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Abstract: With the rapid development of the Internet of Things (IoT), the frequency of attackers
using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS)
and other cyber attacks on the internet has significantly increased. In the actual attack process, the
small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this
problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution
and K-means clustering, which inserts synthetic samples through Gaussian probability distribution,
extends the clustering nodes in minority class samples in the same proportion, increases the density
of minority class samples, and improves the amount of minority class sample data in order to provide
data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset
generated by this method effectively improves the intrusion detection accuracy in each category and
effectively solves the data imbalance problem.
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1. Introduction

According to the IoT OS Security 2022 White Paper [1], the global number of IoT
connections is continuously increasing, showing a high growth trend. In 2020, there were
13.1 billion global IoT connections, and this number is projected to reach 24.6 billion IoT
devices by 2025. With more than 30% of the global IoT connections, our current growth
trajectory is promising.

The proliferation of IoT devices has also led to a significant rise in cyber attacks, partic-
ularly Distributed Denial of Service (DDoS) attacks perpetrated by attackers leveraging IoT
devices. One notable example is the Mirai attack in 2016, which resulted in the infection of
millions of IoT devices and the launch of DDoS attacks against DYNs, causing substantial
economic losses. The CNCERT Internet Security Threat Report reveals that, as of 2022,
over 4.78 million botnet agents were utilized in DDoS attacks, some of which were IoT
devices [2]. The use of IoT devices to carry out DDoS attacks has become the prevailing
method of attack. These attacks are characterized by their large scale, low local traffic
impact, and diverse attack traffic protocols. Consequently, detecting such attack traffic
poses a significant challenge for intrusion detection systems, leading to a high false alarm
rate. Overall, the increasing prevalence of IoT-enabled DDoS attacks presents a critical
challenge for intrusion detection systems due to the difficulty in accurately detecting and
mitigating this form of attack.

Traditional classification models assume a balanced sample distribution when ad-
dressing classification problems [3]. However, in reality, intrusion detection systems use
datasets that are imbalanced, meaning that some classes have significantly fewer samples
than others. This poses a challenge, as standard classifiers tend to prioritize optimizing
the overall classification error, which may sacrifice the accuracy of minority classes [4]. To
tackle this problem, scholars have proposed various strategies, broadly categorized into
three approaches: data-level, algorithm-level, and integrated learning approaches [5].
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The data-level approach involves modifying the original dataset through data prepro-
cessing and resampling in the sample feature space in order to obtain a balanced dataset.
The algorithm-level approach focuses on enhancing or integrating classification algorithms
in order to improve data differentiation and classification accuracy. The integrated learn-
ing approach combines data-level and algorithm-level methods with integrated learning
techniques to adapt to the requirements of unbalanced data classification and enhance the
learning of minority class samples.

In this paper, the focus is on data-level methods as they are implemented during
the data preprocessing stage and can be applied generally. Specific strategies are used to
increase the density and diversity of minority class samples without altering the sample
distribution, aiming to reduce or solve the issue of imbalanced data. The methodology
includes undersampling techniques [6], oversampling techniques, and combined under-
and oversampling techniques [7].

Undersampling techniques involve balancing the dataset by removing some majority
samples in order to achieve balance. However, removing majority samples may cause the
classification algorithm to lose important information about the majority classes, leading
to a decrease in intrusion detection accuracy. Therefore, this paper focuses on the over-
sampling technique to address the data imbalance problem [8]. The basic idea behind
oversampling is to add minority samples to the dataset in order to achieve a balanced
sample distribution.

This paper proposes a novel oversampling method for unbalanced data called KG-
SMOTE, which is based on Gaussian distribution and K-means clustering. The main
objective of this method is to improve the prediction accuracy of minority categories,
particularly the minority categories with limited sample sizes. The proposed approach
aims to achieve balance among all categories by adjusting the distribution of the minority
categories, ensuring that their sample sizes are not significantly different from the majority
categories. To achieve this, the KG-SMOTE algorithm is employed to generate new samples
for the minority category.

The motivation behind developing the KG-SMOTE method is to address the challenge
of extremely unbalanced datasets. The utilization of the K-means clustering algorithm
allows for the division of the minority class into distinct clusters with similar attributes.
This approach enables the extraction of additional information from each cluster, revealing
hidden patterns or groupings in the data. Moreover, it helps to reduce the generation
of noisy samples. The adoption of Gaussian distribution is another key aspect of the
KG-SMOTE method. This choice ensures that the synthetic data generated maintain
similar probability distributions to the original minority data. It also addresses the issue of
overfitting that can arise from an excessive concentration of synthetic samples produced by
traditional SMOTE in extremely unbalanced datasets.

The remaining sections of this paper are structured as follows. Section 2 presents
a review of recent approaches to addressing the class imbalance problem, with a focus
on oversampling techniques. In Section 3, a brief background is provided on existing
oversampling methods along with an overview of classification algorithms. The proposed
method is presented in detail in Section 4. Section 5 presents and discusses the experimental
results obtained from applying the proposed method. Finally, Section 6 summarizes the
key findings of the study and provides recommendations for future research.

2. Related Works

There are different approaches in the literature for dealing with the class imbalance
problem. This section reviews recent methods and techniques used for balancing data.
Table 1 presents a comprehensive summary of recent advancements in various oversam-
pling techniques.
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Random Oversampling (ROS) is the most straightforward oversampling technique.
Since the ROS method reaches the equilibrium point by replicating a few samples in order
to expand the dataset, it does not generate new samples. Therefore, it is prone to overfitting
problems during the training of classification algorithm models and has some limitations
in practical applications.

Chawla [9] proposed a synthetic minority oversampling technique (SMOTE). This
technique finds K neighbor nodes of minority class sample points in the sample feature
space, randomly selects a neighbor node, and synthesizes a new sample between the
sample point and its neighbor node. Still, this method increases the possibility of overlap
and noise between classes.

Table 1. The current development status of oversampling techniques.

Work Year Algorithms Dataset Results

[10] 2022 GMM-SMOTE UCI On average, the AUC value has been
improved by 6.09%.

[11] 2017 K-means SMOTE UCI
To a certain extent, has addressed the

issue of noise and has alleviated
intra-class imbalance.

[12] 2023 RUCSMOTE KEEL AUC and GM have generally increased by
2 to 7 percentage points.

[13] 2021 GSMOTEBoost KEEL AUC and GM have generally improved
by 1 to 3 percentage points.

[14] 2022 HDP-SMOTE NSL-KDD
UNSW-NB15

F1 score and GM have generally shown an
improvement of 1 to 6 percentage points.

[15] 2019 KDE [15]
F1 score and GM have demonstrated a

general enhancement ranging from 0.6 to
7 percentage points.

[16] 2011 NDO UCI The computational complexity has
been reduced.

[17] 2021 GK-Means [17]
The F1-score and accuracy have exhibited
a general improvement ranging from 1 to

6 percentage points.

[18] 2019 PDE-SMOTE UCL
KEEL

The F1-score and GM have experienced a
general enhancement ranging from 1 to

3 percentage points.

[19] 2020 SGM UNSW-NB15
The detection rate has reached 99.74% in

binary classification and 96.54% in
multi-class classification.

Yehui et al. [10] proposed a SMOTE oversampling technique based on Gaussian
mixture model clustering. The GMM algorithm is first used to cluster several class sample
sets. Redundant samples that overlap with the cluster centroids are removed, and, finally,
SMOTE oversampling is performed according to different clusters in order to make the
data balanced. The three algorithms of RF, SMOTE+RF, and GMM-SMOTE+RF are used to
experiment with the classification effect on six sets of UCI standard open datasets. This
method can handle the intra-class imbalance problem better, but the classification effect is
poor for highly imbalanced datasets.

Last F [11] used the K-mean clustering algorithm and SMOTE technique for oversam-
pling to cope with the imbalance problem. The method proposed in this paper follows
three main steps: clustering, filtering, and oversampling. Clustering uses the K-means
algorithm to divide the dataset into groups based on the value of K. Then, filtering is used
to select clusters for oversampling based on a small number of classes of samples. Finally,
the SMOTE technique is applied for oversampling in order to balance the dataset. This



Sensors 2023, 23, 7496 4 of 19

method is a good solution to the problem of generating noisy samples and class overlap,
but there is no clear method for the selection of the number of clusters.

Zhu Shen et al. [12] proposed the RUCSMOTE algorithm based on the K-means
SMOTE technique, incorporating random undersampling techniques. The paper proposed
to take the cluster center point in each cluster, the nearest point to the cluster center, and
a random point in the cluster on the three points to create a triangle, and take a random
point on its vertical line for interpolation to solve the synthetic sample point overfitting
problem, which is only applicable to datasets with high imbalance ratios. The advantage of
the algorithm is not obvious when the number of samples is small and the imbalance ratio
is low.

Zhang Z et al. [13] proposed an algorithm to construct the unbalanced learning model
under the Boosting integration framework. To improve the robustness of the classification
system, a Gaussian process SMOTE-based oversampling technique is used to increase the
diversity of training samples for the base classifiers in order to improve the differences
between the base classifiers. To verify the effectiveness of the algorithm, the commonly
used algorithms dealing with unbalanced classification problems are used as a comparison
method, and the algorithm is tested with 20 standard datasets in the KEEL database. The
G-mean, F-measure, and AUC are used as the evaluation indexes of the algorithm, and the
results of the experiments are analyzed by using statistical tests. The experimental results
show that the proposed GSMOTEBoost has significant advantages over other algorithms.

Jiang Zetao et al. [14] proposed a data generation scheme based on a combination of
dense and sparse. The sparse generation scheme is based on the highest density points
and the average intra-class distance in order to reduce the original minority class sparse
clustering range to the minority class denser region, increasing the possibility of the
minority class samples being oversampled. The dense scheme is a radial SMOTE method
in the non-dense region. In the non-dense region, only the dense solution uses the radial
SMOTE method in the non-dense area, so that only the highest density points of the
target class samples, and the sample points in the non-dense area, are focused on the
non-dense area, thus avoiding the sample overlap problem. However, this method still has
the problem of noisy samples.

Kamalov et al. [15] proposed a technique called kernel density estimation (KDE) for
oversampling unbalanced datasets. The authors proposed that Gaussian functions are
used as kernels in KDE. Experimental results show that this method can provide higher
performance compared to other related methods. SVM, KNN, and MLP algorithms are
used to evaluate the classification performance on 14 different datasets. The classifica-
tion performance is better for highly unbalanced datasets, but it is prone to generating
noisy samples.

Zhang H et al. [16] proposed a normal-distribution-based oversampling method to
balance the number of instances belonging to different classes in the dataset. The balanced
training data are used to train an unbiased classifier for the original dataset. Under certain
conditions, the proposed oversampling method produces samples with expected mean and
variance similar to the original minority class data. Since the method attempts to generate
synthetic data with similar probability distributions as the original data and extends the
class boundaries of the minority class, it may improve the classification performance of the
minority class. Experimental results show that the method outperforms other methods in
most cases on benchmark datasets implementing several classical classification algorithms.

Hassan et al. [17] proposed a simple oversampling method based on multivariate
Gaussian distribution and K-means clustering called GK-Means. The method aims to avoid
generating noise and to control the imbalance between minority and majority classes and
within the minority class. Various experiments were conducted with six classifiers and four
oversampling methods. The experimental results on different unbalanced datasets show
that the proposed GK-Means oversampling replaces the other oversampling methods and
improves the classification performance of F1-score and accuracy.
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Li Tao et al. [18] proposed an improved algorithm based on probability density es-
timation. Firstly, it is assumed that all the samples obey Gaussian mixture distribution,
the probability density of each sample is measured by the Gaussian mixture model, and
the filtering of noise information is achieved by comparing the rankings of the probability
densities of the samples within and between the classes. Secondly, the probability densities
are recalculated on the filtered samples, which are classified into three categories according
to their characteristics: boundary samples, safe samples, and outlier samples. Finally, for
the above three types of samples, different strategies are adopted for SMOTE sampling.

Zhang H et al. [19] proposed a new large-scale dataset class imbalance processing
technique, SGM, which combines SMOTE and undersampling techniques for clustering
based on Gaussian mixture models. They designed a stream-based intrusion detection
model, SGM-CNN, which integrates imbalanced class processing with convolutional neural
networks, and they investigated the effects of different numbers of convolutional kernels
and different learning rates on the model performance.

The aforementioned work has made significant contributions to addressing class
imbalance in various domains, such as network datasets, financial data, and medical
data. However, most of these methods focus on algorithmic improvements using existing
datasets and do not specifically target algorithmic enhancements for DDoS attack scenarios
in the context of the Internet of Things.

This paper aims to fill this gap by proposing the KG-SMOTE oversampling algorithm,
designed specifically for IoT devices launching DDoS attacks against internet servers and
clients. Taking into consideration the characteristics of IoT traffic and highly imbalanced
datasets, this method greatly improves the detection effectiveness for DDoS attacks initiated
by different virus protocols.

3. Background

This section reviews some existing well-known resampling methods.

3.1. SMOTE

SMOTE is a widely used oversampling method for addressing the issue of imbalanced
datasets with minority class samples. This algorithm aims balance the sample distribution
among different classes by generating synthetic samples.

The SMOTE algorithm follows a series of steps. First, it iterates through all minority
class samples and calculates the Euclidean distance between each minority class sample
and other minority class samples. Next, for each minority class sample, the algorithm
randomly selects a sample from its k-nearest neighbors. Using the distance information
between these samples, new synthetic samples are generated.

By adding these synthetic samples to the original dataset, the number of minority class
samples is increased to match that of the majority class samples. This helps to alleviate the
class imbalance problem. The formula for synthesizing samples in SMOTE is as follows:

xnew = xi + ε·(xi − xj) (1)

where xnew is the synthesized minority class sample, xi is the i minority class sample, xj is
the j nearest neighbor sample of the i minority class sample, and ε is a random number
between [0, 1].

The SMOTE method balances the class distribution in the dataset by synthesizing
new minority class samples in order to increase the number of minority class samples.
This reduces the classifier’s over-preference for majority class samples and improves the
recognition of minority classes.
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3.2. K-Means SMOTE

The K-Means SMOTE algorithm incorporates the k-means clustering step the tradi-
tional SMOTE algorithm in order to address the data imbalance issue. This algorithm
first clusters the samples using k-means and calculates the Euclidean distance between
them. It then selects the centroid of each cluster for SMOTE processing, generating new
synthetic samples.

By including the k-means clustering step, the K-Means SMOTE algorithm effectively
preserves the features of the minority class samples. This approach reduces the generation
of noisy points and outliers compared to the traditional SMOTE algorithm. As a result, the
performance of the classifier is enhanced.

3.3. Gaussian Probability Distribution

The Gaussian probability distribution, also known as the normal distribution, is a
continuous probability distribution that is commonly observed in everyday life. It is
considered the most important distribution, as it applies to a wide range of events. The
principle behind the Gaussian distribution is based on the central limit theorem, which
states that the sampling distribution of means tends to converge to a normal distribution,
regardless of the true underlying distribution.

When applying the Gaussian probability distribution for data analysis, there are
typically five steps involved. First, relevant data related to the subject of study are collected.
Next, the data are pre-processed to ensure accuracy and consistency by removing outliers
or other necessary steps. The parameters of the Gaussian distribution, such as the mean
and standard deviation, are then estimated using methods such as maximum likelihood
estimation. These estimated parameters are used to obtain the Gaussian distribution curve
through distribution fitting methods. Finally, the data are analyzed and inferences are
made based on the properties of the Gaussian distribution, such as calculating probabilities
and determining confidence intervals.

The probability density function of the Gaussian distribution is represented by the
formula shown in [20]:

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2)

where x is the random variable, µ and σ2 are the mean and variance parameters of the
distribution, and σ is the standard deviation. The mean µ and standard deviation σ of the
sample are defined as follows:

µ =
1
n

n

∑
i=1

xi (3)

σ =

√
1

n− 1

n

∑
i=1

(xi − x)2 (4)

4. KG-SMOTE

To address the imbalance in the dataset, it is necessary to generate a large number of
synthetic data samples. However, this approach can result in excessive overlap of synthetic
data, leading to duplicated features in the minority sample set. This, in turn, can cause
the classification algorithm model to overfit the data. Overfitting occurs when the model
learns too much from a few classes of samples, leading to a decrease in detection accuracy.
Moreover, due to the characteristics of IoT DDoS attacks, each device issues attack protocols
and formats that differ from one another. This further increases the data imbalance ratio,
which negatively impacts the accuracy of detecting the same attack type.

To address these challenges, this study proposes an improved oversampling algorithm
called KG-SMOTE, which is based on K-Means clustering and Gaussian probability dis-
tribution. The KG-SMOTE algorithm enhances the intrusion detection of imbalanced IoT
attack data from a data-level perspective.
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The KG-SMOTE algorithm first employs the K-Means clustering algorithm to divide
the minority classes into different clusters with similar attributes. This step helps reduce
interference from noise and anomalous samples. Secondly, the algorithm utilizes a Gaussian
probability distribution to generate synthetic data with a similar probability distribution
as the original minority class data. This approach improves the quality of the generated
samples in datasets with high imbalance ratios, reduces the generation of redundant and
noisy samples, and mitigates the occurrence of overfitting in the classification model.

The KG-SMOTE algorithm is based on the K-Means SMOTE algorithm, which com-
bines a Gaussian distribution to generate new samples during synthetic data generation.
The K-Means algorithm is used to cluster the minority classes in the dataset, calculate the
number of minority class samples in each cluster, and increase the density of minority class
nodes in equal proportion. The number of synthetic samples is determined by treating
each attribute of the training data as a random variable, and all attributes are independent
of each other. The given m attributes, denoted as a1, a2, . . . , am, indicate that there are
m random variables. Based on a few classes of samples in each cluster, we compute the
expected value and variance of each random variable. The mean and standard variance
of ai are denoted as µi and σi, respectively, where i ∈ {1, 2, .., m}. Let µ′i denote the mean
of the unknown underlying distribution of the control random variable ai, and let and σ′i
be the standard deviation. All values of the property ai for the minority class of training
data are independent random variable values because they represent independent exper-
iments, and each value obeys a similar potential probability distribution. According to
the conclusion of the central limit theorem, when the number of samples n approaches
infinity, the distribution of the following random variables under control approaches a
normal distribution with zero mean and standard deviation equal to 1.

µi − µ
′
i

σ
′
i /
√

n
p→ N(0, 1) (5)

n is the number of instances of the minority class. Inspired by (5), given the values ri
of the random variables obeying the distribution N(0, 1), we obtain the following equation:

µ
′
i = µi − ri · σ

′
i /
√

n (6)

In (6), µi is the mean value of the attribute ai for a given training minority class of data,
which we consider to be a representative of the original minority class of data. µ′i is the
mean value of the attribute ai for the unknown minority class data, which we consider to be
a representative of the unknown minority class data. Thus, for any instance and its given
value of ai, we can generate the synthetic value of this attribute by the following calculation.

a′i = ai − ri · σ
′
i /
√

n, i ∈ {1, 2, ..., m} (7)

In (7), a′i is the new value of the property ai. σ′i is unknown, and we approximate it by
σi to obtain Equation (8)

a′i = ai − ri · σi/
√

n, i ∈ {1, 2, ..., m} (8)

We will refer to (8) as the normal distribution model. The flow chart of its KG-SMOTE
algorithm is shown in Figure 1:
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Figure 1. Diagram of the proposed method(KG-SMOTE).

The determination of the K-value in this study was carried out using the Elbow
Method, which is a commonly employed technique in the K-means algorithm. The Elbow
Method evaluates the intra-cluster structure by analyzing the sum squared error (SSE)
between each cluster and the samples within it.

The degree of line distortion in the plot represents the spatial variation of the samples
within the cluster. A higher degree of distortion indicates a looser cluster structure, while a
lower degree of distortion suggests a tighter cluster structure. The Elbow Method aims to
identify the point at which the distortion degree starts to exhibit a significantly slower rate
of change. This point is typically considered the optimal number of clusters [21].

As illustrated in Figure 2, the optimal number of clusters for this dataset was deter-
mined to be six, as indicated by the elbow point.
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Figure 2. Illustration of the elbow rule effect.

The algorithm employed in this study utilizes a clustering approach to synthesize new
samples within clusters. This technique effectively reduces the interference from noise and
anomalous samples, enabling the extraction of more valuable information from each cluster.
The primary goal is to uncover hidden patterns or groupings within the data.

To generate synthetic data with similar probability distributions as the original mi-
nority class data, a Gaussian distribution is applied to each minority cluster. This process
involves calculating the normal distribution of all minority-class samples. New samples are
then inserted within the range of this calculated distribution. By simulating the distribution
characteristics of real data, the generated samples possess higher realism and usability.
This approach helps prevent the generation of redundant samples and mitigates the risk
of overfitting.

Furthermore, compared to the traditional SMOTE algorithm, KG-SMOTE does not
require the execution of the nearest neighbor algorithm in order to obtain the k-nearest
neighbors before creating synthetic samples. This design choice reduces the impact of the
parameter settings. Figure 3 provides a visual comparison between the synthetic samples
generated by SMOTE and KG-SMOTE. Specifically, let us consider Cluster A as an example.
The algorithm calculates the mean and variance of all minority class sample points within
Cluster A for each feature. It then employs interpolation to generate a new sample point,
denoted as point i, randomly within the Gaussian distribution of the sample points. This
new sample point is subsequently added to the minority class sample set.
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5. Experiments
5.1. Dataset

In this paper, we utilized the MBB-IoT dataset [22], which is based on a unique
attack scenario. The dataset was developed by a research team from the People’s Public
Security University of China. The objective behind constructing this dataset was to simulate
real-world IoT environments, where malicious codes were implanted to infiltrate IoT
devices. These compromised devices were then utilized to establish a botnet, which was
subsequently employed to carry out attacks on internet applications.

The specific experimental scenario involved the creation of an IoT botnet by infecting
various devices such as smartphones, webcams, smart speakers, smart gateways, and
a Raspberry Pi. The targets of these attacks were servers located outside the local area
network (LAN). The network environment consisted of a blend of both benign and bot-
net traffic. The raw PCAP file obtained from this environment contained a staggering
54 million records. For this study, a subset of the dataset was selected, comprising 1% of
the total records, amounting to over 540,000 records. Table 2 presents the imbalance ratios
of the attack traffic samples, normal traffic samples, and various attack protocols in the
dataset. The ratios range from 1:164 to 1:768, indicating significant imbalances between
the different classes. The imbalance ratio, abbreviated as IR, refers to the ratio between the
number of instances in the minority class and the number of instances in the majority class
in an imbalanced dataset. It is a measure used to quantify the level of class imbalance in
a dataset.

Table 2. Number of samples of attack type traffic and normal traffic in the 1% MBB-IoT dataset.

Attack Type Sample Size IR

Benign 537,052
BASHLITE TCP 3268 1:164
BASHLITE UDP 1410 1:380

BASHLITE RandHex 964 1:557
BASHLITE UDPHex 699 1:768

mirai greip 1332 1:403
mirai UDP 1258 1:426
mirai syn 2155 1:249
mirai http 1786 1:300

mirai greeth 1493 1:359

Data pre-processing is an essential step in ensuring the quality and usability of a
dataset. Raw data often contain irregularities and incompleteness, such as missing values
and outliers. Modeling with such data can result in distorted and inaccurate models.
Therefore it is necessary to pre-process the raw data before conducting any modeling
and analysis.

Data pre-processing typically involves various steps, including data cleaning and
data transformation. In this study, the dataset was iterated to identify and handle missing
values. Fortunately, no missing values were found in the dataset.

Additionally, features that had values consistently equal to a certain value were
removed during the pre-processing stage. The specific features that were removed are
listed in Table 3. Following the pre-processing steps, the dataset was left with a total of
77 features.

Table 3. List of features removed in the pre-treatment stage.

High Categrocal Features Meaningless Label

bidirectional_ece_packets, src2dst_cwr_packets,
bidirectional_cwr_packets, src2dst_ece_packets,
if_same_vlan_or_not, dst2src_urg_packets,
dst2src_ece_packets, dst2src_cwr_packets, vlan_id

id



Sensors 2023, 23, 7496 11 of 19

5.2. Experimental Environment and Evaluation Index

The experimental environment and associated hardware are illustrated in Table 4.

Table 4. Environmental Configuration.

Experimental Platforms Environmental Configuration

Operating Systems Fedora Linux 35 (Workstation Edition)
CPU Intel(R) Xeon(R) Gold 6346 CPU @ 3.10 GHz
GPU NVIDIA-SMI 520.61.05
RAM 32 GB

Programming Language Python3.9.12
torch 2.0.1 + cu118

scikit-learn 1.2.2

Commonly used metrics to evaluate the performance of a classifier include accuracy,
precision, recall, F1-score, and AUC (Area Under the Curve). In the case of unbalanced
multi-classification problems, accuracy is not a reliable measure of classifier performance.
Given the complexity of unbalanced multiclassification, this paper adopts precision, recall,
F1-score, and AUC as the evaluation metrics. These metrics are widely used to assess
the classification performance of unbalanced data and provide a more comprehensive
evaluation of the classifier’s effectiveness [23].

Precision is a commonly used measure to assess the classification accuracy of a classi-
fier for positive class samples. It represents the proportion of samples that are truly positive
among all samples predicted to be positive by the classifier. Precision is calculated using
the following formula:

precision =
TP

TP + FP
(9)

where TP denotes the number of true positive samples, FN denotes the number of false
negative samples, and FP denotes the number of false positive samples. By calculating
precision, we can evaluate how well a classifier is able to accurately identify positive cases
from the total number of samples predicted as positive.

Recall, also known as sensitivity or true positive rate, measures the proportion of
samples that are correctly classified as positive out of all samples that are truly positive. It
is calculated using the following formula:

recall =
TP

TP + FN
(10)

where TP represents the number of true positive samples and FN represents the number
of false negative samples. By calculating the recall, we can assess how well a classifier
is able to correctly identify positive cases from the total number of positive instances in
the dataset.

The F1-score is a widely used evaluation metric for assessing the performance of
classifiers on unbalanced data. It is a harmonic mean of precision and recall, combining
both measures into a single value. By considering both precision and recall, the F1-score
provides a balanced assessment of a classifier’s performance in scenarios where class
distribution is imbalanced.

F1− score =
2 · precision · recall
precision + recall

(11)

In binary classification problems, the AUC (Area Under the Curve) is a widely used
evaluation metric to assess the performance of a classification model. It is calculated by
determining the area under the Receiver Operating Characteristic (ROC) curve, which
ranges between 0 and 1. The AUC value indicates the classifier’s ability to rank positive
and negative cases correctly based on the ROC curve.
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An AUC value of 1 suggests that the classifier perfectly distinguishes positive cases
from negative cases. Conversely, an AUC value of 0.5 implies that the classifier’s perfor-
mance is equivalent to random guessing. If the AUC is less than 0.5, it indicates that the
classifier’s performance is worse than random guessing.

5.3. Experimental Results and Analysis

In this paper, we conducted experiments to compare the performance of classical
oversampling algorithms, namely Borderline SMOTE, SMOTE, and K-Means SMOTE,
combined with classical decision tree classification algorithms. The MBB-IoT dataset
was used for the experimental evaluation, and the results were compared accordingly.
Additionally, to validate the effectiveness of oversampling, we included the classification
results of the decision tree classification algorithm without any sampling method as a basis
of comparison.

The experimental process involved preprocessing the dataset and employing five-fold
cross-validation as the evaluation method. We ran the experiments ten times independently
and calculated the average results. The experimental findings, as shown in Tables 5–8,
provide precision, recall, F1-score, and AUC values for different algorithms across various
types of attack data. The best-performing methods are indicated by bolded entries in
the tables.

Table 5. Precision metrics of decision tree classifier based on different oversampling methods.

Index Category NR SMOTE Borderline
SMOTE

K-Means
SMOTE KG-SMOTE

Precision

Benign 0.9983 0.9998 0.9998 0.9985 0.9987
BASHLITE TCP 0.9853 0.9990 0.9990 1.0000 0.9983
BASHLITE UDP 0.9169 0.8157 0.7939 0.9299 0.9324

BASHLITE RandHex 0.9647 0.7247 0.7403 0.9680 0.9704
BASHLITE UDPHex 0.7633 0.7371 0.7262 0.8699 0.9727

mirai greip 0.9730 0.6599 0.6618 0.9821 0.9750
mirai UDP 0.9964 0.6401 0.6533 0.9626 0.9991
mirai syn 0.9193 0.6653 0.6487 0.9429 0.9629
mirai http 0.8964 0.7005 0.7368 0.9556 0.9700

mirai greeth 0.9262 0.6537 0.6362 0.9444 0.9811

Table 6. Recall metrics of decision tree classifier based on different oversampling methods.

Index Category NR SMOTE Borderline
SMOTE

K-Means
SMOTE KG-SMOTE

Recall

Benign 0.9985 0.9988 0.9987 0.9991 0.9991
BASHLITE TCP 0.9904 0.9990 0.9969 0.9946 0.9922
BASHLITE UDP 0.8203 0.8389 0.8673 0.9009 0.9469

BASHLITE RandHex 0.9679 0.8007 0.7972 0.9556 0.9568
BASHLITE UDPHex 0.8208 0.6615 0.6256 0.9556 0.9619

mirai udp 0.9295 0.7473 0.7367 0.9419 0.9812
mirai greip 0.9654 0.6223 0.6461 0.9552 0.9718
mirai syn 0.8652 0.7661 0.7370 0.9276 0.9188
mirai http 0.9565 0.6832 0.7186 0.9374 0.9712

mirai greeth 0.9498 0.6867 0.6867 0.8921 0.9723
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Table 7. F1-score metrics of decision tree classifier based on different oversampling methods.

Index Category NR SMOTE Borderline
SMOTE

K-Means
SMOTE KG-SMOTE

F1-score

Benign 0.9985 0.9993 0.9992 0.9988 0.9989
BASHLITE TCP 0.8878 0.9990 0.9979 0.9973 0.9952
BASHLITE UDP 0.7659 0.8271 0.8290 0.9151 0.9396

BASHLITE RandHex 0.8663 0.7608 0.7677 0.9618 0.9635
BASHLITE UDPHex 0.7910 0.6973 0.6722 0.9107 0.9673

mirai udp 0.8618 0.6896 0.6925 0.9521 0.9901
mirai greip 0.8692 0.6406 0.6538 0.9685 0.9734
mirai syn 0.8914 0.7122 0.6901 0.9352 0.9403
mirai http 0.8254 0.6918 0.7276 0.9464 0.9706

mirai greeth 0.8378 0.6698 0.6605 0.9175 0.9767

Table 8. AUC metrics of decision tree classifier based on different oversampling methods.

Index Category NR SMOTE Borderline
SMOTE

K-Means
SMOTE KG-SMOTE

AUC

Benign 0.9983 0.9975 0.9967 0.9808 0.9830
BASHLITE TCP 0.9251 0.9994 0.9984 0.9972 0.9960
BASHLITE UDP 0.9100 0.9190 0.9332 0.9503 0.9733

BASHLITE RandHex 0.9838 0.8999 0.8982 0.9777 0.9783
BASHLITE UDPHex 0.9101 0.8305 0.8126 0.9776 0.9809

mirai udp 0.9647 0.8729 0.8677 0.9708 0.9906
mirai greip 0.9826 0.8105 0.8224 0.9775 0.9858
mirai syn 0.9323 0.8819 0.8673 0.9636 0.9592
mirai http 0.9779 0.8408 0.8586 0.9686 0.9855

mirai greeth 0.9747 0.8427 0.8426 0.9459 0.9860

In Table 5, regarding precision, KG-SMOTE ranks first among the eight attack protocols,
demonstrating excellent performance. In the case of the BASHLITE TCP attack type, the
selected four attack protocols exhibit outstanding performance, with accuracy exceeding
98%. The difference between them is minimal. This is because the BASHLITE TCP dataset
is relatively balanced, and oversampling significantly improves precision. This is due to the
oversampling mechanism resulting in an increase in the number of minority class samples
in the dataset. By generating more minority class samples through oversampling, the
classifier can more fully learn the features of the minority class samples during the training
process, thereby improving the correct classification rate of the minority class samples.

However, it is important to note that high precision does not necessarily mean that sam-
ples are correctly identified. Precision only considers the ratio of correctly classified positive
samples to all samples classified as positive. It does not take into account the number of false
negatives, thus not providing a comprehensive reflection of the classifier’s performance.

In highly imbalanced datasets, if the classifier predicts all samples as the majority
class, the precision may be high because the majority of samples are correctly classified as
the majority class. However, this does not mean that the classifier can correctly identify
minority class samples, and the recall rate may be low. Therefore, relying solely on precision
to evaluate the performance of the classifier is not comprehensive.

In conclusion, although KG-SMOTE performs well in terms of precision and achieves
high accuracy in the BASHLITE TCP attack type, relying solely on precision is not sufficient
to comprehensively evaluate the performance of the classifier. It is important to consider
other metrics such as recall, F1 score, etc., in order to obtain a more comprehensive and
accurate assessment.

In Table 6, it is shown that, in terms of the recall parameter, KG-SMOTE demonstrates
excellent performance in seven of the attack types, with an improvement of 9–20% com-
pared to the SMOTE and Borderline SMOTE oversampling methods. When compared
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to other attack types, the differences between KG-SMOTE and the best algorithm in the
BASHLITE TCP, BASHLITE RandHex, and Mirai syn attack types are 0.68%, 1.11%, and
0.88%, respectively, which are relatively small.

The F1 score is a comprehensive performance evaluation metric that combines preci-
sion and recall. From Table 7, it can be observed that KG-SMOTE demonstrates leading
performance among the eight attack types. Compared to the SMOTE and Borderline
SMOTE oversampling methods, KG-SMOTE shows an improvement of at least 20%. Com-
pared to K-means SMOTE, KG-SMOTE achieves an improvement range of 2–6%.

In the attack types where KG-SMOTE did not achieve the top performance, the
algorithm only slightly lags behind the best algorithm by 0.4% and 0.38% in the Benign
and BASHLITE TCP attack types, respectively. This indicates that the performance gap of
KG-SMOTE in these attack types is very small.

According to Table 8, it can be observed that KG-SMOTE outperforms SMOTE, Bor-
derline SMOTE, and K-Means SMOTE in terms of AUC scores in attack protocols with an
imbalance ratio of 1:164 or higher. However, KG-SMOTE is not as effective as SMOTE in
the BASHLITE TCP attack protocol.

The results depicted in Tables 5–8 clearly indicate that categorization using raw data
(without resampling) yields favorable performance in terms of the precision metric, but it
produces poor results when evaluated using the F1 metric. This discrepancy arises because
the accuracy metric can be misleading and unreliable when dealing with imbalanced data.
This is due to the fact that accuracy solely considers the number of correctly categorized
samples, without considering the distribution of instances across the majority and minority
categories. In contrast, the F1 metric takes into account the correct classification of samples
in both categories, thereby offering a more comprehensive evaluation. These findings
underscore the limitations of relying solely on the accuracy metric, as it can lead to mis-
classification and unreliable outcomes. Conversely, when the KG-SMOTE oversampling
method is employed, the classifier’s performance improves significantly in terms of the F1
metric compared to the original data. This improvement can be attributed to the increased
number of samples in the minority class, resulting in a more balanced dataset.

When comparing the classification results of unsampled data and SMOTE oversam-
pling, it is apparent that the classification results after employing SMOTE oversampling
are significantly lower. This can be attributed to the fact that the synthesized data points
are distributed throughout the intervals of multiple classes, giving rise to a large number of
noise samples and anomalous samples. This blurs the classification boundaries, making
it challenging for the classification algorithm to accurately distinguish between different
classes, thereby reducing recognition accuracy.

In contrast, when using the Borderline SMOTE method, synthetic samples are gener-
ated along the line connecting minority samples in the feature space. However, in scenarios
where there is a substantial disparity between the majority and minority classes, a large
number of synthetic data points are required. Consequently, these synthetic samples tend
to be concentrated along the same line, resulting in overlapping synthetic samples. This
can lead to overgeneralization issues in the model, thereby reducing recognition accuracy.

Furthermore, the Borderline SMOTE algorithm classifies minority class samples into
three categories. While this approach may help address the class imbalance in the dataset, it
can also result in fewer minority class samples remaining in an already imbalanced dataset.
This reduction in minority class samples may cause important features to be overlooked,
further contributing to a decrease in recognition accuracy.

From Figures 4–7, The KG-SMOTE algorithm offers improvements over both Border-
line SMOTE and SMOTE in terms of evaluation metrics such as precision, recall, AUC, and
F1 scores across all protocol attacks. This improvement can be attributed to the rational
expansion and filtering of the dataset achieved through the selection of points using cluster-
ing. Comparing KG-SMOTE with K-Means SMOTE, it is observed that, although K-Means
SMOTE takes into account the problem of subclass distribution by dividing the dataset into
subclasses, the SMOTE method fails to consider the distribution of samples during the in-
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terpolation process. This oversight can lead to overfitting issues, particularly when dealing
with datasets that are extremely imbalanced. Notably, KG-SMOTE demonstrates significant
improvement in the protocol attacks of Mirai greeth, Mirai HTTP, Mirai greip, Mirai UDP,
and BASHLITE UDP. Experimental results indicate that, when synthetic samples follow a
Gaussian distribution probability during interpolation, as opposed to randomly generating
new samples on the connection line in the feature space between two samples, the detection
of attacks becomes more effective and the overall classifier performance improves. This
highlights the efficacy of using a Gaussian distribution probability for synthetic sample
generation in the context of KG-SMOTE.
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From Figures 4–7, it can be observed that traditional oversampling methods are
not effective in addressing the data imbalance issue in this scenario. In fact, traditional
oversampling techniques do not always lead to improved classification performance and
can even result in worse outcomes. This is particularly evident in the context of this
paper. The paper highlights that the characteristics of IoT traffic and the highly imbalanced
datasets in the scenario of DDoS attacks require a tailored oversampling approach. This
is why the KG-SMOTE algorithm is proposed to address these specific challenges. By
considering the unique characteristics of IoT traffic and the high class imbalance ratio,
KG-SMOTE aims to improve the detection effectiveness for DDoS attacks initiated by
different virus protocols.
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6. Conclusions

To accurately simulate real-world IoT attack scenarios, we have utilized the MBB-IoT
dataset, which was collected in the context of constructing an IoT botnet by infecting
various IoT devices such as smartphones, webcams, smart speakers, smart gateways, and a
Raspberry Pi. The attacks were targeted towards servers that were not on the same local
area network. Due to the diverse nature of these IoT devices, the dataset exhibits variations
in data formats, posing challenges in balancing the dataset.

Unbalanced data present a challenging task for many classification algorithms. Re-
sampling the training data to achieve a more balanced distribution is an effective method
to address this issue, independent of the choice of classifier. However, simply replicating
instances of the minority class to balance the classes can lead to overfitting, thus reducing
the performance of the model on unseen data. On the other hand, techniques that generate
artificial samples often tend to produce noisy samples, hindering the inference of class
boundaries. Furthermore, most existing oversamplers fail to offset the imbalance within the
minority class, which is typically a major problem when classifying imbalanced datasets.
In order to effectively assist the classifier through oversampling, it is important to avoid
amplifying noise by detecting safe regions in the input space where class regions do not
overlap. Additionally, any imbalances within the minority group should be identified and
samples generated to achieve a balanced distribution.

In response to the problem of data imbalance in the field of intrusion detection based
on the Internet of Things (IoT), this paper proposes a KG-SMOTE algorithm that combines
Gaussian probability distribution and the K-Means clustering algorithm. This algorithm
utilizes k-means clustering to group the data and concentrate the generation of synthetic
samples in the critical regions of the input space. A high proportion of minority obser-
vations are used as indicators of safe regions. Oversampling is performed only on the
safe clusters, which allows the k-means SMOTE to avoid generating noise. Additionally,
the average distance between minority samples within a cluster is used to identify sparse
regions. More synthetic samples are generated for the sparse minority groups, which helps
alleviate the imbalance within the class. Considering the protocol diversity of IoT devices
in DDoS attacks and the heterogeneity of data structures, this approach provides a more
effective way of synthesizing samples, thus addressing the class imbalance issue in IoT
intrusion detection datasets to some extent. Building upon the K-Means SMOTE oversam-
pling algorithm, new samples are generated using a Gaussian probability distribution. This
preserves the sample distribution, increases sample diversity, reduces the overlap ratio
of synthetic samples, reduces the risk of classifier overfitting, and improves the detection
accuracy of minority class samples.

The main advantages of the KG-SMOTE method are its simplicity, efficiency, and
flexibility in generating synthetic samples for the minority class. The KG-SMOTE algorithm
performs particularly well for attack types with higher imbalance ratios. For BASHLITE
UDPHex (1:768), it outperforms SMOTE, Borderline SMOTE, and K-Means SMOTE in terms
of accuracy, precision, recall, F1-score, and AUC. In mirai syn (1:249), it exhibits advantages
in accuracy, precision, F1-score, and AUC. However, for BASHLITE TCP (1:164), it does
not show any advantage in any of the metrics. The KG-SMOTE algorithm demonstrates
strong performance in scenarios with high imbalance. Conversely, it has some limitations
in situations with lower imbalance levels. It should be noted that IoT devices have become
new actors in launching DDoS attacks, while the targets of these attacks are still in the early
stages of internet applications. One future research direction is to further explore and study
imbalanced classifiers in this context.
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