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Abstract: Accurate estimation of transportation flow is a challenging task in Intelligent Transportation
Systems (ITS). Transporting data with dynamic spatial-temporal dependencies elevates transporta-
tion flow forecasting to a significant issue for operational planning, managing passenger flow, and
arranging for individual travel in a smart city. The task is challenging due to the composite spa-
tial dependency on transportation networks and the non-linear temporal dynamics with mobility
conditions changing over time. To address these challenges, we propose a Spatial-Temporal Graph
Convolutional Recurrent Network (ST-GCRN) that learns from both the spatial stations network
data and time series of historical mobility changes in order to estimate transportation flow at a
future time. The model is based on Graph Convolutional Networks (GCN) and Long Short-Term
Memory (LSTM) in order to further improve the accuracy of transportation flow estimation. Extensive
experiments on two real-world datasets of transportation flow, New York bike-sharing system and
Hangzhou metro system, prove the effectiveness of the proposed model. Compared to the current
state-of-the-art baselines, it decreases the estimation error by 98% in the metro system and 63% in the
bike-sharing system.

Keywords: transportation flow estimation; graph convolutional networks; spatial-temporal
dependencies; LSTM; deep learning; metro dataset; bike-sharing system dataset

1. Introduction

With the rapid development of modern cities, population growth, and technological
upgrading and development (Artificial Intelligence, Internet of Things, and Internet of
Vehicles [1]), there has been an urgent need for more sophisticated and efficient transport
systems both in terms of their structure and their organization and operation.

Traffic flow estimation is one of the critical issues of modern transportation manage-
ment and Intelligent Transportation Systems (ITSs) structure. It contributes to the planning
of travel routes, the evaluation of travel demand, the effective and efficient operation of
public transport and, consequently, to the efficient operation of the whole city and the
alleviation of transportation-related problems.

Cities transport sector is expanding and altering to become more accessible, to be
able to serve larger numbers of passengers without compromising quality of traveling,
and to become more ecologically conscious and sustainable. Modern public transport
systems include road vehicles, underground railways, as well as various other new modes
of transport that have appeared in recent years, including bike-sharing systems, ride-hailing
services, and e-scooter.

The underground transit seems to be the leading force in public transportation. World-
wide investments in underground rail transportation infrastructure are growing fast every
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year [2]. Most cities without metro are planning to construct one, and the cities that have
already developed subways are building new tracks and expanding their subway network
due to everyday traffic pressure. The speeds of movement, the accuracy of the transition
times, as well as an extensive network of stations are some of the reasons why it excels over
other public transportation media.

In addition to underground railway transit, shared bicycles seem to be one of the best
alternatives to address the climate emergency, traffic road congestion, and overcrowding. A
bike-sharing system consists of bicycles which are available to the citizens to rent them for
short or long distances. Thus, several stations are strategically distributed throughout the
city, in order to allow people to rent and return the bikes according to their traveling needs.
Bike-sharing systems have already been implemented in numerous places throughout
the world.

Therefore, the transport network has become more complex and difficult to manage.
Due to the irregular structure of the transportation network and the fluctuating temporal
features of traffic flow, the transportation flow forecasting problem seems to be more
challenging than other traditional time series forecasting problems which have a simpler
structure and complexity. The traffic state in a specific location has both spatial and
temporal dependencies, and thus it is important to take both of them into account in order
to make an accurate estimation.

In recent years, there has been a growing interest in employing a range of methodolo-
gies to address prediction problems within the transportation domain. These approaches
encompass a diverse set of techniques. Initially, statistical models such as ARIMA [3] and its
extensions, such as ARIMAX [4] and SARIMA [5,6], were employed. However, these mod-
els assume only linear relationships between variables, which led to their replacement by
traditional machine learning methods [7,8] that could address this limitation. Subsequently,
deep learning methods [9–11] gained prominence as they were able to capture complex
non-linear spatial-temporal dependencies, which are a significant characteristic in trans-
portation data. Moreover, it is worth noting that recent advancements in transportation
research have introduced innovative applications of deep learning techniques. For instance,
an innovative platform for data acquisition (vehicle trajectory extraction) and analytics
(reconstruction and evaluation) has been created specifically for Automated Driving System
(ADS). This platform takes advantage of the power of deep learning algorithms in order to
effectively improve transportation safety [12]. Additionally, the introduction of HYDRO-3D,
a hybrid object detection and tracking system utilizing 3D LiDAR, has successfully used
deep learning models such as Transformers and U-net to improve cooperative perception
in transportation scenarios [13]. Recently, Graph Neural Networks (GNNs) have been used
in order to make full use of the topological features of the transportation graph and capture
the transportation network’s spatial dependencies.

In this work, we present a deep learning framework for transportation flow estimation
using historical data elicited from users’ mobility services. This estimation model learns
from both the spatial stations network data and time series of historical mobility changes
in order to forecast transportation flow at a future time. The model is based on Graph
Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) networks in order
to further improve the accuracy of transportation flow estimation. Extensive experiments
on two real-world datasets of transportation flow, Hangzhou metro system and New York
bike-sharing system, show the effectuality of the model.

The remainder of the paper is structured as follows: Section 2 provides a concise
summary of related studies, while Section 3 introduces and describes the Spatial-Temporal
Graph Convolutional Recurrent Network (ST-GCRN) model. Our proposed model is
extensively evaluated in Section 4, where it is compared to several other baseline methods.
The paper concludes in Section 5 with a summary of our findings.
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2. Related Work

Transportation flow estimation is a significant research problem in the intelligent
transportation field. There have been several methods to predict transportation flow in
systems, such as metro, bus, bike, train, etc.

Statistical methods: Traditional methods are mainly based on mathematical statistical
models which use the techniques of time series analysis in statistics. Autoregressive Inte-
grated Moving Average (ARIMA) [3] and its variants [4,5] are the most effective approaches
designed to predict future values in short-term traffic data based on historical observations.
In [6], an ARIMA model has been used to predict the passenger flow of Guangzhou metro
based on the historical passenger flow data collected by the ticketing automatic system of
urban rail transit. In [14], the rule of passenger flow in and out of Beijing subway station is
analyzed in accordance with time changes, and the SARIMA model is used for modeling.

Although these methods allow for transportation pattern identification, they assume
linear relationships between variables and that past pattern will repeat in the future. Thus,
complex multivariate data of modern transportation systems are not processed effectively
and non-linear relationships between variables are difficult to capture.

In order to address these issues, researchers eventually switched from statistical
approaches to machine learning and deep learning models due to the intricate relationships
of transportation flow data.

Traditional machine learning methods: Various machine learning methods are used in
order to analyze heterogeneous data from various sources [15–17]. Numerous studies have
been conducted to forecast the passenger flow in various transportation media. In [8], a
hybrid model is used that combines K-means algorithm for clustering the original sample
set and Support Vector Machine (SVM) to forecast the public bicycle traffic flow. A method
to extract passenger flow of different routes on bus stations is implemented by using an
XGBoost model in [18], whereas in [19], a Multi-Feature Gradient Boosting Decision Tree
(GBDT) model is proposed in order to accurately predict short-term bus passenger flow.

Deep learning methods: Deep learning methods have demonstrated significantly
higher effectiveness in predicting passenger flow in transportation media when compared
to ML or statistical techniques [20,21]. These methods are able to represent complex non-
linear spatial-temporal dependencies which are a major characteristic in transportation data.

In [22], the article proposes a hybrid prediction method called ST-LSTM for accurate
and real-time network traffic prediction. It combines the Savitzky–Golay filter, Temporal
Convolutional Network (TCN), and Long Short-Term Memory (LSTM) to capture short-
term local features and long-term dependence in network traffic data. This approach
addresses the challenges of capturing the non-linear characteristics of large-scale network
sequences and can be readily implemented in various industrial areas, such as smart
cities, edge computing, cloud computing, and data centers. Similarly, the research in [23]
introduces a hybrid prediction model that combines an encoder–decoder neural network
with Long Short-Term Memory (LSTM) and a Savitzky–Golay filter. The model is designed
to forecast future time series of water quality. To enhance the accuracy of the predictions, a
Savitzky–Golay filter is applied to remove noise from the time series data. Additionally,
an encoder–decoder model based on LSTM is utilized to capture relevant features for the
prediction task.

In the process of passenger flow prediction, Recurrent Neural Networks (RNN) can
effectively solve the problem of randomness and non-linearity which cannot be solved
by the existing linear models. In [24], the combination of RNNs and wavelet transform is
employed to predict the passenger flow and the results show that the method can effectively
improve the prediction accuracy. Regular RNNs drawback is the vanishing gradient issue
which means that part of the data from previous layers is lost. Long Short-Term Memory
(LSTM) was used frequently to anticipate passenger movement as these models seem to
address the vanishing gradient problem. A deep irregular convolutional LSTM network
model called DST-ICRL for urban traffic passenger flow prediction was used in [9], whereas
in [10], an end-to-end deep learning architecture based on the LSTM, termed as Deep
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Passenger Flow (DeepPF), managed to forecast the metro inbound and outbound passenger
flow. LSTM models primarily take into account the temporal aspects of transportation
flow. However, they do not take into account the limitations of network topology on
transportation data changes.

Convolutional Neural Networks (CNNs) have been proven to extract spatial depen-
dencies of transportation and spatial correlations. For predicting an urban rail transit
passenger flow time series and spatial-temporal series, two deep learning neural net-
works were utilized in [11], a Long Short-Term Memory Neural Network (LSTM NN) for
time series prediction and a Convolutional Neural Network (CNN) for spatial-temporal
series prediction.

Although results of deep learning models seem promising to represent the non-
linearity of transportation flow prediction, there are still some limitations considering
the criticality of missing data [25] as well as the requirement of large amounts of historical
data for training the model [26], which may result in over-fitting of the model due to
fluctuations in a small time interval transportation flow. Both limitations are crucial for
transportation flow forecasting, as data in this field must be accurate in order to lead to an
effective performance.

Graph Neural Networks: Due to the recent continuous development of graph neural
networks [27,28], researchers have taken into consideration the graph structure of trans-
portation networks and have started to use GNN-based methods for transportation flow
prediction tasks.

With graph neural networks which are special types of neural networks capable
of processing graph structured data in non-Euclidean space [29], spatial and temporal
dependencies can be learned, making more accurate transportation flow predictions.

Graphs have been utilized by numerous studies to capture spatial-temporal depen-
dencies. In [30], a new traffic prediction model called STGSA is introduced, which focuses
on capturing both localized and long-term spatial-temporal dependencies. This model has
the advantage of extracting hidden spatial-temporal features in a single step, eliminating
the need for additional modules. Furthermore, it incorporates a heuristic spatial adjacency
matrix optimization algorithm, enhancing its ability to capture trends in relevant nodes
and incorporating valuable information. In addition, ST-Trader in [31] is a framework
which takes into account the inter-connection of firms in order to predict stock prices. A
Variational Autoencoder (VAE) was employed to reduce the dimensionality of the stock
fundamental information and a clustering technique was applied to group stocks into a
graph structure. A hybrid model called GCN-LSTM is proposed, which combines a Graph
Convolutional Network (GCN) and a Long Short-Term Memory Network (LSTM). This
model utilizes an adjacency graph matrix, obtained from the VAE, to forecast stock market
trends in a graph-structured manner.

As in this study, two real-world transportation flow datasets have been utilized, one
from Hangzhou metro railway system and one from NY bike-sharing system, and previous
works are focused on these two areas of data.

Specific to bike-sharing system flow, the problem of accurate bike demand estimation
in bike-sharing systems was investigated in [32] for effective station rebalancing by building
a Spatial-Temporal Graph Neural Network (ST-GNN) model to predict the city wide bike
demands. Similarly in [33,34], a model is built in order to predict flow at station level
by viewing the bike-sharing system from the graph perspective and taking into account
external influential factors, such as events [33], weather [34], etc. In [33], the attention-based
mechanism is introduced to further improve the performance of a model which predicts
the number of available bikes in bike-sharing systems in cities.

Various remarkable works have been performed in metro railway systems, as well.
In [35], a dynamic spatial-temporal hypergraph neural network is proposed to forecast
passenger flow. Furthermore, hypergraph convolution and spatial-temporal blocks are
proposed to extract spatial and temporal features to achieve node level prediction. The
model in [36] integrates the Relational Graph Convolutional Network (R-GCN), split-
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attention mechanism, and Long Short-Term Memory (LSTM) to explore the spatial-temporal
correlations and dependence between passenger inflow and outflow.

Based on a priori knowledge, [37] creates multi-view graphs to express the static
feature similarity of each station in the metro network, which are then inputted into the
multi-graph neural network in order to realize the complex spatial dependence of each
station’s passenger flow by extracting and aggregating features.

In summary, there have been a number of approaches in this field for predicting
traffic flow based on conventional statistical machine learning and deep learning models.
However, a number of major challenges still exist:

1 When the station network does not have a fixed structure but is dynamic, the relation-
ship between the stations also changes. The spatial dependencies depend not only on
the physical connections of stations, but also on the dynamics of the system, i.e., the
mobility of flow makers (passengers or bikes), which depends on various external
factors (weather, peak hours, personal choices, etc.). Therefore, it is a challenge to
capture and take into consideration the dynamic spatial dependency relations between
stations in order to make an accurate estimation of transportation flow.

2 The estimation of transportation flow in transport is highly dependent on whether
the station network is structured or unstructured. Predicting flow is simpler in a
structured network, where travel patterns are mostly predetermined, compared to an
unstructured network where station usage is more random and fluctuates significantly
over time. Thus, it is crucial to examine and contrast the estimation of transportation
flow in both types of systems.

3 To enhance the accuracy of estimations and ensure their practical applicability, it is
crucial to forecast not only in the short term, but also in the long term. As the duration
of the estimation period increases, the impact of uncertain factors results in a decrease
in the accuracy of predictions. Additionally, the dynamic variability of transportation
flow further elevates the uncertainty of estimations. Generally, long-range predictions
are more demanding than short-range ones, but their practical significance is greater.
Thus, it is a challenge to attain a long-term estimation of transportation flow.

4 In a smart modern city, there are various modes of transportation, each with its unique
traits and specific features. Therefore, it is essential that traffic prediction methods are
comprehensive and not restricted to a single type of transportation mode.

To address the aforementioned challenges, we suggest a Spatial-Temporal Graph
Convolutional Recurrent Network (ST-GCRN) for estimation of transportation flow. This
technique can detect the dynamic spatial correlation between these stations and can perform
long-term forecasting.

The main contributions of this paper are summarized as follows:

• Dynamic Relation Graph: Our research introduces a novel approach by proposing a
dynamic relation graph to capture the changing spatial connections between stations.
In contrast to traditional methods that rely solely on the physical topological layout,
our approach incorporates the transportation flow within the system to determine
the connections. This dynamic graph provides a more accurate representation of the
actual relationships between stations, enhancing the estimation of transportation flow.

• Assessment of Different System Structures: We evaluate the effectiveness of our
approach using two types of transportation flow datasets with different network
structures. Specifically, we examine and contrast the estimation of transportation flow
in a subway system, characterized by a more orderly arrangement of stations, and
a bike rental system with a relatively less structured network. By considering these
diverse systems, we demonstrate the versatility and applicability of our approach in
different transportation contexts.

• Multi-Time Horizon Estimation: To enhance the accuracy and practical applicability
of our estimations, we extend the analysis beyond short-term predictions. In addition
to short-term estimations (15 and 30 min), we estimate future transportation flow in
the long term (60 min) and various future time horizons (one, two, and three time
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steps ahead from three previous time steps). This comprehensive approach allows for
very long-term estimations, providing valuable insights for transportation planning
and management.

• Extensive Experimental Evaluation: We conduct extensive experiments on real-world
datasets from two different transportation modes: the Hangzhou metro railway sys-
tem and the NY bike-sharing system. Each dataset exhibits unique characteristics
(as described in Section 4.1), and our approach, known as ST-GCRN, outperforms
current state-of-the-art baselines in both systems. Specifically, our approach reduces
the estimation error by 98% in the metro system and 63% in the bike-sharing sys-
tem. These results demonstrate the superiority and practical effectiveness of our
proposed method.

3. The ST-GCRN Model for Transportation Flow Estimation

Transportation flow domain space tackles data governed by complex relationships
between stations which are spatially dependent and by dynamic temporal changes in each
station. Leveraging spatial-temporal Graph Convolutional Networks (GCN) proves to
be an optimal approach in this field, as it involves representing stations and connections
between them as graphs, as well as forecasting transportation flow at each node station
with a temporal prediction algorithm.

As indicated in [38], the spatial-temporal GCN is a type of graph neural network
that has seen significant advancements recently due to its appealing efficiency, flexibility,
and versatility.

To simultaneously capture the spatial and temporal dependencies from transportation
flow data, we propose a Spatial-Temporal Graph Convolutional Recurrent Network (ST-
GCRN) based on a Graph Convolutional Network (for learning spatial features) and a Long
Short-Term Memory neural network (LSTM) (for predicting temporal components).

In this section, we describe how to utilize ST-GCRN model to implement transportation
flow estimation. Specifically, ST-GCRN model consists of two parts: the GCN network
and the LSTM layer. As depicted in Figure 1, the historical n time series data are used as
input and the GCN is used to capture the topological structure of station network in order
to acquire the spatial feature. In order to capture the temporal feature, the resulting time
series with spatial features are then inputted into the LSTM model.
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Figure 1. ST-GCRN model architecture. A graph convolution layer is applied to the inputs, followed
by passing the results through an LSTM layer and a dense layer.

3.1. Definition of Transportation Flow Forecasting Problem

The transportation network in this work is presented as an undirected graph G = (V, E,
A), where V represents the set of nodes (stations), E stands for the set of edges (physical
or dynamic connections between stations), and A describes the adjacency matrix between
stations. The adjacency matrix element Aij represents the connection relationship between
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two nodes, vi and vj. The element Aij in A equals 1 if node i and j are connected or 0 if
otherwise. Therefore, adjacency matrix A indicates the neighbors of a node. Each node
(station) has a number of features.

The purpose of transportation flow forecasting is to make predictions about future
transportation flow based on past transportation flow for a specific period of time. The
goal of this paper’s work is to construct a function f that takes historical transportation
flow data Xt as well as the graph G, as inputs and estimates the flow of all nodes at the next
time, X′t + n:

X′t + n = f (Xt, G) (1)

3.2. GCN Model

Graph Convolutional Networks (GCNs) are a type of neural network that operate
on graph-structured data. The model equations for GCNs typically involve three main
components: message passing, aggregation, and update operations.

Message Passing: In message passing, information is propagated through the graph
by passing messages from neighboring nodes to update the node representations. The
message passing equation can be defined as follows:

hl
i = σ

(
∑j∈Ni

1
cij

W lhl−1
j

)
. (2)

where:

• hl
i represents the hidden representation of node i at layer l;

• σ denotes the activation function;
• Ni represents the set of neighboring nodes of node i;
• cij represents the normalization constant for the edge connecting nodes i and j;
• W l represents the learnable weight matrix for layer l.

Aggregation: After the message passing step, an aggregation operation is performed
to combine the updated node representations into a single representation for each node.
The aggregation equation can be defined as follows:

al
i = σ

(
∑j∈Ni

hl
j

)
. (3)

where al
i represents the aggregated representation of node i at layer l.

These equations can be applied iteratively over multiple layers to capture increasingly
complex patterns and dependencies in the graph data. The final node representations can
then be used for various downstream tasks, such as node classification, link prediction, or
graph-level predictions.

Update: All pooled messages are passed through an update function, usually a learned
neural network.

3.3. LSTM Model

Long Short-Term Memory (LSTM) [39] is a type of Recurrent Neural Network (RNN)
architecture that is designed to overcome the vanishing gradient problem and capture
long-term dependencies in sequential data. It achieves this by using a memory cell and
three main gates: the input gate, forget gate, and output gate. The equations for the LSTM
model are as follows:

Input Gate it:

it = σ(Wi [ht−1, xt] + bi) (4)

Forget Gate ft:
ft = σ

(
W f [ht−1, xt] + b f

)
(5)
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Output Gate ot:
ot = σ(Wo [ht−1, xt] + bo) (6)

Candidate Cell State c̃t:
c̃t = tanh(Wc [ht−1, xt] + bc) (7)

Cell State ct:
ct = ft × ct−1 + it × c̃t (8)

Hidden State ht:
ht = ot × tanh(ct) (9)

In the above equations:

• it represents the input gate activation at time step t;
• ft represents the forget gate activation at time step t;
• ot represents the output gate activation at time step t;
• c̃t represents the candidate cell state at time step t;
• ct represents the cell state at time step t;
• ht represents the hidden state at time step t;
• xt represents the input at time step t;
• Wi, W f , Wo, Wc are weight matrices, and bi, b f , bo, bc are bias vectors.

3.4. ST-GCRN Model

In our model, we use previous time steps as input features in order to predict the next
one, two, or three time steps as the output. The spatial-temporal aspect results from the
historical values of each feature for a specific station as well as the feature values of the
stations which are connected to that specific station. The stations are connected physically
(Hangzhou metro) or dynamically according to the stations usage (NYCBS).

As mentioned in Section 3.2, we use a graph G = (V, E) to describe the topological
structure of the stations network. As described in Table 1, Hangzhou metro station network
has 80 nodes and 6320 edges and NYCBS network has 50 nodes and 2450 edges, respectively.

Table 1. The topological structure of the stations network in Hangzhou metro and NYCBS.

Hangzhou Metro Bike NYCBS

Number of nodes 80 50
Number of edges 6320 2450

In our work, we implement a neural network architecture which can process time
series data over a graph. We first apply a graph convolution layer to the inputs and then
we pass the results through a LSTM layer and a dense layer, as shown in Figure 1.

In our proposed framework, historical values of features on a number of previous
time steps (t − n, . . ., t − 1, t) are used as inputs, in order to predict the transportation flow
on a number of the next time steps (t + 1, . . ., t + n). Each node in the graph starts with an
initial state and that state is updated through GCN layer, by receiving “messages” from
the other nodes that are connected, as well. All the attribute vectors of any node in the
graph are transformed by the application of an aggregation function. In our framework, the
aggregation function is the mean value. Then, temporal features feed LSTM layer. Finally,
the predicted values are produced from the dense layer.

4. Experimental Settings

In this section, the experimental evaluation will be presented. We will first describe the
data used in experiments, the preliminary analysis on data, and the data preparation. Then,
we make a brief reference to several popular models (including the current state-of-the-art)
that will be used as baseline models to be compared to our proposed model framework,
the metrics used for evaluation, and finally the hyper-parameters used in our model.
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4.1. Data Description

Two real-world datasets, Hangzhou metro and bike NYCBS, are used to evaluate the
performance of our method.

Hangzhou Metro System [40]: Hangzhou metro dataset was published by the Tianchi
BigData Competition. It is a passenger flow (mobility) dataset which includes 25 days
of subway card data files from 1 January 2019 to 24 January 2019, a total of about 70
million records from 81 subway stations on three lines. The number of samples, i.e., the
outflow/inflow of passengers at a station at the various time intervals, is 2293.

NY City Bike System (NYCBS) [41]: The data are obtained from the NYC bike system
from January 2021 to December 2022. Citi Bike is NYC’s official bike-sharing program,
designed to give citizens an alternative to walking, taxis, buses, and subways. From the
total number of stations, we use the 50 most frequently used. Moreover, there is a total of
14,848 samples, representing the number of bikes leaving or arriving at a station at each
given moment.

The details of these two datasets are summarized in Table 2.

Table 2. Description of datasets used in the evaluation of ST-GCRN.

Dataset Hangzhou Metro NYCBS

City Hangzhou New York
Number of stations 81 50
Number of samples 2293 14,848

Time Interval 15 min 60 min

Each system in real world has its unique traits and specific features, which are briefly
described in Table 3. The variations in the structure of each transport system, their adapt-
ability to change, the level of predictability in travel patterns, and the time of usage and
switching between modes of transportation result in distinct behaviors of each system. As
a consequence, each system demands a unique approach.

Table 3. Description of dataset-specific features that each system has in real world.

Hangzhou Metro NYCBS

More structured stations network More unstructured stations network
More difficult to reformat stations position More flexible to change stations position

Mostly predetermined traffic patterns More random station usage
Physical connections between stations Dynamic connections between stations
Smaller time intervals in metro usage Bigger time intervals in bike usage

Smaller number of stations Greater number of stations

4.2. Preliminary Data Analysis

The features of each dataset that are used in our approach are depicted in Tables 4 and 5.

Table 4. Description of datasets features (columns) in Hangzhou metro.

Hangzhou Metro

time Time stamp
Station ID ID of the station

status
0: outcoming passengers flow
1: incoming passengers flow

userID ID of the user

The transportation flow through time in Hangzhou metro system dataset is presented
in Figure 2. We can see that the three most frequently used stations are Station 4 (S4), Station
9 (S9), and Station 15 (S15). At S4, it is observed that on weekdays there is a peak of traffic
in the morning and afternoon, while on the weekends the traffic decreases with no peak
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hours. At S9, the peak hours are early in the morning and late in the afternoon, whereas on
the weekends the traffic is gathered during midday hours where there is a peak of traffic.
The most used metro station seems to be S15 throughout the week. The passengers flow
follows a certain pattern on weekdays. There are morning peak hours except for Fridays
where most of the traffic is in the afternoon. On Saturdays, S15 is mostly used around 16.00.

Table 5. Description of datasets features (columns) in NYCBS.

NYCBS

time Time stamp
bikeID ID of the bike

StartStationID The start station of the trip ID
EndStationID The end station of the trip ID
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Figure 2. The transportation flow through time in Hangzhou metro system dataset (a) for the three
most frequently used stations; (b) for all stations. The passengers flow follows a certain pattern on
weekdays. During weekends, there is a shift in the pattern, with the peak hours occurring in the
afternoon. Different color lines refer to different stations.

The transportation flow through time in NYCBS is presented in Figure 3. As we can
see, there is a yearly pattern. In the winter months, bike demand falls and starts to rise
again from May onwards. Peak demand is found in the summer months. For instance, in
July 2021, the peak hours for the most frequently used stations (HB101, HB103), are from
17.00 to 20.00 in the afternoon. There are also stations that are not in use throughout the
year. For example, stations HB101, 102, 103, have started their usage in May 2021, whereas
HB103 interrupts its operation at certain intervals.

The operation management of the stations, their interruption for certain periods of
time or permanently when demand is low, or the creation of new stations due to high traffic
in the area, are a matter of critical importance for the organization and the efficient operation
of the system. Therefore, knowing the traffic flow of people in a mode of transportation
like the metro and of bicycles in a bike rental system, is essential to all these issues in order
that they may be organized and run as efficiently as possible.

In order to see the spatial dependency between stations, the correlation matrix is
calculated and is visualized by a heatmap presented in Figures 4 and 5 for Hangzhou metro
and NYCBS datasets, respectively. The color inside each cell indicates the correlation coeffi-
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cient of the relationship. As the color indicates, most of the Hangzhou metro stations are
dependant on each other to a great extent, in contrast with NYCBS which are less correlated.
This is reasonable, since the metro network is more structured and the transportation flow
has more specific patterns.
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Figure 3. The transportation flow through time in NYCBS system dataset (a) for July 2021; (b) for
years 2021 and 2022. There is a yearly pattern. During the winter months, there is a decline in bike
demand, which starts to rise again from May onwards. The peak demand is observed during the
summer months. Different color lines refer to different stations.
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Figure 5. Heatmap that visualizes the spatial dependency between stations, in NYCBS system dataset.
The low correlation values, which are close to zero, can be attributed to the unstructured nature of
the bike stations network.

4.3. Data Preparation

Hangzhou Metro System: The dataset has been processed in order to have the incom-
ing and outcoming passenger number per time and station. The time window has been set
to 15 min. As there are differing scales in values, the input data are normalized, based on
mean value and standard deviation.

NY City Bike System (NYCBS): The initial data are transformed in order to have the
number of bikes per time and station, with 60 min interval. By using the start and end
station of each route, we create the spatial connections between stations. We are not based
on their physical connection but on the connection based on the usage of bikes and the trips
between stations, which is more realistic and practically useful. The data are normalized,
based on mean value and standard deviation.

Both datasets are split into two parts to create a training set and a testing set. The
model is trained using 80% of the rows, while the remaining 20% is assigned to the test set.

4.4. Baselines

In this subsection, the performance of our proposed model is evaluated. After exten-
sive experiments on machine and deep learning methods in order to manage the inclusion
of pertinent models in our work and achieve their optimal performance, we finally chose
four methods as a benchmark to our proposed model. The experiments are carried out on
Hangzhou metro and NY city bike system. The chosen models are the following:

• Multi-Output Random Forest Regression (MO-RF) [42]: MO-RF is a multi-output re-
gression method which utilizes MultiOutputRegressor. This approach involves fitting
a single regressor for each target variable. Since each target variable is represented
by its own regressor, it is possible to obtain insights about the target by examining
its corresponding regressor. However, MultiOutputRegressor cannot benefit from
correlations between targets since it fits only one regressor per target [43].

• Long Short-Term Memory (LSTM) [39]: LSTM neural network is widely used in
time series forecasting tasks due to its strong capacity to discover and utilize the
information concealed in time series sequences.

• Gated Recurrent Unit (GRU) [44]: GRU network generally performs similarly to LSTM
on many tasks, but in some cases, GRU seems to outperform LSTM, as it is faster to
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train, has a simpler structure and fewer parameters than LSTM, and performs better
on large datasets or sequences.

• Transformers [45]: Transformers is a technique that stands out for its use of self-
attention and differential weighting of the importance of each component of the input
data. Transformers process the entire input all at once.

In addition to the aforementioned models, we incorporate several existing advanced
methods proposed in other literature to evaluate the predictive capabilities of our proposed
model. The inclusion of these alternative methods in our evaluation enables us to conduct
a comprehensive assessment of the performance and effectiveness of our approach.

The models used as benchmarks for passenger flow estimation in Hangzhou metro,
are the following:

• Spatial-Temporal Hypergraph Graph Convolutional Network (STHGCN) / Dynamic
Spatial-Temporal Hypergraph Graph Convolutional Network (DSTHGCN) [35]: This
work proposes a dynamic spatial-temporal hypergraph neural network to forecast
passenger flow.

• Split-Attention Relational Graph Convolutional Network (SARGCN) [36]: This ap-
proach combines the Relational Graph Convolutional Network (R-GCN), split-attention
mechanism, and LSTM to analyze the spatial-temporal correlations and dependencies
between passenger inflow and outflow.

• Parallel Bidirectional Gated Recurrent Unit (PB-GRU) [46]: A deep learning model
composed of parallel multi-graph convolution and stacked bidirectional unidirectional
gated recurrent unit for metro passenger volume prediction.

• Multi-View Multi-Attention Graph Neural Network (AMGC-AT) [37]: A multi-view
convolution module with a spatial-temporal self-attention module and a gated convo-
lution network for traffic flow forecasting.

• Spatial-Temporal Dynamic Graph Relational Learning model (STDGRL) [47]: A spatial-
temporal dynamic graph relational learning model for urban metro flow prediction.

The models used as benchmarks for bike demand estimation in NY Citi Bike system
are the following:

• Spatial-Temporal Graph Neural Network (ST-GNN) [32]: A deep learning technique
is employed in a two-phase framework to accurately predict city-wide bike demands
and effectively rebalance bike stations.

• Attention-based Spatial-Temporal Graph Convolutional Network (AST-GCN) [33]: In
order to predict the number of available bikes in bike-sharing systems in cities, an
attention-based mechanism is introduced to enhance the performance of an ST-GCN.

• Graph Convolutional Network Multigraph (GCN-Multigraph) [48]: GCN-Multigraph
is a model which predicts the bike flow at the station level by analyzing the bike-
sharing system from a graph perspective.

• Multi-View Graph Convolutional Network (MVGCN) [49]: A multi-view graph con-
volutional network for forecasting crowd flow.

4.5. Evaluation Metrics

To evaluate the performance of our method in comparison with the baseline models,
three evaluation metrics are used: Average Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE). In the context of machine and deep
learning:

MAE refers to the magnitude of difference between the prediction of an observation
and the true value of that observation.

MAE =
1
N

N

∑
i=1
| f (i)− h(i)| (10)
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RMSE shows how far estimations fall from measured true values using Euclidean
distance.

RMSE =

√
1
N ∑N

i=1( f (i)− h(i))2 (11)

MAPE refers to the average absolute percent error for each time period minus actual
values divided by actual values.

MAPE =
1
N ∑n

1

∣∣∣∣ f (i)− h(i)
h(i)

∣∣∣∣ (12)

where f (i) is the predicted value and h(i) is the actual value at the time i. Moreover, N is the
total number of the features in dataset.

4.6. Model Hyper-Parameters

Our model utilizes three previous time stamps of historical data and predicts the
transportation flow at the next one time stamp.

The experiments are carried out on a system with an Intel Core i7 CPU @ 3.4 GHz
3.40 GHz processor and 8 GB RAM. The model is developed based on Python 3.9.7, Tensor-
flow, and Keras 2.8.0.

The selection range of hyper-parameter values for both datasets is determined through
extensive experiments in order to produce the optimal results for the evaluation metrics.

Hangzhou Metro System: To optimize all metrics and achieve a balanced result, we
select a value of 100 for the epochs and a batch size value of 64. As depicted in Figure 6a,
this decision is based on the lowest MAPE value achieved, considering that additional
epochs above 100 do not yield any significant improvement in the other metrics (MAE,
MSE). Similarly, as depicted in Figure 7a, the learning rate value that is selected is 10−4 in
order to ensure the minimization of all metrics. Root mean squared propagation [50] is
used as optimizer and LSTM units are set to 256.
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fluctuations in the MAPE, while the MAE and RMSE do not appear to be affected.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 25 
 

 

 
(a) 

 
(b) 

Figure 7. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute 

Percentage Error (MAPE) in accordance with learning rate values used in ST-GCRN for (a) 

Hangzhou metro system dataset; (b) NYCBS dataset. With an increase in the learning rate, the 

MAPE demonstrates relatively less variation compared to an increase in epochs. However, it still 

exhibits a sharp increase followed by a decrease when the rate reaches a high value in Hangzhou 

metro system (a). 

Table 6. The hyper-parameters of the model that were finally selected after extensive experiments, 

for both datasets. 

Parameters Hangzhou Metro Bike NYCBS 

Batch size 64 64 

Epochs 100 200 

Optimizer RMSProp Adam 

Learning rate 10−4 10−4 

LSTM units 256 128 

Figure 7. Cont.



Sensors 2023, 23, 7534 16 of 25

Sensors 2023, 23, x FOR PEER REVIEW 16 of 25 
 

 

 
(a) 

 
(b) 

Figure 7. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute 

Percentage Error (MAPE) in accordance with learning rate values used in ST-GCRN for (a) 

Hangzhou metro system dataset; (b) NYCBS dataset. With an increase in the learning rate, the 

MAPE demonstrates relatively less variation compared to an increase in epochs. However, it still 

exhibits a sharp increase followed by a decrease when the rate reaches a high value in Hangzhou 

metro system (a). 

Table 6. The hyper-parameters of the model that were finally selected after extensive experiments, 

for both datasets. 

Parameters Hangzhou Metro Bike NYCBS 

Batch size 64 64 

Epochs 100 200 

Optimizer RMSProp Adam 

Learning rate 10−4 10−4 

LSTM units 256 128 

Figure 7. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percent-
age Error (MAPE) in accordance with learning rate values used in ST-GCRN for (a) Hangzhou metro
system dataset; (b) NYCBS dataset. With an increase in the learning rate, the MAPE demonstrates
relatively less variation compared to an increase in epochs. However, it still exhibits a sharp increase
followed by a decrease when the rate reaches a high value in Hangzhou metro system (a).

NY City Bike System (NYCBS): To optimize all metrics and achieve a balanced result,
we select a value of 200 for the epochs and a batch size value of 64. As depicted in Figure 6b,
this decision is based on the lowest RMSE and MAE although MAPE value has a small
increase. Similarly, as depicted in Figure 7b, the learning rate value that is selected is 10−4,
the value at which all metrics reach their minimum. According to [51], Adam method is
“computationally efficient, has little memory requirement, invariant to diagonal rescaling
of gradients, and is well suited for problems that are large in terms of data/parameters”.
LSTM units are set to 128.

The hyper-parameters of the model are summarized in Table 6 for both datasets.

Table 6. The hyper-parameters of the model that were finally selected after extensive experiments,
for both datasets.

Parameters Hangzhou Metro Bike NYCBS

Batch size 64 64
Epochs 100 200

Optimizer RMSProp Adam
Learning rate 10−4 10−4

LSTM units 256 128

5. Experimental Results
5.1. Hyper-Parameter Tuning

In Figures 6 and 7, we can observe how two basic parameters (number of epochs and
learning rate) of the model for Hangzhou metro system and NYCBS dataset, influence the
metrics’ values (MAE, RMSE, MAPE).

We can observe that MAPE fluctuates significantly as the number of epochs increases,
while MAE and RMSE do not seem to be affected. The same is the case with the learning
rate, where, as learning rate increases, the MAPE has a smaller variation compared to
the increase in epochs, but still shows a sharp increase and then a decrease when the rate
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reaches a high value, in Hangzhou metro system. The loss increases as the learning rate
is increased since the loss “bounces around” and even diverges from the minima due to
the parameter adjustments. A large learning rate typically accelerates the learning process
but results in an inefficient final set of weights. A model may learn a more ideal set of
weights with a smaller learning rate, but training may take significantly longer. Therefore,
as expected in our case, a learning rate that is quite large, leads to an unstable MAPE value
as the average loss increases [52].

5.2. Flow Estimation Results

In Figures 8 and 9, the blue line represents the average values of the actual transporta-
tion flow for one station over time, while the red line represents the predicted values. In
the Hangzhou metro dataset, it is clear that the model was able to capture the overall flow
trend more accurately than in the NYCBS dataset and this is reasonable and expected since
the latter is a more unstructured network with more unpredictable traffic flow.
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Figure 8. The average values of the actual transportation flow for one station over time in accordance
with the predicted values for Hangzhou metro system dataset with a sample rate of 15 min. The
model is able to capture the overall flow trend.
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Figure 9. The average values of the actual transportation flow for one station over time in accordance
with the predicted values for NYCBS dataset with a sample rate of 60 min. Due to the unstructured
nature of the dataset, the model is able to capture the overall flow trend, but it struggled to accurately
predict certain peak values.
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In Figures 10 and 11, MAE, RMSE, and MAPE values are depicted for 15 min, 30
min, and 60 min time intervals, for both datasets. In Hangzhou metro dataset, each error
value increases as the sampling rate increases, whereas in NYCBS dataset, MAE and RMSE
decrease. Therefore, in a dynamic system like the bike system where the relationships
between stations are not predetermined and change dynamically, the sampling rate must
be higher than in a more static system like the subway in order to make a better estimation
in transportation flow.
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Figure 10. MAE, RMSE, and MAPE values for 15 min, 30 min, and 60 min time intervals for Hangzhou
metro system dataset. Each error value increases as the sampling rate increases.
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Figure 11. MAE, RMSE, and MAPE values for 15 min, 30 min, and 60 min time intervals for NYCBS
dataset. Each error value of MAE and RMSE decrease as the sampling rate increases.

5.3. Comparison with Alternative Models

We compare ST-GCRN to all baselines with 15 min, 30 min, and 1 h prediction time
intervals, for short-term, middle-term, and long-term estimation, respectively. In these
experiments, our model utilizes three previous time stamps of historical data and predicts
the transportation flow at the next one time stamp. Tables 7 and 8 show the comparison
of ST-GCRN with existing models from previous works on Hangzhou metro and NYCBS
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datasets, respectively. The bold data indicate the best results. As mentioned in Section 5.1,
MAPE is prone to variations; therefore, we prefer to focus on MAE and RMSE error
values minimization.

The main inferences from the estimation findings are distilled as follows:

1 ST-GCRN can achieve the lowest MAE and RMSE, among all the existing proposed frame-
works, as presented in Tables 7 and 8 with an error decrease of 98%, in both datasets.

2 As MAPE is concerned, our framework outperforms the other frameworks except for
STDGRL in Hangzhou metro dataset with a small difference though.

Table 7. Comparison of ST-GCRN with existing models from previous works proposed in other
literature, on Hangzhou metro dataset.

Models 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STHGCN/DSTHGCN [32] 11.400/11.080 26.770/26.990 - 12.900/13.010 28.220/27.840 - - - -
SARGCN [33] 22.480 36.220 13.940 23.460 37.830 14.990 25.290 41.590 17.600
PB-GRU [43] 22.130 36.550 13.300 22.900 38.330 13.750 23.910 40.020 14.870
AMGC-AT [34] 19.670 31.240 - 30.680 50.790 - - - -
STDGRL [44] 23.720 46.860 0.210 24.370 49.290 0.210 26.580 57.390 0.230
ST-GCRN (proposed) 0.136 0.214 1.866 0.149 0.234 2.187 0.287 0.412 5.171

Table 8. Comparison of ST-GCRN with existing models from previous works proposed in other
literature, on NYCBS dataset.

Models 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ST-GNN [29] - - - - - - 2.580 3.860 7.900
AST-GCN [30] - - - 1.880 - - - - -
GCN-Multigraph [45] - - - - - - - 4.003 -
MVGCN [46] - - - - - - 2.600 4.150 -
ST-GCRN (proposed) 0.555 0.854 14.502 0.525 0.792 25.784 0.489 0.733 6.574

Tables 9 and 10 present a comparison between ST-GCRN and various machine learning
and deep learning models created specifically for this study, using the Hangzhou metro
and NYCBS datasets. In Table 9, the symbol “*” indicates that the prices are excessively
high and surpass the compared prices of the other models.

1 It is observed that RF performed marginally better than our proposed framework
only in Hangzhou metro dataset due to its relative small amount of data as well as
the structured spatial layout of the station network. In all other cases, it is clear that
ST-GCRN outperforms the other models in terms of MAE and RMSE values.

2 LSTM and GRU, in both datasets, have relative performance as MAE and RMSE
indicate and only in MAPE they have a substantial difference.

3 Transformers do not perform well compared with the other models. Although the
research community has tried to develop Transformer variants for longer sequences
and these methods are quite efficient, their preconceived notions about the structure
of the attention matrix, acquired through training, may not always be suitable for
tasks beyond Natural Language Processing (NLP) [53]. A very high MAPE value
is observed that seems to be due to zero values indicating no connections between
stations as well as due to big variance in data values as depicted in Figures 2 and 3.
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Table 9. Performance comparison between ST-GCRN and various machine learning and deep
learning models on Hangzhou metro system dataset.

Models 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MO-RF [39] 0.117 0.176 1.451 0.111 0.179 1.200 0.172 0.286 0.929
LSTM [36] 0.174 0.272 1.362 0.197 0.295 2.783 0.490 0.700 4.821
GRU [41] 0.172 0.266 1.895 0.189 0.293 6.218 0.397 0.579 2.709
Transformers [42] 0.766 1.028 * 0.760 1.022 * 0.767 1.019 *

ST-GCRN (proposed) 0.136 0.214 1.866 0.149 0.234 2.187 0.287 0.412 5.171

* The prices are excessively high and surpass the compared prices of the other models.

Table 10. Performance comparison between ST-GCRN and various machine learning and deep
learning models on NYCBS dataset.

Models 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MO-RF [39] 0.574 0.866 43.726 0.542 0.797 10.623 0.508 0.738 6.655
LSTM [36] 0.632 0.880 3.876 0.575 0.824 12.783 0.566 0.798 6.185
GRU [41] 0.663 0.890 5.127 0.596 0.834 6.693 0.560 0.795 6.122
Transformers [42] 0.700 0.923 79.907 0.692 0.920 76.385 0.693 0.920 103.553
ST-GCRN (proposed) 0.555 0.854 14.502 0.525 0.792 25.784 0.489 0.733 6.574

5.4. Modeling Results with Different Estimation Horizons

In this subsection, we describe the results that arise from various experiments on
different estimation horizons. Table 11 shows the change in MAE, RMSE, and MAPE
values at different estimation horizons, i.e., one, two, or three time steps ahead from three
previous samples.

1 It can be seen that ST-GCRN obtains the best prediction performance under all eval-
uation metrics for all estimation horizons, proving the effectiveness of ST-GCRN in
spatial-temporal traffic forecasting.

2 With little variation in the error value, we are able to predict also the second and the
third next time steps from the previous three samples.

3 The best performance was accomplished by predicting two next time steps and one
next time step in Hangzhou metro and NYCBS, respectively. Once again, the structured
form of the metro network allows for a longer term forecasting.

Table 11. MAE, RMSE, and MAPE values on different estimation horizons.

15 min 60 min

Different Estimation Horizons Hangzhou Metro Bike NYCBS
MAE RMSE MAPE MAE RMSE MAPE

one next from three previous samples 0.555 0.854 14.502 0.525 0.792 25.784
two next from three previous samples 0.215 0.356 2.484 0.543 0.809 7.686
three next from three previous samples 0.335 0.553 2.962 0.606 0.893 9.039

5.5. Comparison between the Two Datasets

The performance of the model is assessed using two datasets with distinct character-
istics, as described in Section 4.1 Mean Absolute Scaled Error (MASE) is a metric used in
time series estimation to evaluate the accuracy of forecasts produced by an algorithm. Its
value is given by the ratio of MAE for algorithm and MAE of naïve forecast and it provides
an insight into how well a forecasting algorithm is performing in comparison to this naïve
forecast. If the value of MASE is greater than one (1), it suggests that the algorithm is
performing poorly. By applying ST-GCRN model to the datasets we use for the model’s
evaluation, as presented in Figures 12 and 13, the following points are observed:
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1. The decrease in the sampling rate of the Hangzhou metro system leads to a reduction
in the MASE. On the other hand, it has been noticed that in the NYCB system, where
the connections between stations are dynamically established, an increase in the
sampling rate results in a decrease in the MASE value.

2. As far as long-term horizon transportation flow estimation is concerned, NYCB dataset
performs better in all three cases of one, two, and three time steps ahead from three
previous samples.
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one, two, and three time steps ahead based on Mean Absolute Scaled Error (MASE). NYCBS dataset
performs better in all three cases of one, two, and three time steps ahead from three previous samples.

5.6. Computation Efficiency

The experiments are carried out on a system with an Intel Core i7 CPU @ 3.4 GHz
3.40 GHz processor and 8 GB RAM. The training time needs about 20.59 s/epoch for
Hangzhou metro and 242.45 for NYCBS, while the inference time only takes a few seconds
as depicted in Table 12. Given that the training process is conducted offline, the current run-
ning efficiency is considered sufficient for real-life metro and bike flow prediction systems.
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Table 12. Number of parameters, inference and training time for Hangzhou metro and NYCBS.

Hangzhou Metro Bike NYCBS

Number of parameters 283,915 76,427
Inference time (seconds) 1.14 9.97
Training time (seconds/epoch) 20.59 242.45

6. Conclusions

In conclusion, this paper introduces a Spatial-Temporal Graph Convolutional Recur-
rent Network (ST-GCRN), as a solution to accurately estimate transportation flow. The
technique effectively detects dynamic spatial correlations between stations and performs
long-term estimation. By utilizing a graph convolutional network and LSTM neural net-
work, the model captures both spatial and temporal dependencies in transportation flow
data. A dynamic relation graph is proposed to capture the dynamic spatial dependencies
between stations.

The effectiveness of the proposed framework is evaluated on real-world datasets from
Hangzhou metro and New York City’s Citi Bike system. The experiments demonstrated
that ST-GCRN outperform current state-of-the-art baselines, reducing estimation errors
by 98% in the metro system and 63% in the bike-sharing system. The model not only
estimates future transportation flow in short and long terms, but also in various time
horizons, improving accuracy and practicality compared to existing baselines.

The evaluation results show superior prediction performance of ST-GCRN across all
estimation horizons, surpassing other models based on various evaluation metrics. This
highlights the effectiveness of ST-GCRN in spatial-temporal traffic forecasting.

Despite the numerous advantages offered by the Spatial-Temporal Graph Convo-
lutional Recurrent Network (ST-GCRN) model, such as its ability to capture temporal
dependencies, incorporate relationships and dependencies among entities in graph-based
data, handle non-linear relationships, and enable scalability and efficiency for large-scale
datasets through parallel processing, it is crucial to acknowledge its limitations. Firstly,
implementing and training the ST-GCRN model can be complex, requiring substantial
computational resources and a significant amount of data to effectively learn and generalize
patterns. Additionally, interpreting the underlying relationships and providing meaningful
explanations for the model’s predictions can be challenging.

To effectively tackle these concerns in future studies, our plan is to investigate the
integration of external contextual factors, such as climate conditions, economic factors,
and social events. This inclusion of additional variables is anticipated to improve the
model’s ability to make accurate estimations of transportation flow by considering the
impact of various external factors on the system. As a result, we expect to enhance the
overall generalizability of the proposed model.

Furthermore, our intention is to incorporate the prediction of congestion patterns in
transportation zones or busy areas. This involves forecasting or estimating the levels and
patterns of traffic congestion in specific stations or transportation media that frequently
experience high traffic volume or congestion. The objective of this prediction is to anticipate
when and how severe congestion will occur in these areas, providing valuable insights into
the dynamics of transportation flow. As a result, we can facilitate proactive measures to
manage and alleviate congestion. To achieve this, we will analyze historical transportation
data, including information on transportation volume, speed, and density, as well as other
relevant factors, such as road infrastructure, events, and weather conditions. By leveraging
these data, we will develop predictive models capable of forecasting congestion patterns.
These models will enable transportation planners, traffic management authorities, and
commuters to make well-informed decisions regarding route planning, transportation
management strategies, and travel time estimation.

Finally, our future plans involve integrating explainable machine learning techniques
to enhance the interpretability of our models and provide meaningful explanations for their
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predictions. This could involve incorporating methods, such as feature importance analysis,
rule-based models, surrogate models, or attention mechanisms to make our models more
interpretable. By incorporating explainable machine learning into our upcoming research,
our objective is to improve transparency, trust, and accountability in our models. We
believe that this approach will not only enhance the comprehension of our predictions,
but also offer valuable insights for stakeholders and users, empowering them to make
informed decisions based on the model’s output.

Author Contributions: Conceptualization, I.D. and A.V.; data curation, I.D.; formal analysis, I.D.,
A.V., and D.G.; funding acquisition, P.M. and G.M.; investigation, I.D.; methodology, A.V. and P.M.;
project administration, A.V. and G.M.; resources, A.V., G.M. and D.G.; software, I.D.; supervision,
A.V., G.M. and D.G.; validation, A.V.; writing—original draft, I.D.; writing—review and editing, I.D.
and A.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, W.; Yang, Z.; Li, K. Internet of Vehicles and applications. In Internet of Things; Morgan Kaufmann: Burlington, MA, USA,

2016; pp. 299–317. [CrossRef]
2. Worldwide Investments in Light-Rail & Metro Rail Projects 2019–2025. STATISTA. Available online: https://www.statista.com/

statistics/1142868/investment-in-light-rail-projects-worldwide/ (accessed on 23 June 2023).
3. Hamed, M.M.; Al-Masaeid, H.R.; Said, Z.M.B. Short-term prediction of traffic volume in urban arterials. J. Transp. Eng. 1995, 121,

249–254. [CrossRef]
4. Williams, B.M. Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling. Transp. Res. Rec. 2001, 1776,

194–200. [CrossRef]
5. Williams, B.M.; Hoel, L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and

empirical results. J. Transp. Eng. 2003, 129, 664–672. [CrossRef]
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