
Citation: Zhang, Z.; Liu, J.; Chen, Y.;

Mei, W.; Huang, F.; Chen, L.

Multilayer Semantic Features

Adaptive Distillation for Object

Detectors. Sensors 2023, 23, 7613.

https://doi.org/10.3390/

s23177613

Academic Editors: Maozhen Li,

Zhengwen Huang, Yang Liu and

Mukhtaj Khan

Received: 8 August 2023

Revised: 25 August 2023

Accepted: 30 August 2023

Published: 2 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multilayer Semantic Features Adaptive Distillation for
Object Detectors
Zhenchang Zhang 1,2,* , Jinqiang Liu 2, Yuping Chen 3, Wang Mei 1, Fuzhong Huang 1 and Lei Chen 1

1 Key Laboratory of Smart Agriculture and Forestry, College of Computer and Information Sciences,
Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University,
Fuzhou 350002, China

3 Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and
Forestry University, Fuzhou 350002, China

* Correspondence: stdin@fafu.edu.cn

Abstract: Knowledge distillation (KD) is a well-established technique for compressing neural net-
works and has gained increasing attention in object detection tasks. However, typical object detection
distillation methods use fixed-level semantic features for distillation, which might not be best for all
training stages and samples. In this paper, a multilayer semantic feature adaptive distillation (MS-
FAD) method is proposed that uses a routing network composed of a teacher and a student detector,
along with an agent network for decision making. Specifically, the inputs to the proxy network consist
of the features output by the neck structures of the teacher and student detectors, and the output is a
decision on which features to choose for distillation. The MSFAD method improves the distillation
training process by enabling the student detector to automatically select valuable semantic-level
features from the teacher detector. Experimental results demonstrated that the proposed method
increased the mAP50 of YOLOv5s by 3.4% and the mAP50–90 by 3.3%. Additionally, YOLOv5n with
only 1.9 M parameters achieved detection performance comparable to that of YOLOv5s.

Keywords: multilayer semantic feature; knowledge distillation; object detection; adaptive distillation

1. Introduction

In recent years, deep neural networks have been widely adopted in various fields [1–5],
with increasingly complex model structures designed to achieve higher performance. How-
ever, these models require substantial computing resources and have very low inference
speeds. Knowledge distillation (KD) [6] has been proposed to solve those problems. KD is
a highly effective neural network compression method that transfers the dark knowledge
contained in a bulky teacher model to a compact student model, enabling the latter to
achieve advanced performance. Relative to other compression methods [7–10], KD mini-
mizes the loss in performance caused by compression and requires no special hardware or
software support.

After substantial progress in recent years, KD methods for image classification tasks
have matured [11–15]. However, object detection tasks require consideration of both classi-
fication and localization, and there is an imbalance between foreground and background
issues [16]. Hence, important challenges persist in using KD for object detection tasks.
Therefore, several recent studies have focused on adapting KD methods for object detection
tasks [17–21]. As shown in Figure 1a,b, those studies can be divided into two primary
categories:

(1) Distilling only the specific semantic-level features of the detector [18,19,21] (Figure 1a).
For example, [18] used the region proposal network structure of the student detector to
select positive regions from the fixed-level features, and [21] distilled the foreground
and background of the intermediate layer features separately.
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(2) Distilling the specific semantic-level features of the detector and the logit output by the
detector head [17,20] (Figure 1b). For example, in [20], semantic features were distilled
independently from the backbone network, classification head, and regression head.
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Figure 1. Overview of existing object detection distillation methods. (a) Conventional approach,
where the distillation framework focuses solely on fixed semantic-level features of detectors. (b) An
extension of (a) that incorporates logit distillation while keeping the semantic feature level fixed.
(c) Proposed multilayer semantic feature adaptive distillation method (MSFAD), which uses adaptive
semantic-level features for distillation. The red dotted lines indicate that features at that semantic
level are currently not used for distillation in the current training stage and samples.

Those methods all used a fixed semantic level of features for distillation, which did
not change during training.

However, ref. [22] noted that when a classifier is distilled, the distillation point’s
location should be adjusted in accordance with different training stages and samples.
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Therefore, ref. [22] proposed a spot-adaptive distillation method, which has been shown to
improve the performance of distillation methods for classification tasks.

Inspired by [22], in the present study, where to distill was also considered when
distilling detectors, which has been disregarded by most current object detection distillation
methods. This paper proposes a multilayer semantic feature adaptive distillation (MSFAD)
method for object detectors to address the problems above. As shown in Figure 1c, the
proposed method diverges from the object detection distillation approaches shown in
Figure 1a,b. It empowers the student detector to autonomously discern and incorporate
valuable semantic-level features from the teacher detector, depending on the training stage
and samples. Specifically, the MSFAD approach uses a routing network for teacher and
student detectors and an agent network for decision making. The proxy network takes the
features output by the neck structures of the teacher and student detectors as input and
determines whether to use the current semantic-level features for distillation.

There are two differences between our approach and that of [22]. First, all features
directly fed into the detector head are adopted as input to the proxy network rather than
only the last layer features of the teacher and student models. This decision was made since
mainstream detectors [3,4,23–28] usually use multiscale feature fusion [29], which inputs
features of various scales into the detection head to detect objects of varying sizes. Thus,
the input features of the detector head often come from multiple semantic levels. In this
study, it was found that using all features input into the detector head in the proxy network
resulted in better decisions for final detection. Second, to ensure method generality, only
the semantic features of the middle levels were distilled since different detectors have
varying head structures. In summary, the contributions of this paper are:

(1) A novel MSFAD method is proposed for object detectors that addresses the problem
in current object detection distillation methods of the mismatch between the semantic
level of distilled features and the training stage and samples.

(2) The selection of various semantic-level features for distillation at different training
stages is described, and the important effect of semantic-level selection during distil-
lation training is highlighted.

(3) The experiments described show that the MSFAD method improved the mAP50 and
mAP50–90 of YOLOv5s by 3.4% and 3.3%, respectively. Moreover, it is demonstrated
that MSFAD achieved detection performance similar to YOLOv5s for YOLOv5n with
only 1.9 M parameters. Relative to the latest YOLOv7-tiny of the same magnitude,
the YOLOv5s model distilled by our method achieved higher mAP50 and mAP50–90
by 2.2% and 1.9%, respectively.

The paper is organized as follows: Section 2 reviews related work on object detection
algorithms and KD algorithms. Section 3 presents the proposed semantic-level adaptive
distillation algorithm. Section 4 details the experimental process and presents experimental
results. Finally, Section 5 provides a conclusion.

2. Related Work
2.1. Object Detection

Object detection is a fundamental task in computer vision widely applied in various
scenarios [30–34]. Currently, deep learning methods are the mainstream approach for object
detection. Object detection methods can be categorized into three groups: (1) Two-stage
object detection [3,4,28], (2) single-stage object detection based on anchor boxes [23–27,35],
and (3) single-stage object detection that is anchor free [36,37], following various detection
principles.

Two-stage object detection algorithms, such as the region-based convolutional neural
network (R-CNN) family [3,4,28], first extract object areas and then classify the extracted
object areas. However, the main disadvantage of that method is its slow inference speed,
which limits its practical application.

In contrast, the “you only look once” (YOLO) single-stage detection algorithm, pro-
posed by Redmon et al. [23] in 2016, directly outputs the position information and category
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of the prediction frame at the output layer, which greatly improves the model’s inference
speed. Various improvements on the basis of YOLOv1 have been made [24–27,35]. Conse-
quently, the YOLO family has become the preferred algorithm for various detection tasks.
However, most object detection distillation methods adopt Faster-RCNN as the benchmark
model, which is not proven to be suitable for YOLO. Therefore, this study uses YOLOv5 as
the benchmark model for object detection distillation methods.

Two researchers have used anchor-free methods to complete target detection tasks.
Duan et al. [36] modeled object detection as a center-point detection problem, combining
prediction of center points and bounding boxes to achieve efficient and accurate object
detection. Tian et al. [37] achieved the efficiency and accuracy of one-stage object detection
by the use of innovative methods, such as a complete convolutional structure, center-width
height representation, and adaptive receptive fields.

2.2. Knowledge Distillation

Knowledge distillation is a compression technique that does not modify the network
architecture. The fundamental concept behind the approach is to transfer the “dark” knowl-
edge from a larger teacher model to a smaller student model to attain similar performance.
Hinton et al. [6] first introduced minimizing the KL divergence between teacher and student
probability outputs to improve student performance. Later work [11] indicated that using
both semantic features from middle layers and logits for distillation could lead to greater im-
provements. Later studies [12–15] markedly improved the student classifier’s performance.
Today, KD has emerged as a well-established compression method for classification tasks.

However, classification and localization problems must be considered for object detec-
tion tasks since they often lead to a marked imbalance between foreground and background
objects [16]. Therefore, directly applying classification distillation methods to detection
tasks is not ideal. Several studies [17–21,38] have recently attempted to apply KD to object
detection tasks, improving student detectors’ performance. For instance, Chen et al. [17]
used hint learning [11] to distill the semantic features of the intermediate layers of a de-
tector by designing distillation weights to suppress the background. Li et al. [18] used
the region proposal network structure of the student detector to extract semantic features
from the middle layer and then distilled the extracted positive feedback regions. Similarly,
Sun et al. [20] distilled semantic features from the backbone network, classification head,
and regression head separately, and Dai et al. [38] introduced a relation-based distillation
method to simultaneously distill semantic features and detection head logits of the middle
layer of the teacher detector. Additionally, attention mechanisms have been used in various
fields [39–41], and Yang et al. [21] incorporated the attention mechanism to enable the
student detector to focus on useful local pixels while introducing global distillation to
compensate for the lack of pixel relationships.

In conclusion, the object detection distillation methods mentioned above can be cate-
gorized into two types: (1) Those that distill intermediate layer features based solely on
semantics [18,19,21], and (2) those that distill intermediate layer features and detection head
logits simultaneously [17,20,38]. Once the semantic level of the features used for distillation
is established in those methods, it remains unchanged throughout the distillation training
process. Those approaches prioritize what to distill over where to distill.

3. Method

The proposed MSFAD method (Figure 2), which involves two forward propagation
processes, is introduced in this section. The first process (Figure 2a) is the distillation
feedforward, focused primarily on calculating the detection and distillation losses of the
student detector. The distillation loss calculation is constrained by the output of the proxy
network. PT = 1 indicates distillation using features from the current semantic level, whereas
PT = 0 implies no distillation. Due to the interdependencies between the neck structure
output and the proxy network’s decisions, training of both networks simultaneously can
lead to training failure. To address that problem, the second process, routing feedforward,
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is used (Figure 2b). The routing path is determined by the proxy network’s decision during
the initial feedforward. If PT = 1, the teacher detector’s features are used as input for the
next routing network layer. If PS = 1, the student detector’s features are used instead. The
input features of the subsequent layer are aligned in channel dimensions through a 1 × 1
convolution operation. Since the teacher detector has already completed training before
distillation training, the output of the teacher detector serves as the final output of the
routing network. The routing loss is calculated by comparing that output with the ground
truth value.
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Figure 2. Overall framework of proposed multilayer semantic feature adaptive distillation. The
training process of MSFAD comprises two forward processes. (a) Shows the distillation feedforward
process. It computes the detection loss of the student detector Lossdet and the distillation loss of the
feature LossKD and acquires the decision of the proxy network P = (PT, PS). (b) Shows the routing
feedforward process, which establishes the feedforward path by leveraging the decision made by
the proxy network. It then computes the routing loss Lossrout using the output from the teacher
detector’s head and the ground truth. The dashed arrow indicates that the semantic features of the
layer are not selected.

3.1. Distillation Feedforward Process

To clarify the feedforward process of the teacher and student detectors in Figure 2,
we used YOLOv5 as a representative case. The feedforward process of object detection is
shown in Figure 3. Assuming the input of the model is FB×C×H×W

input , the input data are first
passed through the teacher and student detectors to complete one forward propagation.
Through that forward propagation, the neck output features F1×i

T and F1×i
S of the teacher

and student detectors can be obtained, where i is the number of features fed to the detection
head for final detection in the neck output features of the detector. Equations (1) and (2)
represent the forward propagation process:

F1×i
T = fte

(
FB×C×H×W

input , θte

)
(1)

F1×i
S = fse

(
FB×C×H×W

input , θse

)
, (2)

where fte and fse are the feature encoding of the input data by the teacher and student
detectors, respectively, and θte and θse are the model parameters corresponding to the
relevant structure of the detector.
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input into the Head structure for final predictions. (b) Structural diagram of spatial pyramid pooling
module. (c) C3 structure.

F1×i
T and F1×i

S are then fed into the proxy network. The final output of the proxy

network is a feature vector of dimension 2 × k, represented as P = [Pj
T, Pj

S] (0 ≤ j ≤ k). Here,

Pj
T and Pj

S are the probabilities of data passing through the teacher and student detectors,

respectively, with values ranging from 0 to 1. Pj
T = 0 indicates that data do not pass through

the teacher detector, and the semantic features of that level are not distilled. Moreover,
k is the number of semantic levels used for feature distillation. The decision process is
described in Equation (3):

P = Gumbel_Softmax
(

fc

(
F1×i

T , F1×i
S , θp

))
, (3)

where the function fc is a fully connected operation and θp is the model parameter of the
fully connected layer. “Gumbel softmax” is a method proposed in [42]. This method makes
the sampling computation differentiable, allowing gradients to backpropagate to the proxy
network during the backward propagation.

During the first forward process, F1×i
S is also fed into the head of the student detector

for detection. The detection loss Ldet can be obtained using

Ldet = fdet

(
fh

(
F1×i

S , θh

)
, gt

)
, (4)

where the function fh is the function of processing input features in the detection head, θh
is the corresponding model parameter, gt is the ground truth, and fdet is the loss function
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of the student detector, which comprises three components: localization loss, classification
loss, and object confidence loss.

Finally, the decision P obtained by Equation (3) is used to distill the semantic features
of the jth level of the teacher detector for which Pj

T 6= 0. The distillation loss can be
calculated as

Lj
KD = fgd(Fj

T, Fj
s) (P

j
T 6=0), (5)

where fgd is the detector distillation method proposed by [21]. This method was used to
calculate the feature distillation loss. Specifically, Equation (5) can be further expressed as

Lj
KD = αLfg(F

j
T, Fj

s)+βLbg(F
j
T, Fj

s)+γLat + λLglobal(F
j
T, Fj

s) (P
j
T 6=0), (6)

where Lfg is the foreground distillation loss function for the feature maps, Lbg is the
background distillation loss function, Lat is the attention loss function which enables the
student detector to mimic the spatial and channel attention masks of the teacher detector,
and Lglobal is the global distillation loss. The hyperparameters α, β, γ, and λ are used to
balance the weights of each loss function.

Since Lj
KD is calculated from features with Pj

T 6= 0, the semantic level of the features
used for distillation can be adaptively changed based on the decisions of the proxy network.

3.2. Routing Feedforward Process

Through the first forward progress, the detection loss Ldet and the Lj
KD of the student

detector are computed. The P output by the policy network was also obtained. However,
the output of the proxy network depends on the output features of the neck structure of
the student detector, which are constrained by the output of the policy network through
Lj

KD. Therefore, training both simultaneously is not suitable. The second round of forward
propagation is used to address that problem.

At the preselected distillation feature level, the model determines the path through
which the data flow based on P. When Pj

T = 0, the data flow through the student detector,
whereas when Pj

T = 1, the data flow through the teacher detector. In contrast to [22],
logits are not used for distillation, but the detection head of the teacher detector is used
to output the final detection results of the routing network. The routing loss Lrout can be
calculated as

Lrout = fdet_t(Hrt, gt), (7)

where fdet_t is the detection loss function of the teacher detector, and Hrt is the output of
the head of the teacher detector in the routing feedforward process.

3.3. Overall Loss

The overall loss function is

L = Ldet +
k

∑
j=1

Lj
KD + Lrout (8)

Minimizing Ldet and LKD can make the student detector achieve higher detection
performance, and minimizing Lrout can improve the proxy network decision making.

4. Experiments
4.1. Dataset

All experiments in this work were carried out on the Pascal visual object classes (VOC)
dataset [43], which comprised 20 object categories. The training and validation sets of
VOC2007 and VOC2012, totaling 16,551 images, were used as the training data for our
experiments. For evaluation purposes, the test set of VOC2007, which included 4952 images,
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was used as the validation data. mAP50 and mAP50–90 were used as the evaluation metrics
to assess the detection performance.

4.2. Experimental Details

The experiments in this work were carried out using the PyTorch 1.11.1 deep learning
framework, with training performed on a device equipped with an Intel Xeon Platinum
8352 V CPU (Intel, Santa Clara, CA, USA) and 2 Nvidia A40 48 G GPUs (Nvidia, Santa
Clara, CA, USA). The operating system was Ubuntu 20.04.

The distillation process is shown in Figure 4. The first step in distillation training
was training a teacher model. This model was then used to direct the training procedure
of the student model. In this study, YOLOv5 was used as the benchmark model. Three
sets of experiments were carried out: benchmark experiments, distillation experiments
of semantic features at different levels, and validation experiments of MSFAD. YOLOv5l,
YOLOv5s, and YOLOv5n were first trained, with YOLOv5l serving as the teacher detector
and YOLOv5s and YOLOv5n as the benchmark detectors. An exploratory experiment was
then carried out to study the relation between the student detector’s performance and the
distilled features’ semantic levels. Finally, the performance of the proposed MSFAD was
verified. Table 1 provides detailed parameters for all the experiments, allowing readers to
refer to and reproduce the experiments.
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Figure 4. Distillation procedures. (a) Distillation training phase. During that phase, the teacher
model was trained, and then the student model was trained, guided by the teacher model. (b) Testing
phase. Here, the trained student model performed image detection and inference on the input image,
with no involvement of the teacher model.

Table 1. Details of experiments.

Name Epoch lr Weight_Decay Momentum Batch Img_Size T α β γ λ

YOLOv5l 300 0.01 0.0005 0.937 16 640 – – – – –

YOLOv5s 400 0.01 0.0005 0.937 16 640 – – – – –

YOLOv5n 400 0.01 0.0005 0.937 16 640 – – – – –

FDG
a-YOLOv5s_b 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

FGD
a-YOLOv5s_n 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

FGD a-
YOLOv5s_bn 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

FGD
a-YOLOv5n 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

MSFAD-
YOLOv5s 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

MSFAD-
YOLOv5n 400 0.01 0.0005 0.937 16 640 0.5 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−6

a Focal and global knowledge distillation proposed in [21].
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4.3. Comparison of Experimental Results

To evaluate the efficacy of the proposed method, a comparative analysis was carried
out with widely adopted object detection distillation methods. Table 2 shows that the
results demonstrate marked improvements achieved by the method. It yielded a 3.4% and
3.3% increase in mAP50 and a 3.3% and 2.2% enhancement in mAP50–90 for the student
detector. Those advancements exceeded the performance gains observed in other prevalent
distillation methods for student detectors. It was found that before distillation, the selected
student detector’s performance was lower than that of the benchmark detector used for
comparison. However, after using the MSFAD distillation, the detection accuracy of
YOLOv5s surpassed that of all benchmark student detectors and most teacher detectors.
Relative to the distillation results obtained using various benchmark methods, the MSFAD
distillation approach produced a higher-performing YOLOv5s detector with substantially
fewer parameters than the compared detectors. This outcome highlighted the substantial
performance gains the MSFAD method brought to the student detector.

Table 2. Comparison of various distillation methods on the visual object classes dataset. The results
of the benchmark methods used for comparison are from [38].

Method Params (M) mAP50 (%) mAP50–90 (%)

Faster R-CNN-Res101 (teacher) 232 82.8 Improvement 56.3 Improvement
Faster R-CNN-Res50 (student) 159 82.2 54.2

+Mimicking [18] 159 82.3 +0.1 55.5 +1.3
+Fine-grained [19] 159 82.2 = 55.4 +1.2

+Fitnet [11] 159 82.2 = 55.1 +0.9
+GID [38] 159 82.6 +0.4 56.5 +2.3

RetinaNet-Res101 (teacher) 217 81.9 Improvement 57.3 Improvement
RetinaNet-Res50 (student) 72.7 80.9 55.4

+Fine-grained [19] 72.7 81.5 +0.6 56.6 +1.2
+Fitnet [11] 72.7 81.4 +0.5 55.8 +0.4
+GID [38] 72.7 82.0 +1.1 57.9 +1.3

FCOS-Res101 (teacher) 196 81.6 Improvement 58.4 Improvement
FCOS-Res50 (student) 123 80.2 56.1

+Fitnet [11] 123 80.3 +0.1 57.0 +0.9
+GID [38] 123 81.3 +1.1 58.4 +2.3

YOLOv5l (teacher) 46.5 84.6 Improvement 63.1 Improvement
YOLOv5s (student) 7.2 79.1 54.0

+MSFAD (ours) 7.2 82.5 +3.4 57.3 +3.3

YOLOv5l (teacher) 46.5 84.6 Improvement 63.1 Improvement
YOLOv5n (student) 1.9 73.1 46.6

+MSFAD (ours) 1.9 76.4 +3.3 48.8 +2.2

Table 3 compares the MSFAD-distilled model with other lightweight YOLO mod-
els. The results show that MSFAD-YOLOv5s outperformed YOLOv3-tiny by 23.3% in
mAP50 and reduced the model parameters by 78.4%. Similarly, compared to YOLOv3-tiny,
MSFAD-YOLOv5n achieved a 17.2% improvement in mAP50 with only 5.7% of the model
parameters. It also improved the mAP50 by 4.7% while reducing the model parameters by
68.1%. MSFAD-YOLOv5n achieved the same detection accuracy as YOLOv4-tiny with only
8% of its parameters. Additionally, MSFAD-YOLOv5s outperformed YOLOv4-S by 1.7%
in mAP50 while reducing the model parameters by 56.4%. Finally, MSFAD-YOLOv5s out-
performed the latest YOLO model, YOLOv7-tiny, by 2.2% in mAP50 and 1.9% in mAP50–90,
with a negligible increase in model parameters.
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Table 3. Performance comparison of YOLO lightweight detection algorithm.

Model P (%) R (%) mAP50 (%) mAP50–90 (%) Params (M)

YOLOv3-tiny 61.5 55.1 59.2 – 17.5
YOLOv4-tiny 79.3 76.0 77.8 – 22.6

YOLOv4-S 78.9 80.1 80.8 – 16.5
YOLOv7-tiny 79.2 76.7 80.3 55.4 6.2

MSFAD-YOLOv5s 80.5 79.8 82.5 57.3 7.2
MSFAD-YOLOv5n 74.5 73.1 76.4 48.8 1.9

In summary, the proposed MSFAD method can substantially improve the detection
accuracy of student detectors without adding model parameters.

4.4. Distillation of Semantic Features of Different Levels

To investigate how the semantic level of the distilled features affected the performance
of the student detector, three exploratory experiments were carried out using the focal and
global knowledge distillation (FGD) method proposed in [21]. YOLOv5s was selected as
the student detector, and YOLOv5l as the teacher detector. The experimental conditions
were as follows: (1) Distillation of features output only by the neck structure, (2) distillation
of features output only by the backbone structure, and (3) distillation of the features output
by both the backbone and the neck. Figure 3 shows the experimental results.

In comparing Figure 5a,b, consistent trends were found in the experimental results
of mAP50 and mAP50–90, indicating that the experiments accurately identified the existing
problems. Additionally, the comparison between FGD-YOLOv5s_n and YOLOv5s showed
that the FGD distillation method was effective for the YOLO detector, with substantial
improvements in the detection accuracy and convergence speed of the student detector.
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Figure 5. Experimental results of distilling features of various semantic levels of YOLOv5 using
the focus group discussion method. (a) Experimental result of mAP50. (b) Experimental result of
mAP50–90. Among them, YOLOv5s, FGD-YOLOv5s_b, FGD-YOLOv5s_n, and FGD-YOLOv5s_bn
indicate that no distillation was carried out, and the features of the 4th, 6th, and 9th semantic level
output by the backbone structure were selected for distillation. The features of the 17th, 20th, and
23rd semantic level output by the neck structure were distilled, and the features of the above six
semantic levels were selected for distillation.
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Analyzing the results of FGD-YOLOv5s_b and FGD-YOLOv5s_n showed that selecting
the output features of the backbone structure for distillation in the early training stage
helped the student detector converge faster. This outcome indicates that the knowledge
contained in the teacher detector’s shallow semantic features was more valuable in the
initial training stage. As the knowledge accumulated, the value of the shallow semantic
features gradually diminished, and the deep semantic features fused by the neck structure
became more valuable for the student detector. Therefore, using deeper semantic-level
features for distillation in the later training stage led to higher detection accuracy of the
student detector. The findings suggest that the performance of the student detector was
highly dependent on the semantic level of the distilled features.

Finally, comparing the results of FGD-YOLOv5s_b, FGD-YOLOv5s_bn, and YOLOv5s
showed that selecting inappropriate semantic-level features for distillation at different
training stages can have adverse effects. Specifically, both FGD-YOLOv5s_b and FGD-
YOLOv5s_bn achieved less effective results than those of YOLOv5s without distillation in
the later stages of distillation training.

4.5. Visual Analysis of Feature Maps

To determine the effectiveness of the MSFAD method, the feature maps of each model
were visualized before and after distillation for the feature maps output by the backbone
structure and neck structure. Figure 6 shows the visualization results, where in each
group of six images, the first three feature maps were output by the backbone and the
second three by the model head. The results indicate that the distillation process markedly
improved the feature maps of the model. Specifically, the model head feature maps b-1,
b-2, d-1, and d-2 after distillation had more precise features and a better suppression of
background noise than the backbone feature maps a-1, a-2, c-1, and c-2 before distillation.
Furthermore, b-3 and d-3 after distillation extracted more abstract semantic features than
a-3 and c-3, demonstrating that the backbone had more robust feature extraction capability
after distillation. Similarly, compared to the feature maps a-4, a-5, c-4, and c-5 output
by the head before distillation, the feature maps b-4, b-5, d-4, and d-5 after distillation
had cleaner backgrounds, enabling a clearer representation of the posture of the two
people. Moreover, b-6 and d-6 after distillation displayed the position information of the
two people more clearly and accurately than did a-6 and c-6, with better foreground and
background separation.

Visualizing feature maps can gain deeper insights into how the distilled student
detector achieved high performance. Compared to feature maps output by the student
detector before distillation, the proposed MSFAD method effectively reduced background
noise interference. Additionally, the MSFAD method enhanced the student detector’s
feature extraction ability.

To verify the actual performance of the student detector distilled using the MSFAD
method, the detection performances of the models were compared before and after distil-
lation. Heat maps of the detected regions visualized with the use of gradient-weighted
class activation mapping (Grad-CAM) [44] are shown in Figure 7. The images in the left
column demonstrate the inference results of each model, showing that MSFAD-YOLOv5s
distilled by the MSFAD method showed substantially higher detection accuracy than that
of the detector before distillation, with the detection accuracy of the person on the left in
the images even exceeding that of the teacher detector. The images in the right column
display the target regions to which the detector paid attention, demonstrating that the
regions of interest of MSFAD-YOLOv5s after distillation were highly similar to those of
the teacher network. Relative to the detector before distillation, the target regions to which
MSFAD-YOLOv5s paid attention are more precise in position and darker in color. Those
results indicate that the MSFAD method can help the student detector accurately identify
the features of target categories, leading to higher detection accuracy.
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Figure 7. Detection results and corresponding feature heat maps of each model. In each image pair,
the left side shows the inference result of the model, and the middle and right side shows the feature
area that the inference result focused on for the detection category. The color intensities of each region
indicate the contribution of those regions to the detection category, with darker regions indicating
greater contributions.

4.6. Ablation Study
4.6.1. Study of Different Distillation Points

In this section, we name various distillation points to demonstrate the effectiveness
of our approach. Specifically, we used a state-of-the-art FGD distillation method for
comparison. The experimental results are summarized in Table 4.

The results in Table 4 show that regardless of the feature selected for distillation, the
proposed MSFAD method consistently outperformed the FGD method in enhancing the
performance of student detectors.

Comparing the results of FGD-YOLOv5s-b, MSFAD-YOLOv5s-b, FGD-YOLOv5n-b,
and MSFAD-YOLOv5n-b to YOLOv5s and YOLOv5n, we observed that using the FGD
method to distill Backbone output features resulted in a degradation in the performance of
the student detector compared with the predistillation stage. This indicates that the FGD
method was ineffective in mitigating the negative effect of Backbone output features on
the student detector during the later stages of model training. In contrast, the MSFAD
method timely mitigated that negative effect based on varying training stages and samples,
ensuring that the post-distillation performance remained stable.

Finally, comparing the results of FGD-YOLOv5n-n, MSFAD-YOLOv5n-n, FGD-YOLOv5s-
n, and MSFAD-YOLOv5s-n showed that Neck output features provided more valuable
guidance for student detectors compared with Backbone features. The MSFAD technique
effectively harnessed the latent knowledge within the teacher detectors to guide the learning
process of student detectors, thereby facilitating higher performance.
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Table 4. Experimental results of using global knowledge distillation (FGD) and multilayer semantic
feature adaptive distillation (MSFAD) methods to distill the features of different distillation points.
FGD-YOLOv5s-n and MSFAD-YOLOv5s-n denote the distillation of Neck output feature maps of
YOLOv5s using FGD and MSFAD, respectively. FGD-YOLOv5s-b and MSFAD-YOLOv5s-b denote
the distillation of Backbone output feature maps of YOLOv5s using FGD and MSFAD, respectively.
FGD-YOLOv5n-b and MSFAD-YOLOv5n-b denote the distillation of Backbone output feature maps
of YOLOv5n using FGD and MSFAD, respectively.

Model P (%) R (%) mAP50 (%) mAP50–90 (%) Params (M)

YOLOv5l (teacher) 84.6 78.8 84.6 63.1 46.5
YOLOv5s (student) 80.4 73.1 79.1 54.0 7.2
YOLOv5n (student) 73.2 69.6 73.1 46.6 1.9

FGD-YOLOv5n-n 74.1 72.8 75.0 47.6 1.9
MSFAD-YOLOv5n-n 74.5 73.1 76.4 48.8 1.9
Improvement +0.4 +0.3 +1.4 +1.2 –

FGD-YOLOv5s-n 79.5 78.9 81.1 56.6 7.2
MSFAD-YOLOv5s-n 80.5 79.8 82.5 57.3 7.2
Improvement +1.0 +0.9 +1.4 +0.7 –

FGD-YOLOv5s-b 78.8 76.1 78.2 53.1 7.2
MSFAD-YOLOv5s-b 79.7 75.9 79.0 54.1 7.2
Improvement +0.9 −0.2 +0.8 +1.0 –

FGD-YOLOv5n-b 72.8 68.7 72.5 45.8 1.9
MSFAD-YOLOv5n-b 73.7 70.2 73.3 46.5 1.9
Improvement +0.9 +1.6 +0.8 +0.7 –

4.6.2. Stability Analysis of Student Models before and after Distillation

This section describes the investigation of the student detector’s stability before and
after distillation.

Figure 8 shows the loss curves of the model before and after distillation on the training
and validation sets. Comparing Figure 8a,b, it can be concluded that the student detec-
tor after MSFAD distillation did not have overfitting. On the contrary, the loss of the
student detector after distillation on the validation set was less than that of the model
before distillation, indicating that the model after distillation performed better on the
validation set.
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Figure 9 shows a stability analysis of the student detector before and after distillation.
We examined its performance under three perturbation methods: introducing noise to the
image, altering image brightness, and deforming the image. To highlight the improved
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stability resulting from distillation, we initially used the non-distilled model to detect
normal images as a baseline for comparison. Then, we used the non-distilled model to
detect noisy images to assess its resilience to interference. Finally, we applied the MSFAD-
distilled model to detect perturbed images, confirming the enhanced stability achieved
through the MSFAD method. We selected images with diverse backgrounds and targets to
ensure a comprehensive evaluation of our experiments.
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Figure 9. Stability analysis results for the proposed model before and after distillation. Left columns
show results of detecting normal images using models without distillation. Middle columns show
results of using non-distilled models to detect images with disturbances. Right columns show results
of detecting perturbed images using the MSFAD-distilled model. (a) Model’s detection performance
under the influence of added noise. (b) Model’s response to changes in image brightness. (c) Model’s
behavior when confronted with image deformation.

Figure 9a shows the marked decline in detection performance of the non-distilled
model when exposed to noise disturbances, to the extent that it failed to detect targets
within the image. In contrast, the model distilled with MSFAD effectively mitigated
the effect of noise, resulting in a marked improvement in model stability against noise
interference.

Figure 9b highlights the discernible reduction in detection accuracy of the nondistilled
model when the image’s brightness was adjusted. This decline became evident when a
bird was inaccurately identified as a cat. Conversely, the distilled model adeptly mitigated
the unfavorable effects of brightness modifications. Remarkably, the detection accuracy of
specific targets exceeded that achieved during normal image detection. This pronounced
improvement shows the increased stability of student detectors when confronted with
fluctuations in brightness.

Figure 9c clearly shows that image deformation markedly undermined the detec-
tion accuracy of the non-distilled model, occasionally causing missed detections. In con-
trast, the MSFAD-distilled model effectively handled image deformation, resulting in
substantially enhanced detection accuracy relative to that of the non-distilled model in
normal image detection. This observation underscored the distilled model’s resilience to
image deformation.

In conclusion, the student detector, derived from the MSFAD distillation procedure,
had substantial resilience against interference. This capability improved the model’s ability
to handle complex environmental scenarios.
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5. Conclusions

This study demonstrated the negative effect on the student detector’s performance
of selecting inappropriate semantic-level features for distillation during various training
stages. To address this problem, the MSFAD method is proposed, which includes a routing
network for the teacher and student detectors and a proxy network for decision making.
The method enables the student detector to automatically select appropriate semantic levels
to learn from based on the current training stage and training samples. The effectiveness
of the proposed method was validated on the YOLOv5 model. The experimental results
found substantial performance gains for the student detector over state-of-the-art FGD.
The proposed method increased the mAP50 of YOLOv5s by 3.4% and the mAP50–90 by
3.3%. Moreover, YOLOv5n, with only 1.9 M parameters, achieved detection performance
comparable to that of YOLOv5s. Compared to feature maps output by the student detector
before distillation, the proposed MSFAD method reduced background noise interference
and enhanced the student detector’s feature extraction ability.

Our method outperformed mainstream object detection distillation algorithms and
delivered substantial performance enhancements to student detectors. However, training
the model through distillation demanded substantial graphics memory allocation. For
instance, when configuring the batch size to eight and the input image dimensions to
640 × 640, a considerable 38 G of graphics memory became indispensable, and the entire
training process consumed approximately 1 week. Future work will address the problem
of high memory requirements in feature-based distillation methods during the distillation
training process. This is a critical problem that limits the advancement of KD techniques.
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