail of a wagon
and the head of the next wagon. If the distance measured is less than the maximum
distance between coupled wagons plus a security margin calculated depending on the
maximum gap between wagons, a train integrity class 3 alarm is raised in the system.

The freight train can have deployed one or more of the introduced train integrity
monitoring classes, as shown in Figure 7. In the case that only one of the classes has been
installed, the whole train integrity function will be performed according to that class. If
there is more than one class installed, the status of all of them will be taken into account,
and the joint train integrity will be calculated taking into account the outputs of the existing
classes and their probabilities of false alarms.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21 
 

 

anchor. These anchors are used to calculate the distance between the tail of a wagon 
and the head of the next wagon. If the distance measured is less than the maximum 
distance between coupled wagons plus a security margin calculated depending on 
the maximum gap between wagons, a train integrity class 3 alarm is raised in the 
system. 
The freight train can have deployed one or more of the introduced train integrity 

monitoring classes, as shown in Figure 7. In the case that only one of the classes has been 
installed, the whole train integrity function will be performed according to that class. If 
there is more than one class installed, the status of all of them will be taken into account, 
and the joint train integrity will be calculated taking into account the outputs of the exist-
ing classes and their probabilities of false alarms. 

 
Figure 7. Driver desk visualization of the train integrity. 

3.4. Wagon Monitoring System 
Ensuring safe and efficient freight wagon operation relies heavily on monitoring 

springs. Springs play a vital role in absorbing shocks and vibrations, enabling a smooth 
ride while safeguarding cargo and wagon integrity. However, the springs endure extreme 
loads and adverse conditions throughout their service life. Factors like wear, fatigue, and 
severe impacts can lead to deterioration and loss of functionality over time, negatively 
impacting wagon performance and potentially leading to accidents. 

Continuous monitoring of springs on freight wagons offers multiple benefits. First, it 
allows early detection of any deterioration or damage to the springs, which helps to pre-
vent catastrophic failures and accidents. In addition, regular monitoring facilitates predic-
tive maintenance, which means that springs can be replaced or repaired before serious 
problems occur. This not only improves safety, but also reduces operating costs by avoid-
ing unplanned outages and optimizing maintenance schedules, minimizing disruptions, 
and ensuring a constant flow of goods. In addition, this spring monitoring functionality, 
working together with the wagon positioning function described above, facilitates the de-
tection of possible faults in the track structure. 

The spring monitoring functionality is performed by measuring the accelerations in 
the buffers of the bogies of the wagons, both at the top and at the bottom of the springs, 
as shown in Figure 8. 

Figure 7. Driver desk visualization of the train integrity.

3.4. Wagon Monitoring System

Ensuring safe and efficient freight wagon operation relies heavily on monitoring
springs. Springs play a vital role in absorbing shocks and vibrations, enabling a smooth
ride while safeguarding cargo and wagon integrity. However, the springs endure extreme
loads and adverse conditions throughout their service life. Factors like wear, fatigue, and
severe impacts can lead to deterioration and loss of functionality over time, negatively
impacting wagon performance and potentially leading to accidents.

Continuous monitoring of springs on freight wagons offers multiple benefits. First,
it allows early detection of any deterioration or damage to the springs, which helps to
prevent catastrophic failures and accidents. In addition, regular monitoring facilitates
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predictive maintenance, which means that springs can be replaced or repaired before serious
problems occur. This not only improves safety, but also reduces operating costs by avoiding
unplanned outages and optimizing maintenance schedules, minimizing disruptions, and
ensuring a constant flow of goods. In addition, this spring monitoring functionality,
working together with the wagon positioning function described above, facilitates the
detection of possible faults in the track structure.

The spring monitoring functionality is performed by measuring the accelerations in
the buffers of the bogies of the wagons, both at the top and at the bottom of the springs, as
shown in Figure 8.
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Measuring the accelerations that occur in this part of the wagon allows us to check
whether the weight of the load in the wagon is balanced or not, to know the state of wear
of the dampers themselves, as well as possible defects in the track infrastructure due to the
vibration produced by the transit of the wheels of the wagon over possible imperfections in
the infrastructure.

3.4.1. Sensor Node HW Implementation

To collect data on the vibrations occurring in the springs, the development of the HW
shown in Figure 9 was proposed.
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This hardware consists mainly of an STM32F105RC microcontroller, which is responsi-
ble for managing the data measured by the two accelerometers proposed in this design.
This controller incorporates an ARM Cortex-M3 32-bit RISC core operating at 72 MHz
frequency. The two accelerometers proposed are the ADXL345 and the ADXL357, which
allow one to select one or the other depending on the accuracy or sensitivity to be obtained
in the measurements.

3.4.2. Data Collection and Wagon Monitoring System Functionality Flow

To obtain the acceleration data at the springs, a network consisting of four sensor
nodes connected through the CAN interface to the WOBU was deployed in every wagon.
The arrangement of these sensor nodes in the wagon can be seen in Figure 10.
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The data flow for the spring monitoring functionality is represented in Figure 11. Data
from the three axes (x, y and z) is collected by the sensor nodes in 10-s time windows and sent
to the WOBU through the CAN network. When the data is received at the WOBU, it stores it
in its internal memory and sends it through the ETH network to the LOBU, which is in charge
of storing all the information and processing the data coming from the wagons.
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Figure 11. Schematic of the hardware involved in collecting acceleration data at the springs.

From the tablet, through a request to the LOBU, we can visualize the data as shown in
Figure 12. The driver desk application on the tablet allows us to select which spring we
want to monitor as well as to make a comparison between different springs and coordinate
axes and different measurements within the same spring.
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4. Test Campaign

This section provides a detailed description of the test campaign conducted to rig-
orously test and validate the functionalities outlined in the previous section. The test
campaign was an integral part of the FR8RAIL-IV European project [49], aimed at evaluat-
ing the performance and effectiveness of the developed system. The campaign took place
in Sweden from 22 May to 26 May 2023, and involved a planned route that encompassed
various aspects of freight train operations. In this section, we will delve into the duration of
the test campaign, the specific types of wagons utilized, the characteristics of the track, and
the strategic placement of sensors, electronics, and antennas. These insights and findings
from the test campaign are instrumental in assessing the reliability and efficiency of the
digitalization and monitoring solution for freight wagons.

The journey, as shown in Figure 13, commenced at Nässjo station at 10 a.m., with
the train arriving at Göteborg at 3 p.m. This allowed for the loading and unloading of
containers in the wagons. At 6 p.m., the train departed from Göteborg, reaching Falköping
at 10 p.m.
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Figure 13. Journey undertaken by the freight train during the test campaign between Nässjo
and Falköping.

The average speed throughout the journey was maintained at 35 km/h, and the train
made several stops at intermediate stations. The route encompassed various track sections,
including track changes and a mid-journey train orientation reversal.

Figure 14 presents the freight wagons employed in the test campaign “Sggrss 80’|6-
axle articulated intermodal wagon”. The train consisted of 21 wagons, with wagons 15, 16,
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and 17 being selected for monitoring, each carrying two containers. This strategic selection
enabled comprehensive data collection for analysis.
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In terms of hardware placement, as depicted in Figure 15, the electronic components
and antennas were carefully installed in the middle section of the wagons, specifically in
the stairwell area. This location ensured easy accessibility for maintenance purposes for
the validation phase of the functionalities.
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The test campaign provided valuable insights into the performance and functionality
of the developed system under realistic operational conditions. The collected data serve as
a crucial foundation for further analysis, validation, and enhancement of the digitalization
and monitoring solution for freight wagons.

5. Results and Discussion

The primary objective, as mentioned earlier, was to acquire a substantial amount of
data from various functionalities and establish an effective monitoring system, conditions
included, with the intention of conducting comprehensive analysis in the future. The
following are the results obtained for each functionality:

• Train composition: The system successfully obtained and displayed real-time informa-
tion about the train, its wagons, and the connected sensors. The data acquisition and
visualization were performed accurately, enabling efficient monitoring of the train’s
composition, which is a key feature for train operation but also for the processing of
the data incoming from the sensors.

• Train integrity: Continuous checks were carried out to ensure the train’s integrity
while in motion. While the system effectively detected integrity breaches, there were
occasional false positives at very low speeds. This aspect is being addressed for further
improvement.

• Train positioning: Real-time visualization of the train’s current location and its indi-
vidual wagons was achieved. The system provided accurate positioning information,
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allowing for effective monitoring and tracking of the train’s movement and its deriva-
tive on components and infrastructure monitoring.

• Wagon monitoring system: The continuous monitoring and real-time visualization
of the accelerometers (both upper and lower) for each spring shown in this paper,
provide valuable insights into the dynamic behavior of the wagon throughout its
operation. By analyzing the combined data from these accelerometers, it becomes
possible to assess the wagon’s response to the condition of the railway infrastructure.
Figures 16 and 17 illustrate the recorded data, offering a comprehensive understanding
of how the wagon interacts with the track, thereby facilitating effective maintenance
planning and optimizing the overall performance of the system.

Every operational data acquisition was logged with its corresponding timestamp and
associated position. This detailed recording ensures that any faults, defects, or alarms can be
precisely located and identified, facilitating prompt action and maintenance interventions.

During the validation tests, the train was constantly monitored through various
means, including direct and remote connections from the driver desk, as well as from
a centralized control center. With this feature deployed, the comprehensive monitoring
approach ensures continuous oversight of the train’s operations, allowing for a quick
response to any anomalies or emergencies.

All the collected information is also stored in a remote server, ready for future pro-
cessing. This long-term storage enables thorough analysis and processing of the data to
derive meaningful insights, contributing to enhanced operational efficiency and informed
decision-making.

The obtained results not only validate the successful achievement of the objectives
but also lay a robust foundation for conducting future in-depth analysis and deriving
valuable insights from the accumulated data. Depending on the specific focus of the
future analysis, this rich dataset can be instrumental in detecting anomalies, failures, and
wear and tear, both within the wagons and across the track infrastructure. By leveraging
this comprehensive monitoring approach, we can see significant potential for enhancing
maintenance strategies, identifying potential issues proactively, and optimizing the overall
performance and safety of both the rolling stock and the track system.
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6. Conclusions

Based on the comprehensive analysis and findings presented in this study, the follow-
ing key conclusions can be drawn:

First and foremost, the successful development and implementation of the digital-
ization system for freight wagons have not only addressed the limitations of traditional
operational and manual inspections but have also showcased the immense potential for
enhancing the monitoring and management of components and railway infrastructures. By
integrating advanced sensors and monitoring technologies, the system has enabled accurate
and real-time monitoring of train composition, train integrity, wagon asset monitoring, and
continuous wagon positioning.

The primary objective of the system is comprehensive data gathering and monitoring.
Collaborating with stakeholders, research institutions, and the railway industry is crucial
for successful digitalization implementation. This approach brings diverse perspectives,
enhances understanding of industry needs, optimizes resource utilization, and accelerates
innovation deployment. By tailoring the system to specific demands, safety standards, and
regulations, its overall effectiveness and acceptance in the industry are enhanced. Collabo-
rative efforts foster knowledge exchange, driving further advancements in digitalization
strategies to meet evolving freight transportation needs, ensuring informed decisions,
improved efficiency, and enhanced safety.

Furthermore, the validation and testing campaign conducted on the operating line
in Sweden provided crucial information on the real-world performance and functionality
of the system. The data collected during the campaign served as the basis for the subse-
quent analysis, validation and improvement of the freight car digitization and monitoring
solution. This data-driven approach allows for continuous improvement and optimization
of the system, resulting in increased efficiency and reliability. The success of freight car
monitoring in harsh and inaccessible environments demonstrates the system’s adaptability
and its potential to provide comprehensive monitoring capabilities in a variety of operating
conditions.

In addition, it is important to recognize the growing significance of effective data
management in the context of large-scale digitalization efforts. As the volume of data
generated by the digitalization system increases, adopting advanced data management
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techniques, such as big data analytics and machine learning algorithms, becomes essential.
These cutting-edge technologies offer invaluable insights and opportunities for predictive
maintenance, optimized resource allocation, and enhanced overall system performance.
Therefore, the future direction of this research should focus on exploring these areas further
to leverage the full potential of digitalization in freight wagon monitoring. By integrating
big data analytics and machine learning algorithms, the system’s capabilities can be greatly
enhanced, enabling proactive maintenance practices, and ultimately leading to improved
operational efficiency and cost-effectiveness.

The monitoring of multiple wagons enables a thorough assessment of individual
wagon behavior. Moreover, the combination of data from these wagons offers the opportu-
nity to extract valuable insights regarding the overall condition of the railway infrastructure.
Analyzing patterns and trends derived from the collective data can help identify potential
defects or issues in the track infrastructure, enhancing maintenance planning and ensuring
optimal system performance.

In conclusion, the digitalization of freight wagons and the integration of advanced
monitoring capabilities offer transformative potential for the railway industry. By har-
nessing the power of real-time data, stakeholders can optimize operational efficiency,
enhance safety measures, and improve the overall performance of railway infrastructures.
As technology continues to advance, the successful implementation of digitalization in
the freight wagon industry requires addressing emerging challenges. Ensuring interop-
erability among different systems, prioritizing data security and privacy, investing in
research and innovation, and providing comprehensive training for stakeholders are es-
sential steps. By proactively tackling these challenges, the industry can unlock the full
potential of digitalization, leading to improved safety, efficiency, and overall performance
of the railway infrastructure.
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