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Abstract: Precise identification and spatial analysis of land salinity in China’s Yellow River Delta
are essential for the rational utilization and sustainable development of land resources. However,
the accurate retrieval model construction for monitoring land salinity remains challenging. This
study constructed a land salinity retrieval framework using a harmonized UAV and Landsat-9 multi-
spectral dataset. The Kenli district of the Yellow River Delta was selected as the case study area,
and a land salinity monitoring index (LSMI) was proposed based on field survey data and UAV
multi-spectral image and applied to the reflectance-corrected Landsat-9 OLI image. The land salinity
distribution patterns were then mapped and spatially analyzed using Moran’s I and Getis-Ord GI*
analysis. The results demonstrated the following: (1) The LSMI-based method can accurately retrieve
land salinity content with a validation determination coefficient (R2), root mean square error (RMSE),
and residual predictive deviation (RPD) of 0.75, 1.89, and 2.11, respectively. (2) Land salinization
affected 93.12% of the cultivated land in the study area, and the severely saline soil grade (with
a salinity content of 6–8 g/kg) covered 38.41% of the total cultivated land area and was widely
distributed throughout the study area. (3) Saline land exhibited a positive spatial autocorrelation with
a value of 0.311 at the p = 0.000 level; high–high cluster types occurred mainly in the Kendong and
Huanghekou towns (80%), while low–low cluster types were mainly located in the Dongji, Haojia,
Kenli, and Shengtuo towns (88.46%). The spatial characteristics of various salinity grades exhibit
significant variations, and conducting separate spatial analyses is recommended for future studies.

Keywords: land salinity retrieval; remote sensing; spatial analysis; random forest; Landsat-9 OLI

1. Introduction

Land salinization has significant implications for the ecological environment at a
worldwide scale [1,2]. Over 1 billion hectares or approximately 10% of the world’s total
land resources are at risk of salinization [3,4]. In China, the area of land resources affected
by salinization is more than 36.3 million hectares [5], mainly distributed in arid and semi-
arid areas [6] and coastal areas (e.g., the Yellow River Delta) [7,8]. By incorporating the
management and planning of saline land resources into the national food security strategic
system, China has designated such lands as future reserve cultivated land resources [9].
Precise identification and mastery of the spatial distribution characteristics of saline land, as
well as a quantitative description and spatial analysis of land salinization levels, are crucial
for optimizing land resource allocation, maintaining ecosystem health, and promoting
regional sustainable development.

The causes of land salinization can be categorized into two types: natural salinization
and anthropogenic salinization [10]. Capillary action or evapotranspiration may lead to the
rise of groundwater and the accumulation of soluble salts on the soil surface, resulting in
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varying degrees of salinity [11]. Land salinization typically occurs in regions characterized
by arid climates, high rates of evapotranspiration, shallow water tables, and elevated levels
of soluble salts. This phenomenon can lead to a significant reduction in soil productivity and
biodiversity, as well as an imbalance in the soil’s acid–base equilibrium and deterioration
of regional ecosystems [12,13], which has become a major environmental issue that hinders
social and economic development and threatens the ecological environment. As a complex
and dynamic system, soil changes over time and space [14,15]. Therefore, it is crucial
to develop effective methods for monitoring the extent of regional land salinization and
uncovering its distribution patterns.

The conventional approaches to land salinity measurement contain field surveys
and electrical conductivity measurements, which are theoretically accurate but require
significant time and labor resources [16,17]. Moreover, this method does not allow for the
monitoring of spatial distribution patterns in land salinity content. The introduction of
satellite remote-sensing technology enables a broad detection range and high acquisition
efficiency, thereby facilitating the provision of spectral information on land salinization
at short intervals [18]. By establishing predictive models that correlate remotely sensed
soil salt data with ground monitoring, relatively small sample-size verification data are
required for assessing land salinization on the ground, which helps reduce monitoring costs.
Scholars therefore have utilized RS images and corresponding indexes to investigate and
monitor land salinity. For instance, Azabdaftari et al. (2016) computed vegetation indexes
to retrieve land salinity in Turkey using Landsat multi-spectral images from four different
intervals [19]. Morgan et al. (2018) forecasted land salinity in Cairo, Egypt, using Sentinel-2
multi-spectral data and neural network classification methods [20]. Wang et al. (2021)
combined Sentinel-2 and three machine-learning methods to estimate and map the land
salinity in arid areas of China [21]. Ge et al. (2022) used Sentinel-2 image, environmental
covariates, and hybrid machine-learning approaches to update land salinity with fine
spatial resolution and high accuracy [22]. Kaplan et al. (2023) predicted land salinity using
machine learning and Sentinel-2 data in hyper-arid areas [23]. Alamda et al. (2023) detected
land salinity using Lansat-8 OLI image and machine-learning algorithms [24]. All the
studies found that it could be possible to estimate soil salinity to an excellent extent by
satellite data. However, the accurate monitoring of soil salinization is constrained by the
spatial resolution limitations of satellite remote-sensing images (10–50 m), necessitating the
urgent acquisition of high-resolution imagery to provide enhanced support.

Different from satellite RS means, unmanned aerial vehicle (UAV) spectral sensors
are highly maneuverable and have been used as an essential data source to monitor land
salinity since the 2010s. Ivushkin et al. (2019) investigated the plot-scale assessment of
land salinity using three different UAV-mounted sensors [25]. Zhao et al. (2021) developed
and optimized an inversion monitoring model for monitoring soil salt content using UAV
multi-spectral remote-sensing data and a backpropagation neural network in northwest
Oasis China [26]. Yang et al. (2021) examined the effect of spring irrigation on land salinity
monitoring with a UAV multi-spectral sensor, and found that accurate regional salinity
maps could be plotted based on the spectral indices selected by a genetic algorithm [27].
Yu et al. (2022) proposed a soil salinity retrieval index to investigate the feasibility of the
UAV sensor of Sequoria to inverse soil salinity [28]. Studies have indicated that the index
in the visible-to-infrared spectrum may better measure land salinity, which can increase the
accuracy of land salinity retrieval. However, UAVs alone cannot detect and monitor land
salinity at a regional scale. To boost the spectral resolution to retrieve land salinity, Xie et al.
combined Sentinel-2A and UAV multi-spectral images to increase the spectral resolution
to retrieve regional land salinity [29]. Qi et al. (2021) retrieved land salinity in coastal
corn planting areas using the Sentinel-2A satellite–UAV–ground integration approach, and
found that the use of satellite and UAV images can improve the retrieval accuracy of land
salinity [30]. Even though scholars have tested the ability of land salinity monitoring using
Sentinel-2A satellite and UAV images, an in-depth study is essential for the construction of
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a reliable land salinity retrieval index based on Landsat-9 OLI and UAV images due to the
longer time coverage and stability provided by Landsat imagery.

This study selected Kenli District in the Yellow River Delta as the case study area. The
aims are to (1) construct monitoring models of the land salinity content based on UAV
imagery and field-measured data, (2) construct the relationship between the reflectance
of UAV and Landsat-9 OLI satellite images to normalize the reflectance of satellite image,
(3) apply the optimal monitoring model to the normalized satellite imagery to achieve
scaled-up land salinity monitoring method, and (4) explore the spatial distribution patterns
of various grades of salinity soil at a regional scale.

2. Study Area

The study was conducted in the representative cultivated land region of the Kenli
district, YRD (37◦35′6′′~37◦35′14′′ N, 118◦20′31′′~118◦20′46′′ E). The study area contains
9 towns, i.e., Dongying Demonstration Zone (DDZ hereinafter), Dongji Town (DJ), Haojia
(HJ), Huanghekou (HHK), Kendong (KD), Kenli (KL), Shengtuo (ST), Xinglong (XL), and
Yong’an (YA) with a total area of 1246.51 km2, in which cultivated land covers 894.34 km2.
The terrain in the study area is gently sloping with typical alluvial plain landforms. The
study area features a temperate continental monsoon climate that is characterized by dry
and windy conditions during spring. The potential evapotranspiration–precipitation ratio
in the study area is higher than 7, resulting in limited vegetation coverage and severe salt
deposition in the soil. The main soil types in the study area are coastal saline alkaline
soil and fluvo-aquic soils. The groundwater table has a shallow depth and high mineral
content. The cultivated lands in the study area cover 894.34 km2, which is the predominant
land-use type.

3. Methodology
3.1. Data Processing

In the study area, the spring season is characterized by high evapotranspiration rates
and land salinity accumulation, which is critical for the growth of crops planted on the
cultivated land. Therefore, referring to the revisit time of the Landsat-9 satellite and the
local weather conditions, a field survey was conducted on 16 April 2023 to collect soil
samples and fly UAV to obtain UAV multi-spectral images.

Two experimental plots were established on the cultivated land in the study area to fly
the UAV system (DJI M600PRO + Sequoria multi-spectral sensor). Test Area 1 encompassed
an area of 3.78 ha and was planted with winter wheat. As April is the jointing period
of winter wheat, the vegetation coverage in the test area was relatively low. Test Area
2, which covered an area of 1.89 ha, was left fallow after harvest (see Figure 1). Eighty
ground control points were evenly distributed throughout the test areas, and measurements
were taken using an EC110 portable salinity meter equipped with a 2225FST series probe
(with temperature correction for electrical conductivity) from Spectrum Technologies Inc.
(Dallas/Fort Worth, TX, USA). More details about the field work, UAV flight set, and soil
sample processing can be found in [28].

The Landsat-9 OLI image covering the study area was acquired on 16 April 2023
from the United States Geological Survey (http://earthexplorer.usgs.gov/, accessed on
26 April 2023). Radiometric calibration, fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH) atmospheric correction, geometry correction, and Gram–Schmidt
Pan Sharpening were conducted to obtain a 15 m resolution surface reflectance image using
an IDL program [31]. Table 1 presents the spectral band information of multi-spectral
sensors, including UAV and Landsat-9 OLI, within the wavelength range of 550 to 865 nm.

3.2. Model Construction and Validation

As found in our previous study, G, R, and NIR are significantly sensitive to land
salinity [28]. In this study, the reflectance of the sensitive band underwent mathematical
transformations or combinations through algebraic computations such as addition, sub-

http://earthexplorer.usgs.gov/
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traction, division, and logarithmic or reciprocal transformation to construct land salinity
retrieval models. Additionally, ratios were taken by combining addition and division or
their reciprocals (Table 2). Individual or combined bands with |R| > 0.45 were further
selected as sensitive parameters for screening purposes.
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Table 1. Band information of UAV and Landsat-9 OLI multi-spectral sensors (550–865 nm).

ID Band Abbreviation Center Wavelength (nm)
of Sequoria UAV Image

Center Wavelength (nm)
of Landsat-9 OLI Image

1 Green G 550 563

2 Red R 660 655

3 Red-edge REG 735 -

4 Near-infrared NIR 790 865

To evaluate the performance of the newly proposed index, commonly used land
salinity retrieval indexes, including a vegetation index and a salinity index, were utilized
for validation processes. The vegetation index was derived from standard multi-spectral
remote-sensing bands R and NIR, encompassing the normalized difference vegetation
index (NDVI, Equation (1)). The salinity index of the soil remote-sensing index (SRSI) refers
to the land salinity level and is represented by Equation (2).

NDVI =
NIR− R
NIR + R

(1)

SRSI =
√
(NDVI− 1)2 + SI12 SI1 =

√
G× R (2)
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Table 2. Algebraic computations of UAV multi-spectral data.

ID Transformation Equation

1 Addition R + G, G + NIR, NIR + R

2 Subtraction R−G, G−NIR, NIR−R

3 Division R/G, R/NIR, G/R, G/NIR, NIR/R, NIR/G

4 Logarithmic Lg(R), Lg(G), Lg(B)

5 Reciprocal 1/R, 1/G, 1/NIR

6 Ratio
|(R−G)/(R + G)|, |(R−NIR)/(R + G)|, |(G−NIR)/(R + G)|;

|(R−G)/(G + NIR)|, |(R−NIR)/(G + NIR)|,|(G−NIR)/(G + NIR)|;
|(R−G)/(NIR + R)|, |(R−NIR)/(NIR + R)|, |(G−NIR)/(NIR + R)|

G, R, and NIR are the reflectance of the green, red, and near-infrared band of the UAV image, respectively.

To evaluate the performance of the proposed index, the determination coefficient (R2),
root mean square error (RMSE), and residual predictive deviation (RPD) were utilized to
assess the regression outcomes. R2 indicates the consistency of model establishment and
validation. A high value of R2 (e.g., 1) denotes that the model is more robust and has a better
fitting degree. The RMSE serves as a metric for assessing the predictive performance of a
model, with lower values indicating superior prediction capabilities. The RPD represents
the ratio between the standard deviation of measured values and predicted errors. Models
with high R2 and RPD values exhibit superior performance in terms of both prediction
accuracy and stability [32].

3.3. Image Correction

To apply Landsat-9 data to the land salinity monitoring model and investigate regional-
scale land salinization, the UAV multi-spectral data were utilized to correct the reflectance
of the Landsat-9 multi-spectral image. To ensure the feasibility of correcting Landsat-9
images based on UAV images, the average reflectance of the UAV-sensitive band of all
sampling points and the corresponding sensitive bands (green, red, and near-infrared)
of Landsat-9 image were calculated, and then the average reflectance variation trend of
the three bands was compared to depict the scatter plot of the average reflectance of
the corresponding bands. Subsequently, the ratio correction method was employed to
normalize the reflectivity of Landsat-9 images [33]. For instance, the ratio between the
near-infrared reflectance of the Landsat-9 image and the near-infrared reflectance of the
fitted UAV image was calculated, and then the average of all ratios was calculated as the
near-infrared reflectance correction coefficient. The reflectance correction coefficients of
other bands were computed by the same method. Finally, the reflectances of sensitive bands
of the Landsat-9 image were corrected, which constructed the harmonized UAV-Landsat
image dataset.

3.4. Spatial Analysis

The spatial patterns of land salinity in the study area were analyzed using Moran’s
I and Getis-Ord GI* analysis. The global Moran index is a metric that quantifies the
overall spatial clustering of data [34]. If the global Moreland index is significant, it can
be considered that there is a spatial correlation in this region. The global Moran’s I is
defined as:

I =
N
W

∑N
i=1 ∑N

j=1 wij(xi − x)
(
xj − x

)
∑N

j=1(xi − x)2 (3)

where I is the global Moran‘s I, N represents the number of spatial units indexed by i and j,
x is the variable of interest, x is the mean of x, wij is the spatial weight between feature i
and j, and W is the sum of all wij.

However, it is still unknown where the phenomenon of spatial aggregation exists
in specific places. The local Moran index measures the degree of spatial correlation be-
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tween each spatial object and its neighboring objects within the analysis region [35]. The
computation equation is shown below.

Ii =
Zi

S2

n

∑
j 6=i

wijZj (4)

where Ii is the local Moran index, Zi=xi− x, Zj=xj− x, S2= ∑(xi−x)2

n , n represents the number
of spatial units, x is the variable of interest, x is the mean of x, wij is the spatial weight
between feature i and j.

The hot-spot analysis tool computes the Getis-Ord Gi* statistic for each feature in a
dataset, providing an effective means to investigate local spatial clustering distribution char-
acteristics that can differentiate variable spatial distributions into cold and hot spots [36].
The Getis-Ord Gi* statistic is computed using the following equations.

G∗i =
∑n

j=1 wi,jxj − X∑n
j=1 wi,j

S

√ [
n∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

X =
∑n

j=1 wi,j

n
S =

√
∑n

j=1 x2
j

n
− (X)

2 (5)

where n is the total number of features, xj is the attribute value for feature j, and wi,j is the
spatial weight between feature i and j.

4. Results
4.1. Retrieval Model Construction

Various combinations of the three land-salinity-sensitive bands (R, G, and NIR) were
compared and the sensitive parameters (|R| > 0.45) were filtered in Table 3. For the single
sensitive band information, NIR showed the highest correlation with land salinity content.
In the division section, NIR/R exhibited a |R| of 0.58 with salinity content. In the ratio
section, |(R − NIR)/(NIR + G)| had a |R| of 0.63. In order to simplify the equation and
make it more applicable, the absolute value symbols were removed, and the order of R and
NIR was adjusted to be consistent with the order of the denominators. Therefore, a new
index, namely the land salinity monitoring index (LSMI, Equation (4)), can be devised to
detect land salinity by relying on the three sensitive bands.

LSMI =
NIR− R
NIR + G

(6)

where G, R, and NIR are the green, red, and near-infrared band reflectance of the UAV
image, respectively.

Table 3. Sensitive parameters (|R| > 0.45) of the G, R, NIR.

ID Land Salinity Monitoring Models |R|

1 G 0.49

2 R 0.45

3 NIR 0.51

4 G/R 0.48

5 NIR/R 0.58

6 NIR/G 0.52

7 |(R − NIR)/(NIR + R)| 0.60

8 |(R − G)/(R + G)| 0.51

9 |(R − G)/(NIR + R)| 0.56

10 |(R − NIR)/(NIR + G)| 0.63
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4.2. Validation

The correlations of proposed LSMI, NDVI, and SRSI with land salinity content are
shown in Table 4. The comparison found that LSMI showed the highest Gray and Pearson
correlation coefficients, 0.68 and 0.64, respectively. NDVI demonstrated a significant
association (p < 0.01) with 0.62 and 0.60. SRSI had a significant association with land
salinity (p < 0.01), with 0.64 and 0.61 (Table 4). LSMI, NDVI, and SRSI were utilized
separately to build land salinity monitoring models.

Table 4. Correlation analysis of sensitive spectral index with land salinity.

Spectral Index Gray Correlation Coefficient Pearson Correlation Coefficient

LSMI 0.68 ** 0.64 **

NDVI 0.62 ** 0.60 **

SRSI 0.64 ** 0.61**
** significant at 0.01 level.

The random forest (RF) algorithm was then employed in this study to create retrieval
models of land salinity based on the LSMI, NDVI, and SRSI [28,37,38]. The results indicated
that the R2 values of the LSMI-based RF model showed stronger fitting impacts than the
estimation model based on NDVI and SRSI (Table 5), which was the highest modeling and
validation accuracies (R2 = 0.73 and 0.75) among the three sensitive parameters in order of
modeling and validation accuracies, and the RPD is higher than 2 (Table 5 and Figure 2).
The combination of LSMI and RF has adequate land salinity estimation capacity compared
to the commonly used methods.

Table 5. Accuracy statistical results of LSMI, SRSI and NDVI-based RF models.

Modeling
Method

Modeling Accuracy Validation Accuracy

R2 RMSE R2 RMSE RPD

LSMI 0.73 1.76 0.75 1.89 2.11

SRSI 0.66 2.54 0.69 2.44 1.88

NDVI 0.65 2.97 0.63 2.79 1.45Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
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4.3. Image Correction

The reflectance of the three sensitive bands (G, R, NIR) was compared with the
reflectance of the Landsat-9 image corresponding to the study sample sites, and the results
are shown in Figure 3a. The average reflectance of the three bands of the Landsat-9 image
is higher than that of the corresponding UAV image band, the change trend is congruent,
and the two images can be converted by the reflectance correction coefficient.
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Figure 3. Comparison of UAV and Landsat-9 OLI images: (a) reflectance comparison of the G, R,
NIR band; (b) scatter plot of G, R, and NIR reflectance of Landsat-9 image (X-axis) and UAV image
(Y-axis).

Furthermore, the reflectance of the three sensitive bands at each sampling site are
plotted and shown in Figure 3b. The correlation between Landsat-9 image and NIR band
reflectance is 0.76, while the G and R reflectance of Landsat-9 images exhibited moderate
correlations with the corresponding UAV multi-spectral bands (0.68 and 0.65, respectively).
The reflectivity correction coefficient is the ratio of the three sensitive band pixels of each
sampling point of the Landsat-9 image to the average of the corresponding points of the
UAV multi-spectral image (Table 6). The three sensitive reflectance correction coefficients
were divided by the corresponding Landsat-9 image band to correct the Landsat-9 image,
in order to achieve the subsequent land salinity monitoring in the study area.

Table 6. Reflectance correction coefficient of the Landsat-9 satellite image.

Band G R NIR

Reflectance correction coefficient 1.32 1.25 1.05

4.4. Spatial Distribution of Land Salinity

Land salinity in the test areas based on the proposed model was computed and shown
in Figure 4. The retrieval values of soil salinity ranged from 0.43 to 20.28 g/kg, with
an average value of 7.37 g/kg, which was close to the descriptive statistical results of
the soil samples (Table 4). The test areas can be divided into five classes based on the
saline land grading standard [39], namely extremely saline soil (salt content greater than
10.0 g/kg), severely saline soil (salt content 6.0–10.0 g/kg), moderately saline soil (salt
content 4.0–6.0 g/kg), slightly saline soil (salt content 2.0–4.0 g/kg), and non-saline soil
(Figure 3). According to the area calculation result, the extremely saline soil occupied the
lowest share of 6.3 percent of the five grades. Severely and moderately saline soil zones
accounted for 10.5 and 15.6 percent of the overall test area, respectively. The proportion
of slightly saline soil was 55.4 percent, the highest of the five categories. The non-saline
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region encompassed 12.2 percent of the test area. The geographical analysis demonstrated
that land salinization is widespread in the test areas.
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The results of land salinity monitoring for the study area based on the proposed model
and corrected Landsat-9 image presented in Figure 5 and Table 7 provide a summary of
the coverage area for each grade of land salinity. Land salinization affected 93.12% of the
cultivated land in the study area, and the non-saline grade occupied only 6.88% of the
total cultivated land in the study area, which was mainly located in ST (18.09 km2), HJ
(15.84 km2), and HHK (15.76 km2). The slightly saline soil class covered an area of 99.43 km2

in the study area. ST (26.01 km2), HHK (24.91 km2), and HJ (16.47 km2) topped three among
the nine towns. The moderately saline grade covered 37.76% of the total cultivated land
in the study area, which was mainly located in HHK (97.48 km2), KL (50.13 km2), and ST
(48.55 km2). The severely saline soil class was found to be the most extensive, covering
38.41% of the total cultivated land area and widely distributed throughout the study
area, while HHK and YA covered 108.16 and 80.99 km2. The extremely saline grade
(salinity content ≥10 g/kg) covered an area of 52.07 km2, accounting for 5.82% of the total
cultivated area, which was the least among the five grades. YA and HHK contributed 16.76
and 11.41 km2, respectively. Overall, the salinization degree of most of the cultivated land
in the study area was at moderately saline or below levels (55.76%, Table 7), while the
severely saline soil grade was widely distributed throughout the study area (Figure 5).

Table 7. Areas of different land salinity grades in the study area.

Town
Land Salinity Grade

Total (km2)
Non-Saline Slightly Saline Moderately Saline Severely Saline Extremely Saline

DDZ 0 0.01 5.10 35.63 5.21 45.95

DJ 5.74 10.62 29.13 7.10 1.08 53.67

HJ 15.84 16.47 12.30 1.59 0.13 46.33

HHK 15.76 24.91 97.48 108.16 11.41 257.72

KD 0.84 4.54 40.37 27.28 1.74 74.77

KL 4.60 11.34 50.13 44.12 9.31 119.5

ST 18.09 26.01 48.55 26.35 4.01 123.01

XL 0.02 0.63 14.97 12.33 2.42 30.37

YA 0.66 4.90 39.71 80.99 16.76 143.02

Total (km2) 61.55 99.43 337.74 343.55 52.07 894.34
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Figure 5. Spatial distribution of land salinity monitoring results in the cultivated land of the
study area.

4.5. Spatial Analysis of Land Salinity

Moran’s I and Getis-Ord GI* analysis was applied to the land-salinity-affected areas in
461 counties of the 9 towns (Figure 6a), as they were not applicable at the township scale.
Global Moran’s I computation results demonstrated that the distribution of saline land has
positive spatial autocorrelation (0.311, p = 0.000). Local Moran’s I analysis showed that
non-significant cluster types prevailed in the study area (332 of 461 counties), which were
distributed in all the 9 study towns. Conversely, there were only five counties exhibiting
a high–high cluster type, which were located in KD (2), HHK (2), and DDZ (1). A total
of 19 counties in 8 towns (except DDZ) showed a high–low cluster type. In this category,
DJ, HHK, and KL contain four counties, and ST has three counties. Only one county in
KD displayed a low–high cluster type. Different from the other three types, 104 counties
showed a low–low type in 5 towns (DJ, HJ, HHK, KL, and ST), among which DJ (26) and
HJ (22), and KL (22), ST (22) ranked first and second, respectively (Table 8).

The Getis-Ord Gi* analysis was used to detect cold and hot spots of apple orchard
land areas in the study area. Figure 6b shows whether the spatial clustering of the land
salinity was significant and, if so, at what level (0.01, 0.05, and 0.1 levels). The spatial
weight matrix was computed based on the Euclidean distance between sampling sites, and
the distance threshold was 5829.72 m. The spatial heterogeneity analysis found that there
were two 0.1-significant-level hot spots located in HHK, eight 0.05-significant-level hot
spots located in HHK (4) and DDZ (4), and ten 0.01-significant-level hot spots located in
HHK (4), KD (4), and DDZ (2). The distribution patterns of hot spots converged with those
of the local Moran index computation results.
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Table 8. Cluster types using local Moran’s I in the study area.

Town
Cluster Type

Total
Not Significant H-H H-L L-H L-L

DDZ 12 1 / / / 13

DJ 21 / 4 / 26 51

HJ 18 / 1 / 22 41

HHK 75 2 4 / 12 93

KD 4 2 1 1 / 8

KL 66 / 4 / 22 92

ST 47 / 3 / 22 72

XL 23 / 1 / / 24

YA 66 / 1 / / 67

Total 332 5 19 1 104 461
H-H: high–high cluster, H-L: high–low cluster; L-H: low–high cluster; L-L: low–low cluster.

To further understand the spatial characteristics of the different levels of land salin-
ization in the study area, the results of local Moran’s I and Getis-Ord Gi* analysis of
slightly saline grade (salt content 2.0–4.0 g/kg, Figure 7(a1,b1)), moderately saline grade
(salt content 4.0–6.0 g/kg, Figure 7(a2,b2)), severely saline grade (salt content greater than
10.0 g/kg, Figure 7(a3,b3)), and extremely saline grade (salt content greater than 10.0 g/kg,
Figure 7(a4,b4)) were separately computed and depicted. The summarized results are
shown in Table 9.

The spatial characteristics of different salinity grades varied significantly. Specifically,
the slightly saline grade exhibited a distinct high–high cluster type (Figure 7(a1) and
Table 9). Among the 177 cluster-type counties, there were 47 high–high cluster counties
distributed in HJ (16), HHK (12), ST (12), and DJ (7), accounting for 26.55% of the total. On
the other hand, the high–low, low–high, and low–low types were predominantly found
in KL, ST, and KL town respectively. Regarding the moderately, severely, and extremely
saline grades, they all displayed a significant high–high cluster type primarily in HHK
and KL town, as depicted in Figure 7(a2, a3, a4). Notably, KD town was unique as it
contained a low–high cluster type for moderately to extremely saline grades (Table 9). In
conclusion, conducting separate spatial analyses is recommended for subsequent studies
due to variations observed across different salinity levels.
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(a1,b1): slightly saline grade, (a2,b2) moderately saline grade, (a3,b3) severely saline grade, and
(a4,b4) extremely saline grade.
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Table 9. Cluster types of the four land saline grades.

a. Cluster Types of Slightly Saline Grade b. Cluster Types of Moderately Saline Grade

Town
Cluster type

Total
Cluster type

Total
H-H H-L L-H L-L H-H H-L L-H L-L

DDZ / / / / 0 / / / / 0

DJ 7 / 6 / 13 / 1 / 9 10

HJ 16 / 6 / 22 / / 5 5

HHK 12 / 5 14 31 1 1 / 11 13

KD / / / / 0 1 / 1 / 2

KL / 7 / 37 44 / 1 / 6 7

ST 12 / 10 / 22 / / / 3 3

XL / / / 9 9 / / / / 0

YA / 2 / 34 36 1 2 / 3 6

Total 47 9 27 94 177 3 5 1 37 46

c. Cluster types of severely saline grade d. Cluster types of extremely saline grade

Town
Cluster type

Total
Cluster type

Total
H-H H-L L-H L-L H-H H-L L-H L-L

DDZ / / / / 0 / / / / 0

DJ / 1 / 19 20 / 1 / 19 20

HJ / / / 7 7 / / / 7 7

HHK 1 / / / 1 1 / / / 1

KD 1 / 1 / 2 1 / 1 / 2

KL 4 1 / 14 19 4 1 / 14 19

ST / 1 / 23 24 / 1 / 23 24

XL / / / 1 1 / / / 1 1

YA 4 / 1 1 6 4 / 1 1 6

Total 10 3 2 65 80 10 3 2 65 80

H: high–high cluster, H-L: high–low cluster; L-H: low–high cluster; L-L: low–low cluster.

5. Discussion

This study proposed an index-based method to accurately estimate land salinity con-
tent using UAV and the Landsat-9 multi-spectral image framework. Results found that
the proposed method can accurately estimate land salinity content with the modeling R2

and RMSE of 0.73 and 1.76 and the validation R2, RMSE, and RPD of 0.75, 1.89, and 2.11,
respectively. The salinization degree of most of the cultivated land was at the moderate
or below levels (55.76%), while the severely saline soil grade (with a salinity content of
6–8 g/kg) covered 38.41% of the total cultivated land area and was widely distributed
throughout the study area. The distribution of saline land has positive spatial autocor-
relation (0.311, p = 0.000). High–high cluster types occurred mainly in the Kendong and
Huanghekou towns (80%), and the low–low cluster type was found mainly in the Dongji,
Haojia, Kenli, and Shengtuo towns (88.46%). The spatial characteristics of different salinity
grades varied significantly, so conducting separate spatial analyses is recommended for
subsequent studies.

According to the results of the spectral screening analysis, significant correlation links
were observed between soil salinity and visible (G, R) as well as NIR bands. The study
found that the primary minerals responsible for land salinization in the study area are rock
salt and gypsum, with Cl− and SO4

2− being the main anions and Na+ and Ca2+ being
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the main cations [40]. Another research demonstrated that gypsum exhibits molecular
vibration absorption spectrum characteristics in the NIR range, and that both visible and
NIR bands can be utilized to collect spectral information on SO4

2− [41]. Additionally,
studies have indicated that saline soil displays higher reflectance in the visible and NIR
ranges compared to non-saline land [42]. Therefore, the proposed index is reliable for
predicting land salinity content.

Compared to existing studies, this study found a weak correlation between the re-
flectance of the red-edge band and land salinity content. Since its launch in 2015, Sentinel-2
imagery has been utilized for regional land salinization analysis due to its relatively higher
spatial resolution (10 m) compared to Landsat-8/9 (15 m after fusion). Furthermore, with
three red-edge bands available, Sentinel-2 imagery can better utilize vegetation information
for retrieving land salinization content. In this study, it is found that a high-precision land
salinization monitoring model can be constructed without considering the red-edge band.
Considering the wider temporal coverage of Landsat images (from 1972 to the present),
the Landsat series image has the potential to be used as the main data source for land
salinization monitoring. Further studies can use Landsat images and the proposed method
in this study to monitor the evolution of land salinization in the study area in the recent
50 years.

Based on the spatial analysis results of land salinization obtained in this study, low
degrees of land salinity were found in HJ, KL, and ST in the southwest of the study area,
and saline land areas were distributed in the study area and prevailed in coastal towns, e.g.,
HHK and YA. HJ, KL, and ST are relatively far from the sea, and the freshwater resources of
the Yellow River, crop planting, and drainage practices jointly mitigate land salinization [43].
This also explains why HHK and KD also contained low-salinity areas. Conversely, the
northeast coastal area (KD and HHK) is plagued by severe and extreme salinization, which
is in line with previous research findings [44]. These regions were primarily influenced by
factors such as low elevation, intrusion of seawater, and facile accumulation of salt on the
soil surface. Due to inadequate conditions for agricultural development, it is recommended
to plan rationally for fishery and aquaculture activities [45].

The spatial distribution analysis found that 93.12% of the cultivated land in the study
area was affected by land salinization, and the severely saline soil grade covered 38.41%
of the total cultivated land area and was widely distributed throughout the study area.
Therefore, targeted improvement and treatment measures should be implemented to
combat land salinity. In areas affected by seawater intrusion, it is imperative to reinforce
drainage systems to prevent or mitigate the upward migration of salinity [46]. In areas with
high land salinity, proper soil management is crucial. Field organization and timely deep
loosening and smoothing of the soil are recommended. Additionally, covering the surface
of cultivated land with straw can reduce evaporation by creating a residual layer that
improves land salinization [47,48]. In the course of agricultural production, it is imperative
to conserve water resources and adopt rational irrigation practices. To mitigate cultivated
land salinization, micro-irrigation systems, agricultural channel laying, and concealed
pipe alkali drainage should be considered [49]. For areas in the east of the study area, the
extremely saline land can be planed for fishery and aquaculture activities [45].

This study proposed a scale-up method to retrieve land salinity in China’s typical
coastal area. However, it has limitations. Due to the limited spectral penetration ability, soil
samples were only collected from the surface layer (0–10 cm). For the purpose of agriculture
and food security, more attention should be given to indirect approaches for assessing
root-zone salinization (0–100 cm) [50]. Moreover, this study estimated land salinity in
the Kenli district. Considering the current severe land salinity situation in the Yellow
River Delta, future research will focus on the estimation and modeling of land salinity in
the entire Yellow River Delta to provide theoretical and methodological support for the
formulation and implementation of regional governance policies.
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6. Conclusions

This study proposed a land salinity monitoring index to accurately retrieve land
salinity using the harmonized UAV and Landsat-9 multi-spectral dataset. Results found the
proposed method can accurately estimate the land salinity content in the study area. The
salinization degree of most of the cultivated land was at moderate or below levels, while the
severely saline land was widely distributed throughout the study area. The distribution of
saline land showed positive spatial autocorrelation. The spatial characteristics of different
salinity grades varied significantly, so conducting separate spatial analyses is recommended
for subsequent studies. Future research will be conducted to investigate land salinity
across the Yellow River Delta to provide theoretical and methodological support for the
development and implementation of regional governance policies.
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