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Abstract: Road parameter identification is of great significance for the active safety control of tracked
vehicles and the improvement of vehicle driving safety. In this study, a method for establishing a
prediction model of the engine output torques in tracked vehicles based on vehicle driving data
was proposed, and the road rolling resistance coefficient f was further estimated using the model.
First, the driving data from the tracked vehicle were collected and then screened by setting the
driving conditions of the tracked vehicle. Then, the mapping relationship between the engine torque
Te, the engine speed ne, and the accelerator pedal position β was obtained by a genetic algorithm–
backpropagation (GA–BP) neural network algorithm, and an engine output torque prediction model
was established. Finally, based on the vehicle longitudinal dynamics model, the recursive least
squares (RLS) algorithm was used to estimate the f . The experimental results showed that when
the driving state of the tracked vehicle satisfied the set driving conditions, the engine output torque
prediction model could predict the engine output torque T̂e in real time based on the changes in the ne

and β, and then the RLS algorithm was used to estimate the road rolling resistance coefficient f̂ . The
average coefficient of determination R of the T̂e was 0.91, and the estimation accuracy of the f̂ was
98.421%. This method could adequately meet the requirements for engine output torque prediction
and real-time estimation of the road rolling resistance coefficient during tracked vehicle driving.

Keywords: tracked vehicles; engine output torque prediction model; GA–BP neural network;
estimation of rolling resistance coefficient

1. Introduction

Tracked vehicles are mostly used in agricultural, fire protection, and military fields
due to their good trafficability. A driving road is complex and changeable, and the demands
on the dynamics and safety of tracked vehicles are high [1]. The road parameters affect
the acceleration, braking, and steering performance of vehicles, and they are important
parameters for risk assessment and active safety control during tracked vehicle driving [2].
Road parameter estimation is of great significance for improving the safety and dynamic
performance of vehicles [3]. Road identification is generally achieved by estimating a
parameter that reflects the characteristics of the road surface, such as the road adhesion
coefficient, roughness, rolling resistance coefficient, or slope. To realize road surface
recognition and improve the safety of vehicle driving, researchers have conducted in-
depth studies. For tracked vehicles, researchers have mostly focused on the dynamic
characteristics of tracked vehicles [4] and the coupling between the track and ground
during vehicle driving. There have been few studies on the further application of research
results to road recognition.

At present, there are two main methods to realize road recognition. One is to directly
measure the road through environmental sensors or vehicle state sensors [5,6]. Abhinav
et al. [7] proposed a terrain recognition method based on a deep learning long short-term
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memory model, using the acoustic waves generated by the interactions between the vehicle
and the terrain as the terrain feature variable. Huang et al. [8] proposed a road boundary
monitoring method based on a deep learning network. The experimental results showed
that the method had high accuracy and robustness for lane boundary line monitoring in
various scenarios. Based on road images, laser radar point cloud data, and vehicle state
information, Zhao et al. [9] realized road recognition by parameter estimation and state
fusion. The direct measurement method using environmental sensors for road recognition
has the advantages of real-time measurement capabilities and high estimation accuracy.
However, to achieve large-scale commercial applications, it is necessary to further reduce
the cost of environmental sensors and their reliability in harsh environments [10].

Another method is to estimate the road feature parameters through a vehicle model
and then perform road recognition. The method of estimating the road adhesion coefficients
of wheeled vehicles based on the slip-slope method [11] using the µ− s curve is compara-
tively mature, but the implementation of this method is based on an accurate tire model.
Since the vehicle longitudinal dynamics model does not include the tire model, the method
of estimating the road characteristics parameters based on this model is theoretically more
suitable for tracked vehicles. The application of this method to wheeled vehicles could also
be used as a reference. The estimation of the engine output torque is a difficult task for road
parameter estimation based on the vehicle longitudinal dynamics model. Chu et al. [12]
used the vehicle longitudinal dynamics model to estimate the road slope by making full
use of the accurate driving force information from an electric-drive vehicle. Liu et al. [13] es-
tablished an engine output torque prediction model, including a fuel supply system model,
an in-cylinder combustion model, and a crankshaft dynamics model. Based on the vehicle
longitudinal kinematics model, the Kalman filter algorithm was used to estimate the road
slope. Because the established engine output torque prediction model was too complex, this
method was difficult to use for real vehicle control. Cong et al. [14] established a look-up
table model of the engine output torque by fitting the corresponding relationship between
the engine output torque, engine speed, and accelerator pedal position and estimated the
road slope based on the Kalman filter algorithm. This method required a lot of manual
calibration work in the bench test stage of the vehicle, and it was difficult to update after
the calibration was complete. The predicted torque error of the model would increase with
the engine performance degradation. The development of intelligent algorithms provides a
new idea for establishing an engine model with nonlinearity, multiple disturbances, and
time lag [15].

In this study, the tracked vehicle was the research object, and a method for establishing
a prediction model of the engine output torque in the tracked vehicle, based on the vehicle
driving data, was proposed. This method saves a lot of manual calibration work during
the vehicle bench test stage and has the advantage of enabling real-time updates. The
rolling resistance coefficient estimation for the road was realized using the model. The
vehicle driving data, during the driving process, from the tracked vehicle were collected.
The vehicle driving data were screened by setting the driving conditions of the vehicle to
estimate the f . The Kalman filter algorithm was used to filter the longitudinal acceleration
a in the selected data segments, and the engine output torque Te of each data segment
was calculated based on the filtered longitudinal acceleration â. The engine speed ne, the
engine speed variation rate n′e, the accelerator pedal position β, and the accelerator pedal
position variation rate β′ were the inputs, and the engine output torque Te was the output.
A genetic algorithm–backpropagation (GA–BP) neural network algorithm was used to fit
the mapping relationship between the inputs and the output, Te = f (ne, n′e, β, β′). Based on
the longitudinal dynamics model of tracked vehicles, the RLS algorithm with the forgetting
factor λ was used to estimate the f̂ . The implementation process is shown in Figure 1. The
experimental results showed that the sensor information could be used to automatically
judge the driving conditions during the driving process of the tracked vehicle. When the
driving conditions of the vehicle satisfied the set driving conditions, the engine output
torque prediction model predicted the T̂e in realtime based on the ne and β, and then it
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further estimated the f̂ . The estimation results had high accuracy and could better meet
the requirements for the real-time estimation of the road parameters for tracked vehicles.
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2. Estimation of f Based on Recursive Least Squares (RLS) Algorithm

The longitudinal driving forces on the tracked vehicle are shown in Figure 2. The
vehicle driving force Ft can be expressed as follows:

Ft = mg f cos α + δma + mg sin α +
CD A
21.15

v2, (1)

where m is the mass of the vehicle, g is the acceleration of gravity, f is the rolling resistance
coefficient of the road, α is the road slope, δ is the rotating mass scaling factor, a is the
longitudinal acceleration of the tracked vehicle, CD is the air resistance coefficient, A is the
windward area of the tracked vehicle, and v is the speed of the tracked vehicle.
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The relationship between the Te and vehicle driving force Ft can be expressed as follows:

Te =
Ftr
iη

, (2)
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where i is the transmission ratio from the engine to the driving wheel, η is the transmission
efficiency, and r is the radius of the sprocket.

The formula for f can be obtained by combining (1) and (2):

f =
Teiη

r −
CD A
21.15 v2 −mg sin α− δma

mg cos α
. (3)

From Formula (3), it can be seen that f can be obtained when Te, a, and α are known.
The RLS algorithm with the forgetting factor λ is used to estimate the f . The RLS

algorithm can be expressed as follows:

y(t) = ϕT(t)θ(t) + e(t), (4)

where ϕ(t) is the estimated parameter vector at time t, θ(t) is the regression vector at
time t, and e(t) is the deviation between the measured value y(t) and the estimated value
ϕT(t)θ(t) at time t.

The RLS algorithm iteratively updates the position parameter vector ϕ(t) at each
sampling time by making the regression vector θ(t) contain the input and output data
from a previous time. The RLS algorithm minimizes the estimation bias for each iteration
period by updating the vector regression θ(t). In this paper, y(t) = Teiη/r − CD A

21.15 v2 −
mg sin α(t)− δma(t), θ(t) = mg cos α(t), and λ = 0.98.

The calculation steps for the RLS algorithm at each time t are as follows:

(1) The system output y(t) is measured, and the regression vector θ(t) is calculated.
(2) The difference e(t) between the actual output of the system y(t) at time t and the

output of the prediction model obtained by estimating the parameters ϕT(t)θ(t− ∆t)
is calculated. ∆t is the time interval. The difference e(t) can be expressed as follows:

e(t) = y(t)− ϕT(t)θ(t− ∆t). (5)

(3) The updated gain vector G(t) and the covariance matrix C(t) are calculated. These
can be expressed as follows:

C(t) =
1
λ

[
C(t− ∆t)− C(t− ∆t)ϕ(t)ϕT(t)C(t− ∆t)

λ + ϕT(t)P(t− ∆t)ϕ(t)

]
, (6)

G(t) =
C(t− ∆t)ϕ(t)

λ + ϕT(t)C(t− ∆t)ϕ(t)
. (7)

(4) The parameter estimation vector ϕ(t) is updated as follows:

ϕ(t) = ϕ(t− ∆t) + Ge(t). (8)

3. Tracked Vehicle Driving Data Acquisition and Processing

The tracked vehicle examined in this study was equipped with a diesel engine, a dry
clutch, and a fixed shaft gearbox. The tracked vehicle was equipped with a combined iner-
tial navigation module, including an acceleration sensor and a gyroscope. The positioning
data were processed by differential processing, and the accuracy reached the centimeter
level. The acceleration sensor was used to measure the longitudinal acceleration value
of the tracked vehicle in real time. The gyroscope was used to measure the vehicle pitch
angle, and the vehicle pitch angle was assumed to be equal to the road slope value. The
vehicle controller received the driver’s control instructions to control the vehicle, and the
driving data recorder recorded the vehicle’s driving data, which was convenient for the
data analysis and control optimization of the vehicle. The communication structure of each
module is shown in Figure 3.
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Figure 3. Communication structure of each module.

The test site was a vehicle driving test site in Shanxi, China. The total length of the
test site route was 10 km, including a sand road and a cement road. The rolling resistance
coefficients of the two roads were measured to be 0.06 and 0.045. Figure 4 shows the satellite
map of the experimental site. A total of 119.67 h driving data were collected by the driving
data recorder. The collected data included GPS coordinates, vehicle speed, longitudinal
acceleration, pitch angle, heading angle, and gear and clutch displacement.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

driving data recorder recorded the vehicle’s driving data, which was convenient for the 

data analysis and control optimization of the vehicle. The communication structure of 

each module is shown in Figure 3.  

 

Figure 3. Communication structure of each module. 

The test site was a vehicle driving test site in Shanxi, China. The total length of the 

test site route was 10 km, including a sand road and a cement road. The rolling resistance 

coefficients of the two roads were measured to be 0.06 and 0.045. Figure 4 shows the sat-

ellite map of the experimental site. A total of 119.67 h driving data were collected by the 

driving data recorder. The collected data included GPS coordinates, vehicle speed, longi-

tudinal acceleration, pitch angle, heading angle, and gear and clutch displacement. 

 

Figure 4. Satellite map of the experimental site. 

To ensure the accuracy of the engine output torque model, the driving data were 

screened by setting the driving conditions for the tracked vehicle. The vehicle driving data 

that satisfied the driving conditions were used as the effective data to establish the engine 

output torque prediction model. 

(1) The measurement of the vehicle pitch angle by the gyroscope was affected not only 

by the road slope but also by installation error, the suspension state, and other fac-

tors. Under some conditions, for example, the clutch was engaged too fast when shift-

ing, which caused the vehicle to pitch in a short time even if it was driving on a flat 

road, resulting in measurement errors. At the same time, a large change in the road 

slope also increased the measurement error of the acceleration sensor. To improve 

the prediction accuracy of the model, the driving data with a large angle measured 

by the gyroscope were eliminated by setting the ramp threshold to 𝛼𝑡ℎ = 3°, so that 

the tracked vehicle could drive on a flat road, which was approximately level, as far 

as possible. 

(2) The selected vehicle driving data did not include the clutch separation process, and 

the driving force during the vehicle driving process was only provided by the engine. 

The engagement and separation state of the clutch was judged by the displacement 

of the clutch control cylinder 𝑐𝑙ℎ𝑥 . When the clutch combination displacement 

𝑐𝑙ℎ𝑥 ≤ 18 mm, the clutch was considered engaged. Setting the vehicle acceleration 

threshold 𝑎𝑡ℎ and the minimum stable driving time threshold 𝑡𝑠 ensured that the 

stable driving data were screened after the vehicle shift was complete. By analyzing 

Figure 4. Satellite map of the experimental site.

To ensure the accuracy of the engine output torque model, the driving data were
screened by setting the driving conditions for the tracked vehicle. The vehicle driving data
that satisfied the driving conditions were used as the effective data to establish the engine
output torque prediction model.

(1) The measurement of the vehicle pitch angle by the gyroscope was affected not only
by the road slope but also by installation error, the suspension state, and other factors.
Under some conditions, for example, the clutch was engaged too fast when shifting,
which caused the vehicle to pitch in a short time even if it was driving on a flat
road, resulting in measurement errors. At the same time, a large change in the road
slope also increased the measurement error of the acceleration sensor. To improve
the prediction accuracy of the model, the driving data with a large angle measured
by the gyroscope were eliminated by setting the ramp threshold to αth = 3◦, so that
the tracked vehicle could drive on a flat road, which was approximately level, as far
as possible.

(2) The selected vehicle driving data did not include the clutch separation process, and the
driving force during the vehicle driving process was only provided by the engine. The
engagement and separation state of the clutch was judged by the displacement of the
clutch control cylinder clhx. When the clutch combination displacement clhx ≤ 18 mm,
the clutch was considered engaged. Setting the vehicle acceleration threshold ath and
the minimum stable driving time threshold ts ensured that the stable driving data
were screened after the vehicle shift was complete. By analyzing the driving data,
we set ath = 0.4 m/s2 and ts = 10 s. The driving data when the vehicle acceleration
|a| ≤ 0.4 m/s2 for more than 10 s after the clutch was engaged was considered stable
and valid data.
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(3) It was necessary to limit the heading angle γ in the screened vehicle driving data
to ensure that the tracked vehicle was in a straight-line driving state. Considering
the influence of sensor measurement error and random road disturbances, we set
γth = 5◦. In the selected driving data, the change in the heading angle of the vehicle
between the initial moment and the final moment could not exceed 5◦.

Due to the body vibration and acceleration sensor measurement bias during the
running of the tracked vehicle, the acceleration measurement data had a larger error than
the real value. The Kalman filter algorithm was used to filter a to obtain an accurate
longitudinal acceleration â. The vehicle displacement p, velocity v, and acceleration a were
the state variables, and u was the measured value of the acceleration sensor. The driving
displacement pGPS and the driving speed vGPS obtained by the vehicle’s integrated inertial
navigation module through the differential positioning system were taken as the observed
quantities. The vehicle state equation at time t can be expressed as follows:pt

vt
at

 =

1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 0

pt−∆t
vt−∆t
at−∆t

+

0
0
1

ut−∆t, (9)

 pGPSt−∆t
vGPSt−∆t

vGPSt−vGPSt−∆t
∆t

 =

1 0 0
0 1 0
0 0 1

pt−∆t
vt−∆t
at−∆t

, (10)

where Xk =

pt
vt
at

, Yk =

 pGPSt−∆t
vGPSt−∆t

vGPSt−vGPSt−∆t
∆t

, F =

1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 0

, B =

0
0
1

, H =

1 0 0
0 1 0
0 0 1

,

and ∆t is the calculation time step.
The Kalman filter algorithm uses a recursive method to solve the filtering problem of

discrete linear data [16]. The steps are as follows:

(1) Update the prediction equation:{
X−t = FXt−∆t + But
P−t = FPt−∆tFT + Q

. (11)

(2) Update the Kalman gain coefficient:

K = P−t HT(HP−HT + R)
−1

. (12)

(3) Update the measurement equation:{
Xt = X−t + K(Yt − HX−t )

Pt = (I − KH)P−t
. (13)

In these formulas, X−t is the prior state estimation at time t, Xt is the posterior state
estimation at time t, P−t is the prior covariance matrix at time t, Pt is the covariance
matrix at time t, Q is the process noise covariance matrix, R is the observation noise

covariance matrix, and K is the Kalman gain coefficient. In this study, Q =

0.5 0 0
0 0.5 0
0 0 0.5

,

R =

0.2 0 0
0 0.2 0
0 0 0.2

, and P0 =

0.1 0 0
0 0.1 0
0 0 0.1

. The acceleration data measured by some

accelerometers are filtered, and the filtering effect is shown in Figure 5.
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4. Engine Output Torque Prediction Model

After obtaining â using the Kalman filter algorithm, the driving force Ft of the vehicle
was calculated according to Formula (1), and the Te was further obtained. The ne, n′e, β,
and β′ were used as the inputs in the engine output torque prediction model, and the
corresponding engine output torque Te, calculated by â, was used as the model output. The
GA–BP neural network algorithm was trained on the inputs and output, and the mapping
relationship between the Te and ne, n′e, β, and β′ was Te = f (ne, n′e, β, β′). Thus, the engine
output torque prediction model was established.

The GA–BP neural network algorithm makes use of the global optimization ability
of the genetic algorithm to make up for the shortcomings of BP neural networks, such as
the slow learning convergence speeds, uncertain network structures, and ease of falling
into the local minimum. The initial weights and thresholds in the BP neural network were
used as genes in the genetic algorithm. The values on the genes represented the connection
weights or thresholds in the BP neural network and formed the chromosomes of the genetic
algorithm. A certain number of chromosomes were used as the initial population of the
genetic algorithm. After selection, crossover, and mutation iterations, the initial weights and
thresholds of the optimal BP neural network were obtained. The GA–BP neural network
algorithm structure diagram is shown in Figure 6. After the simulation test, the number of
genetic iterations in the genetic algorithm is set to 30, the number of populations is 5, the
probability of crossover is 0.7, and the probability of mutation is 0.1.
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The BP neural network continuously corrected the weights and thresholds of each
neural network layer through error backpropagation. The number of input nodes in the
BP neural network is four, the number of output nodes is one, and the hidden layer is
ten. When the training results met the set requirements, the training was stopped and the
prediction results were output. The network structure is shown in Figure 7.
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In the graph, ω
[n]
jk is the weight value from the k-th node to the j-th node of the

(n− 1)-th layer in the neural network, b[n]j represents the threshold of the j-th node of the

n-th layer neural network, z[n]j is the linear result of the j-th node added to the n-th layer

neural network, and a[n]j represents the output value of the j-th node of the n-th layer
neural network.

The initial weights and thresholds for each layer of the neural network were calculated
by the genetic algorithm to obtain the optimal solution. σ denotes the activation function,
and χ donates the learning rate. The input signal fitting process is as follows:

Gradient of output layer:

σ
[n]
j =

∂s

∂α
[n]
j

σ′
(

z[s]j

)
; (14)

Gradient of hidden layer:

σ
[n]
j = ∑ ω

[n]
kj σ

[n+1]
k σ′

(
z[n]j

)
; (15)

s-th iteration threshold:

b[n]j (s) = b[n]j (s− 1)− ησ
[n]
j ; (16)

s-th iteration weight:

ω
[n]
jk (s) = ω

[n]
jk (s− 1)− ησ

[n]
j a[n−1]

k . (17)

The learning rate χ was adaptively adjusted according to the error change e(s), which
can be expressed as:

χ(s) =


1.05χ(s− 1) e(s− 1) < e(s− 2)
0.5χ(s− 1) e(s− 1) < 1.04e(s− 2)
χ(s− 1) other

. (18)

5. Experimental Results and Analysis

The accuracy of the tracked vehicle engine output torque prediction model and the
effectiveness of the f estimation method were verified by experiments. The experimental
pavement was a sand road and a cement road. The structural parameters of the experimen-
tal vehicle are shown in Table 1.
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Table 1. Tracked vehicle structural parameters.

Parameter Value

m (kg) 31,000
r (m) 0.283

A (m2) 6
CD 0.45
δ 1.24

i (1st gear to 5th gear) 28.35/13.23/9.45/6.71/4.3
η (1st gear to 5th gear) 0.79/0.77/0.76/0.75/0.73

To improve the computational efficiency, the engine output torque prediction model
was established through offline updates and online prediction. In this study, MATLAB
2021b was used to train the engine output torque prediction model offline through the
selected vehicle driving data, and the generated model was converted into C code and
imported into an industrial personal computer (IPC).

The IPC received the vehicle state in real time through the controller area networks
(CAN) bus. When the vehicle state was determined to meet the set working conditions,
a data storage container was established to store the vehicle state data. When it was
determined that the current vehicle driving state did not meet the set conditions, the data
stored in the container were emptied and the vehicle state was continuously monitored.
When the container stored data for more than 10 s, i.e., the vehicle had been running in a
specific state for 10 s, the engine output torque prediction model began to predict the T̂e
based on the ne and β, and the f̂ was further estimated. The data container was used to
store data to estimate the f̂ and update the f̂ in real time, based on the current vehicle state.
The process through which the IPC processed the tracked vehicle driving data is shown
in Figure 8.
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5.1. Estimation of f̂ for Tracked Vehicles Driving on a Sand Road

The annular sand road in the vehicle driving test field was selected as the experimen-
tal test road. According to the driving habits and environmental conditions, the driver
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determined the gear and speed to maintain driving safety and speed. The IPC received the
driver’s control information and the vehicle driving state data in real time, and automati-
cally determined whether the vehicle’s state satisfied the set driving conditions. When the
driving conditions were satisfactory, the engine output torque prediction model predicted
the T̂e in real time and estimated the f̂ .

Figure 9 shows the trajectory of the tracked vehicle. The vehicle started from the
starting point and traveled around the circular runway. The driving distance was 3694 m.
The red solid line section marked in Figure 9 indicates that the state of the tracked vehicle
on this section satisfied the set driving conditions. The total length of the red solid line
segment was 2054.5 m. Figure 10 shows the change in the speed, and the gear and clutch
cylinder displacement in the tracked vehicle during the whole driving process. As can
be seen from Figure 10, the total driving time of the vehicle was 622.3 s. The vehicle
starts in second gear, the highest gear was fifth gear, the highest speed was 32.5 km/h, the
commonly used gear during the vehicle driving was fourth gear, and the average driving
speed was 20.55 km/h. When f lagstate = 1, the driving state of the vehicle meets the set
conditions. The entire driving process satisfied the set driving conditions during 10 periods,
and the total time was 313.8 s. Figure 11 shows the changes in the acceleration, pitch angle,
and heading angle of the tracked vehicle. It can be seen from Figure 11 that the acceleration
of the vehicle increased rapidly in a short time during the engagement of the vehicle’s
clutch, and the impact of shifting the vehicle was large. After the clutch engagement was
completed, the vehicle acceleration changed relatively smoothly when the vehicle was
accelerating and decelerating. The acceleration measurement value was more credible, and
it was reasonable to screen the vehicle driving data by setting the acceleration threshold.
It can be seen from the change in the heading angle that when the tracked vehicle was
under the set driving conditions, the heading angle of the vehicle was almost unchanged,
and the vehicle could be considered to have maintained, approximately, a straight driving
state. Under the set driving conditions, the change in the pitch angle of the tracked vehicle
was in the range of the set pitch angle. Figure 12 shows the changes in the engine speed
and accelerator pedal angle during the driving process of the vehicle. The selected driving
information data excluded the rapid variation stage of the engine speed during the shifting
process. The accelerator pedal angle and engine speed varied smoothly, and the vehicle
ran stably.

Figure 13 shows the T̂e prediction of the engine output torque prediction model when
the tracked vehicle satisfied the driving conditions for the first time on the sand road. The
Te, calculated based on â using Equation (1), was the real value, and the engine output
torque predictions of the BP neural network were used as the control data. The engine
output torque value T̂eGA−BP predicted by the GA–BP neural network was closer to the
Te. The root mean square error σe and the coefficient of determination R were used as the
evaluation indices on the accuracy of the engine output torque estimation.

σe =

√
(T̂e − Te)

2/n, (19)

R = 1− ∑ (Te − T̂e)
2

∑ (Te − Te)
2 , (20)

where n is the number of sample data, and Te is the average value of the true values on the
output torque of the transmitter calculated from the sample data.

The root mean square error of the engine output torque obtained by the engine
output torque prediction model established by the BP neural network was 78.65, and the
coefficient of determination was 0.768. The root mean square error of the engine output
torque calculated by the GA–BP was 45.06, and the coefficient of determination was 0.924,
which was 42.71% and 20.31% higher than those of the BP neural network, respectively.
Figure 14 shows the result on the further f estimation by the RLS algorithm. The rolling
resistance coefficient estimated by the GA–BP neural network method was more convergent.
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The average error of the f̂ value estimated by the RLS algorithm was 0.00093, while it was
0.00117 for the BP neural network. Thus, the estimation accuracy was improved by 20.51%.
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Figure 14. Predicted f̂ values when the tracked vehicle satisfied the driving conditions for the first
time on the sand road.

Table 2 shows the vehicle state and T̂e prediction for the 10 periods when the tracked
vehicle satisfied the driving conditions. The average root mean square error of the engine
output torque estimated by the GA–BP neural network was 42.24, and the average root
mean square error calculated by the BP neural network was 73.95. The average root mean
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square error of the engine output torque calculated by the GA–BP neural network on the
sand road was 42.87% higher than that of the BP neural network. Similarly, the average
coefficient of determination of the engine output torque estimated by the engine output
torque model established by the GA–BP neural network was 0.918, which was 27.73%
higher than that of the BP neural network.

Table 2. Vehicle state, T̂e, and estimated f̂ when the tracked vehicle satisfied the driving conditions
on the sand road.

Time (s) Distance
(m) Gear Average

Speed (km/h)
σe

(GA–BP)
σe

(BP)
R

(GA–BP)
R

(BP)

1 56.1–154.6 671.13 4 24.48 43.6 79.69 0.9287 0.7624
2 172.2–212.8 279.84 4 24.8 32.34 60.07 0.9305 0.7604
3 266–291.8 189.63 4 26.46 43.47 75.6 0.8727 0.6452
4 319.8–343.1 167.53 4 25.88 35.83 75.93 0.903 0.5640
5 343.3–394.3 356.49 4 25.11 40.59 76.04 0.9118 0.6907
6 398.1–411.1 96.98 5 26.82 42.59 79.97 0.9498 0.7437
7 415.2–429.6 136.84 5 33.99 52.66 79.26 0.9387 0.7832
8 461.6–471.7 41.89 3 14.78 51.73 69.84 0.9184 0.7142
9 475.5–498.3 57.39 2 9.04 42.95 64.35 0.8942 0.7627

10 596.9–611.2 56.83 3 14.3 36.67 78.73 0.9215 0.7608

Figure 15 shows the change in the average absolute error emb of the f̂ estimation results
obtained by the two methods, which was calculated as

emb =
∑
∣∣T̂e − Te

∣∣
n

. (21)

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

Table 2. Vehicle state, �̂�𝑒, and estimated 𝑓 when the tracked vehicle satisfied the driving conditions 

on the sand road. 

 Time(s) 
Distance 

(m) 
Gear 

Average 

Speed (km/h) 

𝝈𝒆 
(GA–BP) 

𝝈𝒆 
(BP) 

𝑹 
(GA–BP) 

𝑹 
(BP) 

1 56.1–154.6 671.13 4 24.48 43.6 79.69 0.9287 0.7624 

2 172.2–212.8 279.84 4 24.8 32.34 60.07 0.9305 0.7604 

3 266–291.8 189.63 4 26.46 43.47 75.6 0.8727 0.6452 

4 319.8–343.1 167.53 4 25.88 35.83 75.93 0.903 0.5640 

5 343.3–394.3 356.49 4 25.11 40.59 76.04 0.9118 0.6907 

6 398.1–411.1 96.98 5 26.82 42.59 79.97 0.9498 0.7437 

7 415.2–429.6 136.84 5 33.99 52.66 79.26 0.9387 0.7832 

8 461.6–471.7 41.89 3 14.78 51.73 69.84 0.9184 0.7142 

9 475.5–498.3 57.39 2 9.04 42.95 64.35 0.8942 0.7627 

10 596.9–611.2 56.83 3 14.3 36.67 78.73 0.9215 0.7608 

Figure 15 shows the change in the average absolute error 𝑒𝑚𝑏 of the 𝑓 estimation 

results obtained by the two methods, which was calculated as 

𝑒𝑚𝑏 =
∑|�̂�𝑒−𝑇𝑒|

𝑛
.  (21) 

The 𝑒𝑚𝑏 value of the road rolling resistance coefficient estimated by the GA–BP neu-

ral network was 0.00108, which was 24.44% higher than that of the BP neural network. 

The engine output torque model was established by the GA–BP neural network on the 

sand road, and the engine output torque was estimated. The estimation accuracy of the 

rolling resistance coefficient of the road was significantly improved compared with that 

of the BP neural network. Thus, the GA–BP neural network can better meet the real-time 

estimation requirements of the rolling resistance coefficient during the driving process of 

a vehicle on a sand road. 

 

Figure 15. Engine output torque predictions when the tracked vehicle satisfied the driving condi-

tions during 10 periods on the sand road. 

5.2. Estimation of 𝑓 for Tracked Vehicles Running on a Cement Road 

The driver drove the tracked vehicle by starting in second gear on the cement road. 

During the driving process of the vehicle, the IPC received the state information on the 

vehicle, predicted the engine output torque, and estimated the road rolling resistance co-

efficient in real time, when the vehicle state satisfied the driving conditions.  

Figure 16 shows the driving route of the tracked vehicle on the cement road, with a 

driving distance of 776.5 m. The red solid line in the figure represents the road section 

where the tracked vehicle predicted the �̂�𝑒 and estimated the 𝑓. During the whole driving 

process of the tracked vehicle, the engine output torque was predicted and the rolling 

resistance coefficient was estimated four times. The total length of the driving section was 

Figure 15. Engine output torque predictions when the tracked vehicle satisfied the driving conditions
during 10 periods on the sand road.

The emb value of the road rolling resistance coefficient estimated by the GA–BP neural
network was 0.00108, which was 24.44% higher than that of the BP neural network. The
engine output torque model was established by the GA–BP neural network on the sand
road, and the engine output torque was estimated. The estimation accuracy of the rolling
resistance coefficient of the road was significantly improved compared with that of the BP
neural network. Thus, the GA–BP neural network can better meet the real-time estimation
requirements of the rolling resistance coefficient during the driving process of a vehicle on
a sand road.

5.2. Estimation of f̂ for Tracked Vehicles Running on a Cement Road

The driver drove the tracked vehicle by starting in second gear on the cement road.
During the driving process of the vehicle, the IPC received the state information on the
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vehicle, predicted the engine output torque, and estimated the road rolling resistance
coefficient in real time, when the vehicle state satisfied the driving conditions.

Figure 16 shows the driving route of the tracked vehicle on the cement road, with a
driving distance of 776.5 m. The red solid line in the figure represents the road section
where the tracked vehicle predicted the T̂e and estimated the f̂ . During the whole driving
process of the tracked vehicle, the engine output torque was predicted and the rolling
resistance coefficient was estimated four times. The total length of the driving section was
554.3 m. Figure 17 shows the speed, the displacement of the clutch cylinder, and the change
in the gear when the tracked vehicle was driving on the cement road. The tracked vehicle
did not shift again after starting in second gear, and it ran in second gear to complete the
trip. The maximum speed was 14.36 km/h and the time was 260 s. The time for the tracked
vehicle to meet the set driving conditions was 154.4 s. Figure 18 shows the changes in
the acceleration, pitch angle, and heading angle of the tracked vehicle. The acceleration
changed smoothly when the tracked vehicle was under the set working conditions, the
pitch angle change was less than the set threshold, and the heading angle change was
small. The vehicle could be considered to be in a straight driving state. Figure 19 shows the
relationship between the engine speed and the percentage change in the accelerator pedal.
The engine speed and the driver’s control accelerator pedal changed smoothly during the
selected driving data.
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Figure 19. Changes in the engine speed and accelerator pedal position in the tracked vehicle running
on the cement road.

Figure 20 shows the predicted values of the T̂e and the estimated f̂ values when the
tracked vehicle ran on the cement road and met the set driving conditions for the first time.
The T̂e predicted by the engine output torque prediction model established by the GA–BP
neural network was closer to the real value of the engine output torque. Figure 21 shows
the estimation of the road rolling resistance coefficient f̂ by the RLS algorithm. The GA–BP
neural network was used to estimate the engine output torque and further estimated the
road rolling resistance coefficient with better accuracy.

Table 3 shows the estimated values on the vehicle state, T̂e, and f̂ of the tracked vehicle
on the cement road under the set conditions. The σe value in the results estimated by
the GA–BP neural network was 13.09, and the value for the BP neural network method
was 42.4% greater. The R from the GA–BP method was 0.895, which was 12.8% higher
than that of the BP neural network. Figure 22 shows the change in the emb values for the
f̂ estimation results obtained by the two methods. The emb value by the GA–BP neural
network predictions was 0.00061, which was 38.1% higher than that of the BP neural
network predictions.
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Table 3. Vehicle state, T̂e, and estimated f̂ when the tracked vehicle satisfied the driving conditions
on the cement road.

Time (s) Distance
(m) Gear Average

Speed (km/h)
σe

(GA–BP)
σe

(BP)
R

(GA–BP)
R

(BP)

1 33.3–104 257.9 2 13.12 19.01 33.38 0.86 0.75
2 125.3–144.7 75.5 2 13.45 11.2 18.12 0.83 0.748
3 156.1–203.7 184.1 2 13.89 10.49 18.54 0.92 0.76
4 221.7–238.4 39.8 2 8.51 11.66 20.88 0.89 0.81

6. Conclusions

In this paper, a method for establishing an engine output torque prediction model
based on vehicle driving data was proposed for tracked vehicles, and the model was used
to further estimate the rolling resistance coefficient of the road. The following conclusions
can be drawn from the experimental results:

(1) The engine output torque prediction model obtained by fitting the vehicle driving data
with the GA–BP neural network had a high level of engine output torque prediction
accuracy. The engine output torque prediction model was established using vehicle
driving data, which reduced the calibration work in the engine bench test stage
significantly and had real-time updating capabilities. This method provides a new
option for the establishment of an engine output torque model.

(2) In this study, a prediction model of the engine output torque was established, and
the RLS algorithm was used to estimate the road rolling resistance coefficients of
tracked vehicles under certain driving conditions. The experimental results showed
that when the tracked vehicle was driving on a sand road and a cement road, the
rolling resistance coefficient of the road could be automatically estimated and had
high accuracy when the vehicle driving state satisfied the set driving conditions. To a
certain extent, this method meets the requirements for the real-time estimation of the
rolling resistance coefficient of a road when a tracked vehicle drives longitudinally.

(3) Limited by the system structure of the tracked vehicle and the measurement error of
the sensor, to ensure the prediction accuracy of the engine output torque prediction
model and the estimation accuracy of the road rolling resistance coefficient, it is
necessary to limit the driving conditions of the tracked vehicle, which makes it
difficult to apply this model throughout the whole driving process. Determining how
to make the tracked vehicle estimate the road parameters over the whole driving
process will be the focus of future research.
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