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Abstract: Group IV alloys of GeSn have been extensively investigated as a competing material
alternative in shortwave-to-mid-infrared photodetectors (PDs). The relatively large defect densities
present in GeSn alloys are the major challenge in developing practical devices, owing to the low-
temperature growth and lattice mismatch with Si or Ge substrates. In this paper, we comprehensively
analyze the impact of defects on the performance of GeSn p-i-n homojunction PDs. We first present
our theoretical models to calculate various contributing components of the dark current, including
minority carrier diffusion in p- and n-regions, carrier generation–recombination in the active intrinsic
region, and the tunneling effect. We then analyze the effect of defect density in the GeSn active region
on carrier mobilities, scattering times, and the dark current. A higher defect density increases the
dark current, resulting in a reduction in the detectivity of GeSn p-i-n PDs. In addition, at low Sn
concentrations, defect-related dark current density is dominant, while the generation dark current
becomes dominant at a higher Sn content. These results point to the importance of minimizing defect
densities in the GeSn material growth and device processing, particularly for higher Sn compositions
necessary to expand the cutoff wavelength to mid- and long-wave infrared regime. Moreover, a
comparative study indicates that further improvement of the material quality and optimization of
device structure reduces the dark current and thereby increases the detectivity. This study provides
more realistic expectations and guidelines for evaluating GeSn p-i-n PDs as a competitor to the III-V-
and II-VI-based infrared PDs currently on the commercial market.

Keywords: GeSn alloys; defects; dark current; detectivity; sustainability

1. Introduction

Infrared (IR) photodetectors (PDs) are important optical sensors for a wide range
of applications, such as fiber-optic communications, Lidar, gas-sensing, and thermal ver-
sion. The III-V- and II-VI based photodetectors have gained strong traction on the IR
commercial market due to their high detectivity in shortwave-infrared (SWIR) (λ = 1–3 µm)
and mid-infrared (MIR) regions (λ = 3–5 µm) at room temperature (T = 300 K), as
well as 77 K [1–12]. However, their incompatibility with the Si-based complementary
metal–oxide–semiconductor (CMOS) processing technology makes them expensive and
complex to integrate with Si readout circuits, thus restricting their application scope. On
the other hand, the group IV semiconductors, i.e., Si- and Ge-based devices, have attracted
attention because of their CMOS compatibility, monolithic integrability on the same Si or
silicon-on-insulator (SOI) chips, and lower fabrication cost with respect to the III–V- and
II–VI-based devices. However, the limited cutoff wavelengths ~1.1 µm and 1.5 µm of the
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Si-and Ge-based PDs, respectively, make them unsuitable for the recent telecommunication
window (1.55 µm), as well as MIR applications [13–15].

The successful development of both strained and unstrained high-quality group-
IV Ge1–xSnx alloys on Si or SOI substrates via a suitable buffer layer, using either low-
temperature chemical vapor deposition (CVD) or molecular beam epitaxy (MBE) growth
techniques, has changed the prospect dramatically in last two decades [16–18]. The in-
corporation of Sn, another group-IV element, into Ge reduces the direct bandgap faster
than the indirect bandgap of the alloy, leading to direct-bandgap GeSn alloys when the Sn
concentrations reach beyond a certain critical value (~6–8%) [19]. In addition, Ge1–xSnx
alloys also provide a wide range of bandgap tunability, a large absorption coefficient [19],
a high carrier mobility [20], and a high carrier saturation velocity [21]. These noteworthy
features have made Ge1–xSnx alloys a promising material for PDs that can cover the entire
SWIR range and a good portion of the MIR region up to 3.7 µm [21–29]. Furthermore,
the presence of the L-valley in the conduction band enables a special momentum-space
carrier separation scheme in favor of high-performance photodetection [30]. Recently, a
theoretical analysis of the defect-free GeSn p-i-n PDs in the MIR region indicated that
their achievable performance can indeed compete with the existing III-V- and II–VI-based
PDs, showing great promise for eventual low-cost MIR photodetection [19]. However,
the reported GeSn-based PDs to date usually suffer from relatively high levels of defect
densities owing to the low-temperature growth and lattice mismatch with the Si or Ge
substrates. Despite the continuous advances in material growth, defects are not likely
to disappear in GeSn alloys in the near future, significantly impacting the dark current,
which is one of the most critical parameters of IR PDs. Although there have been numer-
ous reports about the dark current densities of GeSn-based PDs [31–40], very little has
been done to clarify the various contributors to the dark-current-density GeSn PDs with
different Sn concentrations and the effect of defect density, limiting the optimization of
GeSn PDs to achieve uncooled and high-performance MIR photodetection. A few recent
experimental studies have shed light on the contributing components of dark currents,
such as minority carrier diffusion, Shockley–Read–Hall (SRH) generation–recombination
(GR), and trap-assisted tunneling (TAT), providing evidence that the dark current of GeSn
PDs is lower with lower defect densities [41–43]. This intended to further study the effect
of defect density on the PD performance by establishing a theoretical model upon which
material and device developers can form realistic expectations in developing GeSn PD
architectures for various applications.

In this work, for the first time, we present a comprehensive theoretical study of device
performance of GeSn PDs in terms of the Sn concentrations and defect density. Starting
from analyzing the impact of defect densities on the carriers’ mobility and scattering time,
we examine different components contributing to the dark current, including minority
carrier diffusion, carrier generation–recombination, and tunneling. We then calculate the
responsivity and detectivity and discuss the dependences of the defect density and Sn
composition on detectivity.

The rest of the paper is organized as follows: the envisioned structure of the GeSn p-i-n
PD is described in Section 2; the analytical modeling of the mobility and scattering time
under different defect densities are discussed in Section 3; the theoretical model of the dark
current is presented in Section 4; the performance analysis on such envisioned architecture
is discussed in Sections 5 and 6; and, finally, the conclusion is offered in Section 7.

2. Device Structure of GeSn p-i-n PDs

The conceptual structure of the homojunction Ge1–xSnx p-i-n PD is shown in Figure 1a.
A composition-graded fullystrainrelaxed Ge1–xSnx buffer layer is first grown on a Si (001)
substrate. Then, a lattice-matched strain-free Ge1–xSnx p-i-n structure is grown, where an
intrinsic Ge1–xSnx layer with a thickness of ti = 3000 nm is sandwiched between a heavily
doped (Na = Nd = 1 × 1019 cm−3) n-type Ge1–xSnx layer with a thickness of tn = 100 nm
and a p-type Ge1–xSnx layer with a thickness of tp = 500 nm. The compositional fraction,
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x, is presumed to be the same in all layers. Therefore, we can neglect the effect of the
strain introduced by the latticemismatch with the increase in the Sn concentration. Similar
GeSn p-i-n PD structures on silicon substrates via a GeSn buffer have been experimentally
demonstrated [42]. An anti-reflection coating (ARC) is deposited on top of the PD to
minimize the reflection of the incident light in order to increase the light absorption. This
ARC also serves as the passivation layer to minimize the surface dark current [9,10], which
is not considered in this study. The defect density in the Ge1–xSnx p-i-n PD is assumed to be
Ndef. With different Sn concentrations, the Ge1–xSnx can be an indirect-bandgap (Figure 1b)
and a direct-bandgap material (Figure 1c). Here, we consider the GeSn PD to operate at
zero bias conditions, so the dark current density is minimal, and the detectivity is maximal.
Using the junction theory, the built-in electric field across the i-GeSn region is estimated to
be F~6 kV/cm.
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Figure 1. (a) Schematic diagram of the lattice-matched, strain-free Ge1–xSnx p-i-n PD on a Si (001)
substrate via a fully strain-relaxed, lattice-matched, compositionallygraded Ge1–xSnx buffer layer (not
to scale). Schematic band structures of (b) indirect-bandgap GeSn and (c) direct-bandgap GeSn layers.

The energy bandgaps of Ge1–xSnxalloys that determine the photodetection range of
GeSn PDs can be calculated as follows [19]:

Eξ
g(Ge1−xSnx) = (1− x)× Eξ

g(Ge) + x× Eξ
g(Sn)− x× (1− x)× bξ (1)

where ξ denotes either the Γ- or L-valley in CB; Eξ
g(Ge) and Eξ

g(Sn) represent the bandgap
energies of Ge and Sn, respectively; and bξ is the bowing parameters. The values used in
this calculation aretaken from Reference [19].
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Figure 2 shows the variation in the indirect and direct bandgaps as a function of the
Sn concentration at room temperature (T = 300 K).The increase in the Sn concentration
decreases the indirect and direct bandgaps of GeSn, that remarkably redshifts both the
indirect- and direct-band absorption edges. Thus, efficient MIR detection can be achieved
in GeSn PDs. Due to the negative direct bandgap of Sn, the direct bandgap of Ge1–xSnx
decreases at a faster rate than the indirect bandgap and finally crosses it at ~6.6%. Therefore,
beyond ~6.6% Sn concentration, Ge1–xSnx is transformed to a direct bandgap material.
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Figure 2. Calculated indirect and direct bandgaps of bulk Ge1–xSnx as a function of the Sn concentra-
tion at T = 300 K.

3. Mobilities and Scattering Times

In this section, we formulate and calculate the carriers’ mobility and scattering time of
Ge1–xSnx alloys in the presence of defect density.

Dislocation densities in the intrinsic region have been considered to be the predomi-
nant defect centers that obstruct a carriers’ movement, resulting in a reduction in carrier
mobilityand scattering time. We consider three different mobilities: electrons in the Γ-valley
conduction band (Γ-CB) and L-valley conduction band (L-CB) and holes in the valence
band (VB). In the presence of defects, they can all be expressed as follows [44,45]:

µe =
30
√

2πε2d2(kBT)3/2

Ndefq3 f 2
defLd

√
m∗ce

(2)

µh =
30
√

2πε2d2(kBT)3/2

Ndefq3(1− fdef)
2Ld
√

m∗ch

(3)

where ε is permittivity of the Ge1–xSnx; q is the electronic charge; kB is the Boltzmann
constant; T is the temperature; d is the distance between the defect centers (can be estimated
from the defect density via Ndef

(
cm−2) = 1014/

(
πd2) [46]); f def is the Fermi occupation

factor of ionized defect centers (approximated as ~0.5, assuming they are situated near the
center of the bandgap of the intrinsic region); and m∗ce and m∗ch denote the conductivity
effective masses of electron and hole, respectively, that depends on the Sn composition
of alloys taken from the 30-band full-zone k·p model [47]. The Debye screening length is
Ld

[
=
(
εkBT/q2ni

)1/2
]

[45], where ni is the intrinsic carrier concentration that depends on
the GeSn alloy bandgap governed by the Sn concentration.
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The calculated electron mobilities at the Γ-CB and L-CB and the hole mobility as a
function of the Sn concentration with various defect densities are shown in Figure 3. The
results show that the mobilities significantly decrease with the increasing defect density.
Concomitantly, mobility increases modestly with the increasing Sn concentration because of
the reduction in the conductivity mass m∗ce, and the Debye length as a result of the increased
intrinsic carrier concentration.
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Figure 3. Mobility of the electrons in the (a) Γ-CB, (b) L-CB, and (c) holes as a function of the Sn
concentration for different defect densities.

The carrier scattering time is related to the mobility as follows [45]:

τ =
m∗c µ

q
(4)

Their dependences on the Sn concentration are shown for Γ-CB and L-CB electrons
and holes in Figure 4a–c, respectively, for several defect densities. In addition to the rapid
reduction in the scattering time as the defect density increases, the increase in the Sn
concentration, on the other hand, results in a small decrease in the scattering time because
of the reductions in the conductivity mass and the Debye length that tends to compensate
for each other at a fixed defect density.
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4. Dark Current Analysis

Dark current density is an important parameter of the PD, andseveral mechanisms
contribute to the dark current density, including the diffusion of the minority carriers
towards the intrinsic region from the heavily doped contact layers (Jdiff), the GR current
due to the presence of defect states acting as the GR centers inside the intrinsic region,
carrier tunneling, and the surface leakage current [9,10].The GR current density consists
of (a) SRH (JSRH) or trap-assisted, (b) interband generation (Jgen), and (c) Auger or three-
carrier processes (JAug). The tunneling component generally occurs due to the tunneling
of the carriers and is of two types: TAT (JTAT) and band-to-band tunneling (BTBT). The
thicker intrinsic region (~3000 nm) in the GeSn PDs under consideration prevents the BTBT.
Furthermore, owing to the lattice-matched strain-relaxed structure, the defect density is
negligible for the surface. As a result, the surface leakage current [48] is not considered.
Therefore, the reverse saturation current density (J0) can be expressed as the summation of
these contributing mechanisms, as shown below:

J0 = Jdiff + JSRH + Jgen + JAug + JTAT (5)

Next, we show our theoretical models for different dark current components and
present the calculation results. The material parameters of GeSn alloys are obtained from
the linear interpolation of those of Ge and Sn taken from Reference [49].

4.1. Diffusion Dark Current Density

Figure 5 depicts the generation of a diffusion dark current due to the diffusion of
minority holes (electrons in Γ-CB and L-CB) towards the i-Ge1–xSnx layer from the heavily
doped n-Ge1–xSnx (p-Ge1–xSnx) layer.
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Figure 5. Illustration of dark current due to diffusion of minority carriers in homojunction GeSn PD
with (a) indirect-bandgap and (b) direct-bandgap GeSn layers.

The minority carriers’ diffusion current density under the short-base approximation
can be calculated as follows [19]:

Jdiff = q
[

DΓ
n

tp
nΓ

p0 +
DL

n
tp

nL
p0 +

Dp

tn
pn0

]
(6)

where DL
n , DΓ

n , and Dp are the diffusion coefficients of electrons in the L-CB, Γ-CB, and
holes, respectively, which are related to the mobility via D = µkBT/q, and obviously they
are also a function of defect density; and tp and tn denote the thickness of the heavily
doped p- and n-type Ge1–xSnx layer. The minority concentrations are related to the doping
concentrations and the intrinsic carrier concentration (ni) by (nΓ

p0 + nΓ
p0) = n2

i /Na and
pn0 = n2

i /Nd.The intrinsic carrier concentration in the GeSn alloy can be expressed as the
sum of contributions from the Γ- (nΓ

i ) and L-CB (nL
i ), as expressed below [19]:

n2
i =

(
nΓ

i + nL
i
)2

= NΓ
C NV exp

(
− EΓ

g
kBT

)
+ NL

C NV exp
(
− EL

g
kBT

)
(7)

NΓ
C = 2

(
2πm∗ΓkBT

}2

)3/2

(8a)

NL
C = 2

(
2πm∗LkBT

}2

)3/2

(8b)

NV = 2
(

2πm∗hkBT
}2

)3/2

(8c)

where h̄ is the reduced Planck’s constant; EΓ
g and EL

g represent the direct- and indirect-
bandgap energies of the Ge1–xSnx alloy, respectively, taken from Reference [19]; NΓ

C, NL
C ,

and NV are the effective density-of-state (DOS) values for electrons in the Γ-CB, L-CB,
and holes in the VB, respectively [19]; and m∗Γ, m∗L, and m∗h are the DOS effective masses
of electrons in the Γ-CB, L-CB, and holes, respectively, with their values taken from the
30-band full-zone k·p model [47]. The lifetime of electrons in Γ- and L-valley are considered
as 12 ns and 100 µs [19] respectively while the hole lifetime τp = 100 µs [19].
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The diffusion dark current density, along with its various contributing components, is
shown in Figure 6a for Ndef = 1 × 106 cm−2. The increase in the Sn concentration not only
shrinks the bandgap of the alloy but also increases the intrinsic carrier concentration [19].
As a result, the minority carrier diffusion into the i-GeSn region increases and thereby
increases the diffusion current density. For lower Sn concentrations, the L-CB sits below
the Γ-CB, so the GeSn is still an indirect bandgap material. Thus, more electrons reside in
the L-CB than in the Γ-CB in the p-doped region, so the L-CB component is more dominant.
On the other hand, beyond the indirect-to-direct transition, the Γ-CB becomes lower than
the L-CB, and the Γ-CB component increases sharply and ultimately crosses the L-CB
component after reaching a Sn composition of ~8% and becomes dominating. The hole
component is always lower than that of electrons because of its lower mobility.
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Figure 6. (a) Minority carrier diffusion current density and its different contributing components as
a function of the Sn concentration with a defect density of 106 cm−2. (b) Minority carrier diffusion
current density as a function of the Sn concentration with various defect densities.

Next, we show the calculated diffusion current density as a function of the Sn concen-
tration with various defect densities in Figure 6b. At a fixed defect density, the diffusion
current increases with the increasing Sn concentration, owing to the increased intrinsic
carrier density. As the defect density increases, the carriers’ scattering time, mobility, and
diffusion coefficients decrease, resulting in a reduction in the minority carrier diffusion
current density.

4.2. SRH Dark Current Density

The dark current density induced by either capturing an electron from the VB while
leaving a hole or emitting an electron to the CB by the defect states (Etrap) situated in
bandgap is an SRH or trap-assisted current. Figure 7 illustrates the SRH current inside the
i-Ge1–xSnx layer for both direct- and indirect-bandgap Ge1–xSnxPDs in which contributions
from both the Γ-CB and L-CB, as well as the VB, are accounted for by the following [50]:

JSRH = JΓ
SRH + JL

SRH + Jh
SRH = q

[
AΓ

e nΓ
i + AL

e nL
i + Ahni

]
× ti (9)

where the SRH coefficients of electrons in the Γ-CB (AΓ
e ) and L-CB (AL

e ) and the holes in the
VB (Ah) are as follows [50]:

AΓ
e = σevΓ

thNdefNTD (10a)

AL
e = σevL

thNdefNTD (10b)

Ah = σhvh
thNdefNTD (10c)



Sensors 2023, 23, 7531 9 of 23

where σe (σh) is the electron (hole) capture cross-sectional area, vth =
√

3kBT/m∗c is the
thermal velocity of the carriers, and NTDis the number of traps per unit length of defect.
The capture cross-sectional area of the electron at room temperature is approximated to
that of pure Ge (σe = 7 × 10–16 cm2 [51]), owing to the lack of experimental data on GeSn
alloys. For holes, we considered the value of the capture cross-sectional area of the GeSn
alloy from Gupta et al.’s work to be σh = 1.5 × 10–19 cm2 [52].
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Figure 7. Illustration of SRH dark currents in GeSn PD with (a) indirect-bandgap and (b) direct-
bandgap GeSn layers.

Figure 8 shows the calculated SRH coefficients as a function of the Sn concentration
for Ndef = 1 × 106 cm−2. Because the lowest effective mass of electron belongs to the Γ-CB,
its thermal velocity is much higher than that of the electron in the L-CB and hole. Thus,
the SRH recombination coefficient of the electron in Γ-CB is the highest among them. The
thermal velocity increases with the increase in the Sn concentration due to the reduction
in the effective masses. Therefore, the SRH recombination coefficient shows an increasing
trend with the increase in the Sn concentration.
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Figure 8. SRH coefficients for electrons and holes of GeSn alloys as a function of the Sn concentration.

Figure 9a depicts the calculated SRH current density against the Sn concentration
with a fixed defect density of Ndef = 1 × 106 cm−2. The increase in the Sn concentration
reduces both the direct and indirect bandgap of the GeSn alloy and increases the intrinsic
carrier concentration [19]. As a result, more electron–hole pairs (EHPs) are generated due
to the capture and emission of electrons by the defect states present inside the intrinsic
Ge1–xSnx region at higher Sn concentrations. Thus, the SRH current density increases
with the increasing Sn concentration. With low Sn concentrations, more electrons emitted
by the defect states land in L-CB, producing a larger L-CB component than that of Γ-CB.
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As Ge1–xSnx becomes a direct-bandgap material at higher Sn concentrations, the Γ-CB
component increases rapidly and eventually surpasses the L-CB component when the Sn
concentration is higher than ~10%. Since electrons have a higher thermal velocity than
holes, the electron SRH current density of either Γ-CB or L-CB is always higher than that of
the hole one. Figure 9b shows the SRH current density as a function of the Sn concentration
for various defect densities. The increase in the defect density increases the GR rate of
the carriers by the defect states. Thus, the SRH current density increases rapidly with the
increasing defect density.
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Figure 9. (a) SRH current density, along with its contributing components, as a function of the Sn
concentration at a fixed defect density of 1 × 106 cm−2. (b) SRH current density as a function of the
Sn concentration for various defect densities.

4.3. Generation Dark Current Density

Figure 10 illuminates the mechanisms of the generation dark current in GeSn PDs,
where the band-to-band interband transitions in the i-Ge1–xSnx region also contribute to
the dark current. EHPs are created thermally in the intrinsic Ge1–xSnx layer and then swept
by the built-in electric field to form dark currents.
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where nr represents the refractive index of the active medium; c is the velocity of light in 
vacuum; ɛ0 is the free space permittivity; m0 is the rest mass of electron; ω denotes the 
angular frequency of incident light; E is the incident photon energy; 2
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Figure 10. Illustration of dark current due to the generation of EHPs in homojunction GeSn PD with
(a) indirect-bandgap and (b) direct-bandgap Ge1–xSnx layers.

To calculate the generation dark current in the GeSn’s active region, we start with the
calculation of the absorption coefficient of the Ge1–xSnx alloy. In Ge1–xSnx, the photon ab-
sorption can take place via direct-gap transition (VB→Γ-CB) and indirect-gap (VB→L-CB)
interband transitions. The absorption coefficient (αdir) for direct transition can be calcu-
lated using Fermi’s golden rule, considering the Lorentzian line-shape function and the
nonparabolicity effect as follows [53]:

αdir(E) =
π}q2

nrcε0m2
0E∑

m

∫ 2dk

(2π)3 |q̂.pCV |2 ×
γ/2π

[ECΓ(k)− Em(k)− E]2 + (γ/2)2 (11)
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where nr represents the refractive index of the active medium; c is the velocity of light in
vacuum; ε0 is the free space permittivity; m0 is the rest mass of electron; ω denotes the
angular frequency of incident light; E is the incident photon energy; |q̂.pCV |2 = m0EP/6
indicates the momentum matrix, with Ep denoting the optical energy parameter; γ is the
full-width-at-half-maximum (FWHM) of the Lorentzian line-shape function; and ECΓ(k)
and Em(k) denote the electron and hole energy in the Γ-CB and VB, respectively, which can
be calculated using a multi-band k·p method [53], and the summation is over all interband
transitions, from VB (both heavy hole and light hole) to Γ-CB.

The indirect absorption coefficient (αindir), on the other hand, can be calculated by
considering acoustic phonon absorption and emission processes, using the following
empirical expression [21]:

αindir(E) = Ap

(
E− EL

g + Eap

)2
+ Ap

(
E− EL

g − Eap

)2
(12)

where the first term is associated with acoustic phonon absorption,
(

E > EL
g − Eap

)
, and

the second term is associated with acoustic phonon emission,
(

E > EL
g + Eap

)
, and Eap is

the energy of acoustic phonon. Experimental data on Ap and Eap are not currently available
for Ge1–xSnx. Because of the similarity of the band structures between Ge1–xSnx and Ge, the
values for Ge1–xSnx are approximated to those of Ge (Ap = 2717 cm–1 and Eap = 27.7 meV at
room temperature [21]). The total optical absorption coefficient (α) can then be calculated
as follows:

α(E) = αdir(E) + αindir(E) (13)

The calculated result of total optical absorption coefficient spectra is shown in Figure 11
for a range of Sn concentrations. It can be noted that, for a particular Sn concentration, the
total absorption coefficient decreases with the increase in the wavelength, followed by a
sharp decrease near the direct bandgap energy. With the increase in the Sn concentration, the
bandgap energy decreases, causing the redshift of the cutoff wavelength of Ge1–xSnx PDs.
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The generation current density in Ge1–xSnxcan then be calculated as follows [53]: 
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Figure 11. Calculated total absorption coefficient spectra of GeSn alloys with different Sn concentrations.
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The direct-gap (RΓ
0 ) and indirect-gap absorption rate per unit volume (RL

0 ) can be
calculated according to van Roosbroeck–Schockley model, as follows [54,55]:

RΓ
0 (E) =

∞∫
0

n2
r

π2}3c2
αdir(E)E2

exp[(E− qϕ)/kBT]− 1
dE (14)

RL
0 (E) =

∞∫
0

n2
r

π2}3c2
αindir(E)E2

exp[(E− qϕ)/kBT]− 1
dE (15)

where qφ denotes the energy difference between the quasi-fermi levels of then- and p-GeSn
regions. Under equilibrium condition, the direct-gap (BΓ

eh) and indirect-gap bimolecular
recombination coefficients (BL

eh) can be calculated as follows [54]:

BΓ
eh =

RΓ
0 (E)

NΓ
C NV exp

(
− EΓ

g
kBT

) (16)

BL
eh =

RL
0 (E)

NL
C NV exp

(
− EL

g
kBT

) (17)

The generation current density in Ge1–xSnxcan then be calculated as follows [53]:

Jgen = JΓ
gen + JL

gen = q
[

BΓ
ehnΓ

i ni + BL
ehnL

i ni

]
× ti (18)

To validate the calculation results, we first compare our calculation for Ge1–xSnx at
x = 0 (i.e., pure Ge) with the reported experimental data for Ge [56], as shown in Table 1. A
good agreement is found. Figure 12a depicts the calculated direct and indirect radiative
recombination coefficients calculated as a function of the Sn concentration. As the Sn
concentration increases, so does the absorption coefficient, which, in turn, leads to the
increase in the recombination coefficients in the infrared region. Because the Γ-CB bandgap
drops down faster than the L-CB with the increasing Sn concentration, the Γ-valley radiative
recombination coefficient increases more rapidly than the L-valley one.

Table 1. Direct and indirect-band radiative recombination coefficients of Ge.

Radiative Recombination Coefficients (cm3 s–1) Pure Ge [56] This Work

Direct bandgap
(

BΓ
eh
)

1.3 × 10–10 1.75 × 10–10

Indirect bandgap
(

BL
eh
)

5.1 × 10–15 5.2 × 10–15
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Figure 12. (a) Radiative recombination coefficients as a function of the Sn concentration. (b) Different
contributors and total interband generation dark current density as a function of the Sn concentration.
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Figure 12b depicts the calculated generation dark current density, along with its
contributing components. The increase in the Sn concentration causes the bandgaps to
decrease and the intrinsic carrier concentration to increase, which, in turn, leads to an
increase in both the direct and indirect generation rates. As a result, the total generation
dark current density increases significantly with the increase in the Sn concentration. In
addition, it is not difficult to see from Figure 12b that the direct-gap generation dark
current dominates over its indirect counterpart because L-CB electrons require phonon
participation to induce interband transitions, which are far less efficient processes than
that of Γ-CB. The difference becomes more pronounced with higher Sn concentrations,
particularly when Ge1–xSnx becomes direct-gap materials.

4.4. Auger Dark Current Density

Auger or three-carrier GR is another important contributor to the dark current, espe-
cially when the carrier concentrations are high. Such a process takes place when an electron
or hole relaxes from a higher energy level to a lower energy level while transferring its
energy to create an EHP, as illustrated in Figure 13. Those generated EHPs can then produce
an Auger dark current. Depending on the participating carriers, the Auger process can be
designated as either electron–electron–hole (eeh) or electron–hole–hole (ehh). Needless
to say, the Auger current is significant only at higher carrier concentrations. Here, we
shall illustrate the calculation of an eeh Auger coefficient. The ehh Auger coefficient can
be calculated in a similar way. The Auger coefficient involving the eeh process can be
calculated as follows [57]:

Ceeh =
m∗e α2

c |Ma|2

4π4}3(1 + 2mr)
3/2

I0

N2
C NV

exp
(
−

ET − Eg

kBT

)
(19)

mr = m∗e /m∗h (20)

αc = (m∗h + m∗e )/(m
∗
h + 2m∗e ) (21)

where m∗e is the DOS effective mass of electrons in CB, ET
(
= Eg/αc

)
is the threshold

energy required for the second electron to participate in the Auger process, |Ma|2 is the
matrix elements of coulomb interaction between two electrons at threshold energy with
kT =

√
(2m∗e /}2)ET , and I0 is expressed as [57]

I0 =

∞∫
0

k2(k + kT)
2(k + 2kT)

2 × exp
[
− }2

2m∗e kBT
k(k + 2kT)

]
dk (22)Sensors 2023, 23, x FOR PEER REVIEW 14 of 24 
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Figure 13. Illustration of Auger dark current due to eeh and ehh processes in (a) indirect-bandgap
and (b) direct-bandgap Ge1–xSnx alloys.
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Because of the close proximity between Γ-CB and L-CB, both contribute to the Auger
current density, which can be calculated as follows:

JAug = JΓ
Aug + JL

Aug + Jh
Aug = q

[
CΓ

eeh

(
nΓ

i

)2
ni + CL

eeh

(
nL

i

)2
ni + Cehhn3

i

]
× ti (23)

To validate our model, we first calculate the Auger coefficients for pure Ge (x = 0%)
and compare our results with the experiment data in the literature [56]. The comparison
is shown in Table 2, where excellent agreement is found. Next, we calculate the Auger
coefficients as a function of the Sn concentration for eeh and ehh processes involving either
L-CB or Γ-CB electrons, and the results are shown in Figure 14a. From Equation (19), it
can be observed that the Auger coefficients are dependent on bandgap energy, as well
as the effective DOS in the energy bands. Auger coefficients increase with the increas-
ing Sn concentration because of the reduction in both the bandgap and effective DOS.
Moreover, the direct-bandgap Ge1–xSnx at a higher Sn concentration produces a larger
Auger coefficient than that of the indirect-bandgap Ge1–xSnx, thus dominating the Auger
process. Figure 14b shows our calculated Auger current density, along with its contributing
components, as a function of the Sn concentration. A higher Sn concentration leads to a
higher intrinsic carrier concentration [19], thereby producing a larger Auger current. At a
lower Sn concentration, when Ge1–xSnx is indirect, most electrons reside in the L-CB. As
a result, the L-CB Auger dark current dominates over the Γ-CB component. However, as
the Sn concentration increases, more and more electrons reside in the Γ-CB, and the trend
becomes reversed, so the Γ-CB Auger process eventually surpasses both the L-CB and ehh
Auger components and becomes dominant.

Table 2. Auger generation–recombination coefficients.

Auger Generation–Recombination Coefficients (cm6 s–1) Pure Ge [56] This Work

Γ-valley eeh
(
CΓ

eeh
)

– 2.62 × 10–33

L-valley eeh
(
CL

eeh
)

ehh (Cehh)
3.0 × 10–32

7.0 × 10–32
3.15 × 10–32

7.31 × 10–32
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Figure 14. (a) Auger coefficients as a function of the Sn concentration. (b) Auger current density and
its contributing components as a function of the Sn concentration.

4.5. Tunneling Dark Current Density

Figure 15 illustrates the mechanisms of tunneling dark currents in GeSn PDs. The
presence of defect states inside the Ge1–xSnx active layer introduces the TAT of the carriers
that is the source of the TAT-related-dark current, which depends on the tunneling the
effective mass, defect states’ energy, and electric field in the depletion region [58]. Because
of the close proximity of Γ-CB and L-CB in energy, electrons residing in both Γ-CB and
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L-CB participate in TAT to contribute to the dark current. According to the Hurkx model,
the TAT-related dark current can be evaluated using the following calculation [59]:

JTAT = JΓ
TAT + JL

TAT + Jh
TAT = q

[
AΓ

e GΓ
e nΓ

i + AL
e GL

e nL
i + AhGhni

]
× ti (24)

where GΓ
e , GL

e , and Gh are the corresponding TAT enhancement factors, which can be
calculated as [59]

Ge(h) =
∆Ee(h)

kBT

1∫
0

exp
[∆Ee(h)

kBT
u− Ke(h)u

3/2
]

du (25)

Ke(h) =
4
3

√
2m∗ce(h)∆E3

e(h)

q}|F| (26)

where ∆Ee(h) is the energy difference between the defect state and CB minima (VB maxima),
and F is the local electric field.
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Figure 15. Illustration of TAT-related electron tunneling in Ge1–xSnxPD with (a) indirect-bandgap
and (b) direct-bandgap GeSn alloys and (c) hole tunneling.

Figure 16 depicts the calculated TAT enhancement factors as a function of the Sncon-
centration. Because the zero-bias condition is considered in this analysis, TAT tunneling
occurs due to the presence of the built-in electric field. The tunneling effective masses
are reduced with the increase inthe Sn concentration, resulting in an increase in the
TAT enhancement factors. Because Γ-CB electrons have a much smaller effective mass
(0.045 − 0.166x + 0.043x2) than L-CB electrons (0.566 − 0.449x + 1.401x2 [47]), they are
more likely to be captured by defect states, yielding higher TAT enhancement factors.
On the other hand, the holes in the VB have a large effective mass, leading to low TAT
enhancement factors.
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Figure 16. TAT enhancement factors as a function of the Sn concentration.

Figure 17a shows the calculated TAT current density, with its contributing component’s
calculated defect density of Ndef = 1 × 106 cm−2 against the Sn concentration. Due to their
lower effective mass, the electrons can tunnel at faster rates through the defect states than
the holes. For lower Sn concentrations, the Γ-CB sits above the L-CB, so most electrons
reside in the L-CB. As a result, the L-CB component is therefore higher than the Γ-CB
component. Furthermore, the TAT dark current density increases with the increasing Sn
concentration because of the reduction in bandgap energy that lowers the tunneling barrier,
thereby increasing the tunneling probability and current. For higher Sn concentrations
where Ge1–xSnx becomes direct-bandgap materials and the Γ-CB sits lower than the L-CB,
more and more electrons populate the Γ-CB. Together with the small effective mass of Γ-CB
electrons, the Γ-CB tunneling current goes up. Figure 17b shows the total TAT dark current
density as a function of the Sn concentration for defect densities ranging from 1 × 106 to
1 × 109 cm−2. The TAT dark current density increases rapidly with the increasing defect
density that causes the tunneling rate to go up.
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Figure 17. (a) Different contributors and total TAT current density as a function of the Sn concen-
tration with a defect density of 1 × 106 cm−2. (b) Total TAT current density as a function of the Sn
concentration for different defect densities.

4.6. Total Dark Current

Following the above analysis of various dark current components, we are in the
position to calculate the total dark current density. Figure 18 shows the calculated total
dark current and its contributing components as a function of the Sn concentration at a
fixed defect density of Ndef = 1 × 106 cm−2. In the case of pure Ge (x = 0%), the SRH
and TAT components are the main contributors of the dark current, and this finding is
in a good agreement with the reported result [58].The total dark current density, along
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with its contributing components, increases with the increasing Sn concentration. At
lower Sn concentrations (x < 5%), SRH, TAT, and diffusion components dominate the dark
current. At higher Sn concentrations, however, as Ge1–xSnx becomes a direct-bandgap
material, the interband generation component takes over rapidly in regard to dominating
the total dark current. Meanwhile, in the absence of an incident photon signal, the carrier
concentration remains low in the i-Ge1–xSnx region, and the Auger contribution is therefore
weak with respect to the other components throughout the Sn-concentration range of
interest. Under the zero-bias condition, the electric field inside the intrinsic region is very
small (~6 kV/cm), so the TAT current is therefore relatively insignificant in comparison
with the SRH component.

We next study the effect of higher defect densities on the dark current density. Figure 19
shows the calculated total dark current density as a function of the Sn concentration for
defect densities ranging from 1 × 106 to 1 × 109 cm−2 and compares it with the previously
reported experimental data [31–40,42]. For a fixed Sn concentration, the increase in the
defect density increases the GR centers inside the i-Ge1–xSnx region, thereby increasing in
the dark current. Because the dark current density is dominated by its SRH component at
lower Sn concentrations (<8%), the total dark current increases sharply with the increase in
the defect density. These results suggest that for Ge1–xSnx PDs with lower Sn concentrations,
it is crucial to lower the defect density as much as possible in order to minimize the
dark current. At higher Sn concentrations, however, as the i-Ge1–xSnx layer becomes
a direct-bandgap material, the intrinsic carrier concentration increases rapidly with the
bandgap reduction, and more of these carriers reside in Γ-CB, so the interband generation
current becomes dominant. Thus, at higher Sn concentrations, the dark current density
depends mostly on the material intrinsic properties and becomes less sensitive to the
defect density. The analysis implies that a significant improvement in dark current is
less likely to be obtained by further reducing the defect density to less than 107 cm−2. In
addition, from the experimental data measured from the Ge1–xSnx PDs, it can be found that
some experimental data fall in the range of the calculated dark current density between
Ndef = 1 × 106 and 1 × 109 cm−2, and some are higher than the calculated dark current
density for Ndef = 1 × 109 cm−2. This discrepancy is attributed to the much thinner GeSn
active layer of the reported GeSn PDs (typically 100–500 nm) which leads to much higher
TAT currents. The results suggest that further optimization of GeSn PDs is necessary to
minimize the dark current density of GeSn PDs.
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Figure 18. Total dark current density and its components as a function of the Sn concentration.
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5. Optical Responsivity Analysis

The optical responsivity is a figure of merit of the PDs which measures from the ratio
of output electrical signal to input optical power. The optical responsivity of Ge1–xSnxp-i-n
PDs under normal incidence can be calculated as follows [29]:

Rλ =
qλ

hc
ηi(1− R)[1− exp(−αti)] (27)

where λ is the wavelength, h is the Planck’s constant, ηi is the internal quantum efficiency,
and R is the reflectivity of the anti-reflection coating on the top surface. To obtain the highest
achievable responsivity of GeSn PDs, we assume that the internal quantum efficiency is
100% and that the reflectivity of the ARC layer is almost zero. (It should be noted that, in
reality, the quantum efficiency of the GeSn PDs may be lower, and the reflectivity may not
be zero, so the responsivity would be lower.) Another simplified assumption is made in
our calculation that the absorption loss in the 100 nm thick n-Ge1–xSnx is neglected owing
to the thin thickness.

Figure 20 shows the calculated optical responsivity spectra of the GeSn PD for different
Sn concentrations. For a fixed Sn concentration, the optical responsivity increases with
the increasing wavelength, and it sharply decreases at the direct-bandgap energy. As
the Sn concentration increases, the cutoff wavelength redshifts owing to the reduced
direct-bandgap energy. As a result, the optical responses of the GeSn PDs can cover the
MIR region.
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6. Detectivity Analysis

Finally, with the calculated total dark current density and optical responsivity, we then
study one of the most important figures-of-merit for PDs, detectivity (D*). The detectivity
of the Ge1–xSnxPD can be expressed as follows [60]:

D∗ =
Rλ

√
Ad∆ f√
〈i2n〉

(28)

where Ad is the detection area, ∆f denotes the bandwidth and, in is the dark current
noise. The different contributors to dark current noise are thermal noise, shot noise, and
generation–recombination noise. However, at room temperature, the magnitude of thermal
noise is ~ten-to-one-hundred times more than the other contributing factors, suggesting
that the effect of other contributorsis negligible with respect to the thermal noise [60].
Therefore, under dark conditions, in can be evaluated using the following calculation [19]:〈

i2n
〉
=

4kBT∆ f
R0

(29)

where R0 is the differential zero-bias resistance [53,60]. By combining Equations (28) and (29)
with the dark current in Equation (5), the detectivity of the Ge1–xSnx p-i-n PD can be
expressed as follows:

D∗ =
Rλ

2
√

qJ0
(30)

Figure 21 shows the calculated detectivity of the Ge1–xSnx p-i-n PD under the zero-bias
condition in the presence of various defect densities. For a fixed defect density and Sn
concentration, the detectivity is higher at longer wavelengths, and then it rapidly decreases
when reaching its cutoff wavelength. When the defect density increases, the detectivity
drops, owing to the increased dark current density. From the calculated detectivity spectra,
we extracted the peak detectivity (which is defined as the detectivity at a wavelength of
λp = 0.9 × λc) as a function of the Sn concentration, with various defect densities, and the
results are depicted in Figure 22.The presence of higher defect states inside the intrinsic
region acting as the GR centers produces a higher dark current. As a result, the detectivity
decreases with the increasing defect density. Reducing the defect density can certainly
improve detectivity. However, the degree to which the improvement can be obtained
depends on the Sn concentration. It can be seen that, for smaller Sn concentrations (<8%),
a significant improvement in detectivity can be achieved by reducing the defect density.
However, when Ge1–xSnx becomes a direct-bandgap material at higher Sn concentrations,
the payoff for detectivity by reducing the defect density to less than ~1 × 107 cm−2 is
not as impressive because the generation dark current becomes the dominant component.
These results highlight the dependences of the defect density and Sn composition on the
detectivity and photodetection range of GeSn PDs, providing useful guidelines for device
and system developers to optimize GeSn PDs to achieve a desired performance for practical
application.
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Figure 21. Calculated detectivity spectra of Ge1–xSnx PDs for (a) x = 0%, (b) x = 4%, (c) x = 8%, and
(d) x = 12% with various defect densities.
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7. Conclusions

In this paper, to illuminate practical applications, we theoretically studied the achiev-
able performance of the homojunction Ge1–xSnx p-i-n PD at room temperature, owing to
different sources of dark current, including minority carrier diffusion, various GR tech-
niques, and tunneling of carriers. The presence of defect states produces GR centers that
significantly impact the dark current. The calculation results show that the defect density
significantly increases the dark current at low Sn concentrations, so improving the material
quality is necessary and effective to suppress the dark current density and, thus, enhance
the detectivity. On the other hand, when the Sn concentration is high enough to transfer the
GeSn layers into a direct-bandgap material, the significantly reduced bandgap energy leads
to a high intrinsic carrier density, so the generation dark current density dominates the dark
current density. Thus, the detectivity is less sensitive to the defect density. Furthermore,
the comparative study gives clear evidence that further optimization is needed to reduce
the dark current. These results provide insights into the dark current density in terms of
the defect density and Sn concentration of GeSn PDs, establishing important guidelines for
device developers to improve the performance of GeSn PDs for practical applications.
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