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Abstract: Remote sensing image denoising is of great significance for the subsequent use and research
of images. Gaussian noise and salt-and-pepper noise are prevalent noises in images. Contemporary
denoising algorithms often exhibit limitations when addressing such mixed noise scenarios, mani-
festing in suboptimal denoising outcomes and the potential blurring of image edges subsequent to
the denoising process. To address the above problems, a second-order removal method for mixed
noise in remote sensing images was proposed. In the first stage of the method, dilated convolution
was introduced into the DnCNN (denoising convolutional neural network) network framework to
increase the receptive field of the network, so that more feature information could be extracted from
remote sensing images. Meanwhile, a DropoutLayer was introduced after the deep convolution
layer to build the noise reduction model to prevent the network from overfitting and to simplify the
training difficulty, and then the model was used to perform the preliminary noise reduction on the
images. To further improve the image quality of the preliminary denoising results, effectively remove
the salt-and-pepper noise in the mixed noise, and preserve more image edge details and texture
features, the proposed method employed a second stage on the basis of adaptive median filtering. In
this second stage, the median value in the original filter window median was replaced by the nearest
neighbor pixel weighted median, so that the preliminary noise reduction result was subjected to
secondary processing, and the final denoising result of the mixed noise of the remote sensing image
was obtained. In order to verify the feasibility and effectiveness of the algorithm, the remote sensing
image denoising experiments and denoised image edge detection experiments were carried out in
this paper. When the experimental results are analyzed through subjective visual assessment, images
denoised using the proposed method exhibit clearer and more natural details, and they effectively
retain edge and texture features. In terms of objective evaluation, the performance of different denois-
ing algorithms is compared using metrics such as mean square error (MSE), peak signal-to-noise ratio
(PSNR), and mean structural similarity index (MSSIM). The experimental outcomes indicate that
the proposed method for denoising mixed noise in remote sensing images outperforms traditional
denoising techniques, achieving a clearer image restoration effect.

Keywords: remote sensing image; mixed noise; DnCNN; adaptive median filtering; nearest neighbor
pixel weighted median

1. Introduction

Remote sensing facilitates the acquisition of valuable information pertaining to objects
and regions from a considerable distance, employing active methodologies such as radar
and lidar, as well as passive approaches like multispectral and hyperspectral techniques [1].
As a result of environmental conditions, transmission channels, and various contributing
factors, images invariably encounter noise during the stages of acquisition, compression,
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and transmission. This noise intrusion subsequently leads to the distortion and degradation
of vital image information. The existence of such noise significantly hampers subsequent
image-related tasks, including, but not limited to, video processing, image analysis, and
tracking [2]. Image denoising is a classical and continually evolving subject within the
realm of low-level computer vision, focusing on the restoration of a high-quality image
from its degraded counterpart. This domain remains notably vibrant, embodying an
essential cornerstone in various practical contexts like digital photography, medical image
analysis, remote sensing, surveillance, and digital entertainment [3]. Consequently, the
paramount goal in the realm of remote sensing image preprocessing has consistently
revolved around augmenting image quality by adeptly eliminating noise, all the while
safeguarding the inherent edge details and textural attributes of the original image to the
greatest extent feasible.

Currently, the processing of remote sensing images primarily focuses on Gaussian
noise and salt-and-pepper noise [4,5]. In recent times, a plethora of denoising methodolo-
gies and models have been introduced, aiming to mitigate noise interference and elevate
the overall quality of images. Chang et al. [6] combine a total variation model with sparse
representation for denoising remote sensing images. Yan et al. [7] designed a remote sens-
ing image denoising algorithm based on two-dimensional empirical mode decomposition
and quaternion wavelet transform. However, the denoised images still lack sufficient
clarity, with varying degrees of distortion in image details. Xu et al. [8] propose a denoising
method for satellite remote sensing images by integrating principal component analysis
and complex wavelet transform. This method first extracts features using noise-adjusted
principal component analysis and then applies complex wavelet transform to denoise the
low-energy components. Xia et al. [9] apply K-SVD (K-singular value decomposition)
sparse representation theory to denoise satellite remote sensing images. Zhang et al. [10]
address the non-local self-similarity and sparsity in remote sensing images and propose a
sparse denoising algorithm based on non-local self-similarity. Dabov et al. [11] introduce
the BM3D (block-matching and 3D filtering) algorithm, which exploits the correlation
between image blocks and utilizes joint 3D filtering to achieve image denoising. While
these approaches proficiently address Gaussian noise in images, they exhibit limited effi-
cacy when it comes to eliminating salt-and-pepper noise. Moreover, due to the intricacies
inherent in the optimization challenges, they frequently demand substantial time and
computational resources to achieve operational efficiency. Thanh D N H et al. [12] propose
an adaptive total variation (TV) regularization model for salt-and-pepper denoising in
digital images. However, for high-density noise, some details are lost. With the booming
development of deep learning technology, Zhang et al. [13] propose the DnCNN (denoising
convolutional neural networks) model for forward denoising, which achieves promising re-
sults in Gaussian denoising for traditional natural images. Nevertheless, challenges persist
in denoising remote sensing images characterized by intricate textures, as the denoising
outcomes often tend to manifest in the form of blurred edge textures. Wu et al. [14] utilize a
residual autoencoder network combined with edge enhancement for remote sensing image
denoising. Although this method effectively removes Gaussian noise from images, it also
struggles with salt-and-pepper noise removal. Wang et al. [15] propose a new method to
denoise UAV (unmanned aerial vehicle) images, which introduces a novel deep neural
network method based on generative adversarial learning to trace the mapping relationship
between noisy and clean images. The denoised images generated by this proposed method
enjoy clearer ground object edges and more detailed textures of ground objects. Due to
the image processed by the denoising method based on convolutional neural network
exhibiting a fuzzy phenomenon in texture details, Khan A et al. [16] propose and apply a
generative adversarial network-based image denoising training architecture to multiple-
level Gaussian image denoising tasks. This innovative framework effectively addresses
the blurriness issue by prompting the denoiser network to learn the distribution of sharp,
noise-free images, thus avoiding the production of blurry outcomes. It is important to note,
however, that the scope of this study is exclusively limited to addressing additive white
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Gaussian noise. Khmag A’s research [17] employs a self-adjusting generative adversar-
ial network (GAN). The proposed method combines noise suppression and an adaptive
learning GAN procedure in order to guarantee the removal of unwanted additive white
Gaussian noise. But the time complexity of this approach needs to be reduced.

Nonetheless, in real-world scenarios, noise within remote sensing images frequently
comprises a composite of Gaussian and salt-and-pepper noise. Conventional denoising
techniques alone exhibit suboptimal performance when confronted with the intricacies of
remote sensing images imbued with such blended noise patterns. Therefore, Zhu et al. [18]
propose a three-layer combined filtering method that integrated Bayes wavelet threshold
filtering, adaptive Wiener filtering, and adaptive median filtering to remove mixed noise.
Li et al. [19] propose an image denoising method for mixed noise based on quaternion
non-local low-rank and total variation. This method effectively denoises and suppresses
artifacts while better preserving image details and color information. Zheng et al. [20]
establish a bridge between the factor-based regularization and the HSI (hyperspectral
image) priors and propose a double-factor-regularized LRTF (low-rank tensor factorization)
model for HSI mixed noise removal. Deng et al. [21] present a combined filtering denoising
method that combines the three-dimensional block matching algorithm with adaptive
median filtering. Zhao et al. [22] combine the effective noise reduction capability of the
BM3D algorithm for Gaussian noise and propose an integrated BM3D method for removing
mixed noise from remote sensing images. Ren et al. [23] propose a denoising method that
combines BM3D with multilevel nonlinear weighted average median filtering to remove
mixed noise in remote sensing images. Despite the efficacy of amalgamated filtering
techniques in achieving mixed noise reduction, residual noise may persist due to the
interplay between filters of varying dimensions.

Therefore, this study proposes a two-stage denoising method for remote sensing
images with mixed noise, combining deep learning and spatial domain filtering. In the first
stage, an extension convolution is introduced based on the DnCNN denoising model to
increase the network’s receptive field, enabling the extraction of more feature information
in complex remote sensing images. Additionally, a DropoutLayer is incorporated after the
deep convolutional layers to prevent overfitting, simplify network training, and facilitate
the denoising process using aerial photography as data-driven training for the denoising
model. The trained model is then applied to perform initial denoising on the images. In the
second stage, based on adaptive median filtering, a weighted median replacement of the
nearest neighboring pixel within the filtering window is employed to process the initially
denoised results. This aims to improve the image quality of the initial denoised results,
effectively remove salt-and-pepper noise from the mixed noise, and preserve more detailed
image edges and texture features.

The rest of this paper is organized as follows: Section 2 briefly introduces the materials
and methods used for the DnCNN denoising model, expansion convolution, the Dropout-
Layer, and adaptive median filtering; Section 3 describes the algorithm constructed in this
article; Section 4 introduces the experimental setup, and results are given and discussed;
and finally, Section 5 offers the conclusion and final remarks on the paper.

2. Materials and Methods
2.1. DnCNN Denoising Model

Based on a convolutional neural network (CNN), the DnCNN model uses a series of
methods such as residual learning, regularization, and batch normalization to improve
the denoising performance of the model, which can effectively remove Gaussian noise
contained in the image. The DnCNN algorithm network architecture is mainly composed of
three parts. The first part is the first layer, composed of Conv + ReLU; Conv is a convolution
kernel [24] of size 3 × 3 × C; there are a total of 64; the step size is 1 × 1; C is used to
distinguish grayscale images and color images; if the input image is a grayscale map, then
C = 1; if the input image is a color map, then C = 3; “ReLU” stands for rectified linear
unit, a popular activation function commonly used in neural networks [25]. It introduces
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non-linearity by outputting the input directly if it is positive; otherwise, it outputs zero.
This activation function has been proven effective in enhancing the learning capabilities
of neural networks. The second part is layers 2 to (d − 1; each layer is composed of
Conv + BN + ReLU; Conv is of a size of 3 × 3 × 64 convolution kernels; the number
of convolution kernels in each layer is 64; the step size is 1 × 1; BN [26] is the batch
normalization layer of 64 channels; and ReLU is the activation function. The third part, the
final layer, consists of Conv, which uses C 3 × 3 × 64 filters to reconstruct the output of the
processed image.

2.2. Expansion Convolution

Broadening the receptive field of a network is a standard approach to gather en-
hanced contextual information within convolutional neural networks. Currently, prevalent
methods for extending the receptive field primarily involve augmenting network depth, in-
creasing filter size, and employing expansion convolution techniques. However, increasing
the network depth will lead to the degradation of network performance, and expanding
the filter size will introduce more parameter numbers and increase the computation of
the network, while the expansion convolution can expand the receptive field without
increasing the amount of network computation [27]. The principle of dilated convolution
is to inject holes into the standard convolution kernel to increase the receptive field of the
network, so it is also called void convolution or dilated convolution. For example, for an
expansion convolution with a convolution kernel size of 3 × 3, a dilation factor of 2, a step
size of 1, and a number of layers of n, the network receptive field size can be expressed as
(4n + 1) × (4n + 1); for an ordinary convolution with a convolution kernel size of 3 × 3, a
step size of 1, and a number of layers of n, the network receptive field size is expressed as
(2n + 1) × (2n + 1).

2.3. DropoutLayer

DropoutLayer is a method proposed by Hinton et al. [28] that can improve the gener-
alization ability of network models and solve the problem of network overfitting in deep
learning. The principle is to set a constraint on the weight of each implied unit that obeys
the Bernoulli distribution, and if this constraint is activated, the unit will be temporarily
discarded from the network with P probability so as to discard some features, improve
the generalization ability of the network, and achieve the purpose of solving network
overfitting [29].

2.4. Adaptive Median Filtering

Traditional adaptive median filtering (AMF) is a nonlinear filter that not only effec-
tively removes noise, but also preserves edge texture detail to some extent. This method
is mainly divided into two processes in the denoising process, which can be defined as
process A and process B. Let X(i, j) be the window corresponding to the central pixel (i, j)
when filtering (the maximum allowable size of the window is Mmax); Zmin is the minimum
value of the gray value in window X(i, j); Zmax is the maximum value of the gray value in
window X(i, j); Imed is the median value of the gray value in window X(i, j); and Z(i, j) is
the gray value at the position of the image pixel (i, j). Let

ZA1 = Imed − Zmin (1)

ZA2 = Zmax − Imed (2)

ZB1 = Z(i,j) − Zmin (3)

ZB2 = Zmax − Z(i,j) (4)
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The specific algorithm flow of filtering is as follows:

(1) Process A: if ZA1 > 0 and ZA2 > 0, go to Process B; otherwise, increase the size of
window X(i, j). If the window size is equal to or less than the maximum window
size Mmax, process A is repeated; otherwise, the grayscale value Z(i, j) for that pixel
is output;

(2) Process B: if ZB1 > 0 and ZB2 > 0, output the grayscale value Z(i, j) of the pixel;
otherwise, output the median value Imed.

3. The Algorithm Constructed in This Article

While the DnCNN noise reduction model yields commendable outcomes in mitigating
Gaussian noise in natural images, its denoising efficacy often falters when applied to
remote sensing images marked by intricate topographical attributes. This is particularly
true for images encompassing mixed noise patterns, where the denoising outcomes might
retain a higher degree of noise. Furthermore, the preservation of edge details and texture
information tends to be less distinct in such cases. Therefore, based on the DnCNN model
and adaptive median filtering, a second-order method for mixing noise from remote sensing
images is proposed.

In the first stage, the first-order noise reduction model DP-DnCNN is built with the
DnCNN network structure as the basic framework; the network depth is set to 20 layers, and
in the even layers of layers 1–19, the expansion factor of 2 is used to increase the receptive
field of the network and improve the feature extraction ability of remote sensing images,
and the odd layers and the 20th layer use ordinary convolution (Conv). A DropoutLayer
with a probability of 0.5 is added after the ReLU layer of layer 19 to prevent overfitting of
the network and improve the generalization ability of the model. The network structure
is mainly divided into five parts: the first part is the input layer, which is composed of
an ImageinputLayer; the second part is layer 1, consisting of Conv + ReLU; the third
part, which is composed of Conv + BN + ReLU and DilatedConv + BN + ReLU and
Conv + BN + ReLU + DropoutLayer, is the 2nd–19th layers; the fourth part is the 20th
layer, consisting of a Conv; the fifth part is the regression output layer, which consists of a
RegressionLayer. The input layer of the network input has an image size of 50 × 50 × 1,
the input channel of layer 1 is 1, the convolution kernel size is 3× 3, and the output channel
is 64. The input channel of layers 2–19 is 64, the convolution kernel is 3 × 3, and the output
channel is 64. The input channel of layer 20 is 64, the convolution kernel size is 3 × 3, and
the output channel is 1.

In the second stage, since the traditional adaptive median filtering is replacing the
noise pixel with the median value within its filtering window, the size of the median value
in the window will directly affect the denoising effect and image clarity, and when the
median pixel is far away from the noise point to be replaced, it will lead to image distortion
and blurring. Therefore, this paper improves the traditional adaptive median filtering
and proposes adaptive nearest neighbor weight median filtering (RW-IAMF). The specific
improvement method is as follows: for the median output of process B, the nearest neighbor
pixel weighted median value is used to replace the value in the original filter window, so
that the median value of the output pixel is closer to the original image element, which
improves the denoising performance of the algorithm and the retention ability of edge
details and texture features. Figure 1 below is a schematic diagram of the nearest neighbor
pixels, in which the four pixels of Z(i− 1, j), Z(i, j− 1), Z(i + 1, j), and Z(i, j + 1) represent
the nearest neighbor pixels of point Z(i, j).
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Figure 1. Schematic diagram of the nearest neighbor pixel.

Firstly, the closest neighbor pixel value set W[ f (i, j)] of the noise is selected in the
current filter window, and then the noise detection judgment is carried out on the se-
lected nearest neighbor pixel value: if fn(i, j) = 0 or 255, fn(i, j) is judged as a noisy pixel
and removed, where fn(i, j) is a pixel value in the closest neighbor pixel set; the median
value Med(W[ f (i, j)] is taken from the set of pixels of the nearest neighborhood after
detection, and then based on this median, the weighting calculation method from refer-
ence [30] is used to calculate the weighting coefficient of each pixel in the set by applying
Formulas (5) and (6), and then the remaining pixels in the set of nearest neighborhood pix-
els after detection are weighted and summed with the corresponding weighting coefficients
obtained by using Equation (7), and finally, the calculation results are used as filter output.

sum =
N

∑
n=1

(1÷ (1 + ( fn(i, j)−Med(W[ f (i, j)]))2)) (5)

wn(i, j) =
1÷ (1 + ( fn(i, j)−Med(W[ f (i, j)]))2)

sum
(6)

f (i, j) =
N

∑
n=1

fn(i, j)× wn(i, j) (7)

Among these, Med{W[ f (i, j)]} is the set of pixel values of the nearest neighborhood,
fn(i, j) is a pixel value in the closest neighbor pixel set, N is the total number of pixels
remaining in the closest neighbor pixel set W[ f (i, j)] after detection, wn(i, j) is the weighting
coefficient size of a pixel obtained, and f (i, j) is the filter output result.

The proposed algorithm combines the noise reduction model trained in the first stage
with the improved adaptive median filtering in the second stage, which effectively removes
the mixed noise while improving the protection ability of image edge details and texture
features. Firstly, the first-stage noise reduction model DP-DnCNN is used to initially
reduce the noise of the images containing mixed noise, and then RW-IAMF is used to
make secondary corrections to the output images to improve the ability of the algorithm to
remove salt-and-pepper noise from mixed noise. The specific algorithm framework flow is
shown in Figure 2 below.
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4. Experimental Setup and Results Analysis
4.1. Network Model Training

The training of the DP-DnCNN network model in this paper utilized the ITCVD aerial
imagery dataset provided by the University of Twente Research Information as the training
set. The dataset includes 135 aerial images with dimensions of 5616 × 3744 × 3 pixels
and a resolution of 0.1 m. To facilitate training, Gaussian noise with a mean of 0 and a
variance ranging from 0.001 to 0.01 was randomly added to the images. Furthermore,
each image was randomly cropped into 512 small sub-blocks of size 50 × 50, for a total of
69,120 small sub-blocks that were used for training. The input size for network training was
set to 50 × 50 pixels; the network training solver used the stochastic gradient descent with
momentum (SGDM) optimizer; the initial learning rate was set to 0.01, and it decreased by
a factor of 1/10 every 10 epochs; and the size of the number of mini-batch image blocks
was set to 128. To stabilize the training process and prevent gradient explosion, gradient
clipping was employed, with a specified gradient threshold to 0.005. The gradient thresh-
olding method used considered the absolute value of the gradients. The L2 regularization
factor parameter was set to 0.0001 to reduce network overfitting. Network training was
based on MATLAB programming, while the hardware configuration included an Intel(R)
Core(TM) i7-11700 @2.50 GHz pro-cessor and an Nvidia GeForce RTX 3060 graphics card
for acceleration. The memory size was 12 GB, and the operating system employed was
Windows 10.3.2.3.
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4.2. Evaluation Metrics

The evaluation of denoising effectiveness employs mean square error [31] (MSE),
peak signal-to-noise ratios [32] (PSNR), mean structural similarity [33] (MSSIM), and edge
detection results as assessment metrics for the algorithm’s precision in removing mixed
noise from images. In these metrics, a smaller MSE and a larger PSNR indicate better
denoising quality, while MSSIM is closer to human visual evaluation, with higher values
signifying more intact post-denoising image structures.

The calculation formula for MSE is as follows:

MSE =

M
∑

i=1

N
∑

j=1
[F1(i, j)− F2(i, j)]2

M× N
(8)

Here, F1(i, j) and F2(i, j) represent the original and denoised images, respectively, and
M and N denote the image dimensions.

The PSNR calculation formula is

PSNR = 10× log10

(
2552 ÷MSE

)
(9)

The MSSIM calculation formula involves a structure similarity index (SSIM) computed
over image blocks and then averaged to yield MSSIM. It is defined as

MSSIM =
1
B

B

∑
i=1

SSIMi (10)

SSIM =

(
2µxµy + c1

)(
2σxy + c2

)(
µx2 + µy2 + c1

)(
σx2 + σy2 + c2

) (11)

where SSIM represents structural similarity; x and y denote the original and denoised
images, respectively; µx is the mean of x and µy is the mean of y; σx is the standard deviation
of x and σy is the standard deviation of y; σxy is the covariance of x and y; c1 = (k1L)2 and
c2 = (k2L)2 are constants to ensure stability; B represents the number of image blocks.

These metrics collectively provide a comprehensive assessment of the denoising
performance of the algorithm and its ability to effectively remove mixed noise from remote
sensing images.

4.3. Remote Sensing Image Denoising Experiment

To validate the feasibility of the proposed algorithm, this paper conducted remote
sensing image denoising experiments using imagery captured by the Gaofen-2 satellite.
The image data were cropped to a size of 400 × 400 pixels. Three different concentrations
of noise were added to the intercepted images: 0.001/0.003, 0.003/0.005, and 0.005/0.008,
where the former value was the Gaussian noise variance with a mean of 0, and the latter
was the noise density of salt-and-pepper noise. The variance of zero-mean Gaussian noise
characterizes the amplitude of random fluctuations introduced to pixel values within the
image. The magnitude of variability in pixel values due to zero-mean Gaussian noise is
quantified by the variance. The variance captures the extent of randomness incorporated
into the image pixel values through zero-mean Gaussian noise. The density of salt-and-
pepper noise signifies the frequency of occurrence of isolated bright (“salt”) and dark
(“pepper”) pixels across the image. The proportion of isolated bright and dark pixels
within the image, referred to as salt-and-pepper noise density, illustrates the prevalence of
this noise type. The abundance of isolated bright and dark pixel pairs within the image,
indicated by salt-and-pepper noise density, elucidates the spatial distribution of this noise
phenomenon. This allowed for quantitative and qualitative analysis of the denoising results.
The experiment employed mean square error (MSE), peak signal-to-noise ratio (PSNR), and
mean structural similarity (MSSIM) as evaluation metrics for denoising performance. The



Sensors 2023, 23, 7543 9 of 16

proposed algorithm in this paper (DPRW) was compared with the IAMF algorithm, the
BM3D algorithm, the DnCNN algorithm, DnCNN combined with adaptive median filtering
(DNIA), DP-DnCNN combined with adaptive median filtering (DPIA), DnCNN combined
with the RW-IAMF (DNRW) algorithm, method from reference [21] (BMIA), and method
from reference [23] (BMDJ), in terms of denoising effectiveness. The experimental results
are shown in Tables 1–3. A smaller MSE value and a larger PSNR value indicate better
denoising quality, while a higher MSSIM value signifies a more complete restoration of
image structures, preserved edge details, and texture information, which is closer to human
visual perception. By comparing the highlighted data with other data in Tables 1–3, it can
be observed that for mixed noise in remote sensing images, the proposed algorithm in this
paper achieves a lower MSE and a higher PSNR compared to other algorithms, indicating
its superior denoising performance. In terms of the MSSIM metric, the proposed algorithm
also outperforms the other comparative algorithms, demonstrating that it preserves more
complete image structures, edge details, and texture features after denoising, compared to
other denoising algorithms.

Table 1. Comparison of mean square error (MSE) of image denoising results by different methods.

Noise
Concentration IAMF BM3D DnCNN DNIA DPIA DNRW BMIA BMDJ DPRW

0.001/0.003 26.0992 26.9251 33.7315 18.2286 17.6437 18.3868 27.8081 39.1686 17.3953
0.003/0.005 50.8343 29.8920 39.2509 28.3363 28.0865 28.4099 30.1804 40.4189 27.8908
0.005/0.008 63.6574 33.0005 42.6203 34.9392 33.8542 34.3924 33.6824 42.7185 33.5601

Table 2. Comparison of peak signal-to-noise ratio (PSNR) of image denoising results by
different methods.

Noise
Concentration IAMF BM3D DnCNN DNIA DPIA DNRW BMIA BMDJ DPRW

0.001/0.003 33.9645 33.8292 32.8505 35.5233 35.6649 35.4857 33.6891 32.2014 35.7265
0.003/0.005 31.0692 33.3752 32.1923 33.6074 33.6464 33.5961 33.3336 32.0624 33.6762
0.005/0.008 30.0923 32.9456 31.8346 32.6977 32.8347 32.7662 32.8568 31.8246 32.8726

Table 3. Comparison of the mean structural similarity (MSSIM) of the image denoising results of
each method.

Noise
Concentration IAMF BM3D DnCNN DNIA DPIA DNRW BMIA BMDJ DPRW

0.001/0.003 0.8145 0.8322 0.7878 0.8865 0.8908 0.9570 0.8285 0.7451 0.9580
0.003/0.005 0.6616 0.8213 0.7513 0.8319 0.8357 0.9241 0.8215 0.7401 0.9264
0.005/0.008 0.5708 0.8039 0.7208 0.7913 0.7991 0.8989 0.8100 0.7294 0.9036

In addition to the qualitative and quantitative evaluation using the MSE, PSNR, and
MSSIM metrics, the denoising effectiveness of each algorithm is also compared at the visual
level in this study. Figure 3 presents the denoising results of each algorithm under a mixed
noise concentration of 0.003/0.005. Analyzing Figure 3 reveals that the proposed algorithm
not only effectively removes the mixed noise present in the images but also preserves the
image structures, edge details, and texture features more comprehensively, resulting in
clearer images.
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Direct visual comparison may not be easily discernible; therefore, it is preferable to
zoom in on specific local regions and annotate them with red bounding boxes to facilitate a
clear observation of the effects. Further analysis of the localized magnified images of the
denoising results for each algorithm (Figure 4) indicates that, compared to the combined
algorithms, the individual DnCNN and BM3D algorithms can effectively remove Gaussian
noise from the images but perform poorly in denoising the images containing salt-and-
pepper noise, resulting in significant residual noise. Additionally, the BM3D algorithm
exhibits edge detail loss and blurring in the texture areas in the smooth regions of the
images. The IAMF algorithm performs well in denoising salt-and-pepper noise but exhibits
poor denoising effectiveness for Gaussian noise. The DNIA, BMIA, and DNRW algorithms
can effectively remove the mixed noise from the images, but there are still some residual
noise points. Compared to DNIA and BMIA algorithms, the DNRW algorithm has relatively
fewer residual noise points due to the influence of the weighted median of neighboring
pixels. The BMDJ algorithm can more thoroughly remove the mixed noise from the images
but suffers from edge detail loss in the denoised results and introduces a certain level of
blurring in the texture-smooth regions. The DPIA algorithm yields clearer denoised images
with more preserved image structures compared to the previous algorithms, but it still has
some residual noise points.

Comparing the denoising results of all the aforementioned algorithms, the proposed
algorithm in this paper (DPRW) consistently outperforms the other methods, yielding
denoised results that are visually closer to the real images. This approach not only pro-
ficiently eliminates mixed noise, yielding images of heightened clarity, but also retains a
greater quantity of edge details and textural information, thereby culminating in more
comprehensive image structures.
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boxes in Figure 3 are magnified locally. (a) shows the magnified view of the original image; (b) shows
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4.4. Image Edge Detection

To provide a more intuitive illustration of the proposed algorithm’s ability to pre-
serve edge details in images, the Canny operator is used to perform edge detection on
the denoised results of each algorithm. Edge detection primarily focuses on extracting
information about the boundaries of objects in an image, making it a commonly used image
extraction method in the field of computer vision [34]. Edge extraction is essentially a form
of filtering, and the accuracy of the Canny operator is relatively ideal within the entire edge
detection algorithm. The results of edge detection using the Canny operator on the image
are shown in Figure 5. From the figure, it can be observed that compared to the original
image and the detection results of the proposed algorithm, the single IAMF algorithm
produces numerous cluttered and discontinuous lines in its detection results. This indicates
that the image denoised using this method still contains some residual noise. Comparing
the edge detection results of the DnCNN algorithm with the original image, it can be
observed that there are some scattered and irregular contour lines. This indicates that,
due to the presence of salt-and-pepper noise, the denoised images still retain a significant
amount of noise. Furthermore, from the figure, it can be seen that certain details in the
image are also mistakenly filtered out as noise. In the edge detection results of the BM3D
algorithm, there is a noticeable loss of certain details and discontinuities in the contour lines.
As for the DPIA, DNRW, and DNIA algorithms, their edge detection results after denoising
still exhibit some discontinuous lines and a partial loss of object contours compared to the
original image and the edge detection results of the algorithm proposed in this paper. This
indicates that these three algorithms still contain some residual noise after denoising and
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fail to preserve the edge details of the image effectively. Regarding the BMIA and BMDJ
algorithms, many crucial edges are missed, and the detected edges show poor continuity
with noticeable breaks. This indicates that during the denoising process, some edge details
from the original image are treated as noise and filtered out, leading to the inability to
preserve the edge details of the image effectively.
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Contrasted with the previously discussed methodologies, the denoised images ob-
tained through the proposed algorithm showcase smoother and more continuous edge
contours, closely resembling the edge detection outcomes derived from the original image.
This observation underscores the dual effectiveness of the proposed algorithm: not only
does it proficiently eliminate mixed noise from the images, but it also retains a greater por-
tion of image edge details. This preservation holds significant implications for downstream
image classification and recognition applications.

5. Conclusions

The presence of noise in remote sensing imagery can significantly impact its sub-
sequent use and analysis, making denoising an essential step in remote sensing image
processing. To address the issue of mixed noise in the imagery, this study employs aerial
photography as training data to drive the process. In the first stage of our proposed method,
we enhance the Gaussian denoising model based on the foundational DnCNN architecture
by incorporating dilated convolution and a DropoutLayer. This augmentation empowers
the method’s capability for Gaussian noise reduction. Additionally, in the second stage,
we synergize this enhanced model with an adaptive nearest neighbor weighted median
filtering. This harmonious fusion results in a novel dual-stage approach adept at effectively
mitigating the intricate issue of mixed noise in remote sensing imagery.

In an analysis of the results of remote sensing image denoising experiments and edge
detection on denoised images, the proposed method outperforms other algorithms in
comparison. It effectively addresses challenges that other methods struggle with, achieving
higher peak signal-to-noise ratios (PSNR), improved mean structural similarity (MSSIM),
and lower mean square error (MSE). For instance, at a noise density of 0.003/0.005, the MSE
is reduced by at least approximately 2%, the PSNR increases by up to about 3 dB, and the
MSSIM improves by up to approximately 40%. The edge detection results also demonstrate
that while removing noise, the proposed algorithm preserves more of the original image’s
detail and edge contour information, thus achieving remarkable denoising outcomes. This
bears significant practical implications for the subsequent use of images. Therefore, whether
viewed subjectively or assessed objectively for quality, the method proposed in this paper
exhibits commendable denoising performance, outperforming traditional methods. It
effectively eliminates Gaussian and salt-and-pepper mixed noise, adeptly retains edge
details and texture features, resulting in clearer image outcomes, and holds potential for
real-world applications in actual remote sensing image denoising processes.
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