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Abstract: Due to the impact of the production environment, there may be quality issues on the
surface of printed circuit boards (PCBs), which could result in significant economic losses during
the application process. As a result, PCB surface defect detection has become an essential step for
managing PCB production quality. With the continuous advancement of PCB production technology,
defects on PCBs now exhibit characteristics such as small areas and diverse styles. Utilizing global
information plays a crucial role in detecting these small and variable defects. To address this challenge,
we propose a novel defect detection framework named Defect Detection TRansformer (DDTR), which
combines convolutional neural networks (CNNs) and transformer architectures. In the backbone,
we employ the Residual Swin Transformer (ResSwinT) to extract both local detail information using
ResNet and global dependency information through the Swin Transformer. This approach allows us
to capture multi-scale features and enhance feature expression capabilities.In the neck of the network,
we introduce spatial and channel multi-head self-attention (SCSA), enabling the network to focus on
advantageous features in different dimensions. Moving to the head, we employ multiple cascaded
detectors and classifiers to further improve defect detection accuracy. We conducted extensive
experiments on the PKU-Market-PCB and DeepPCB datasets. Comparing our proposed DDTR
framework with existing common methods, we achieved the highest F1-score and produced the most
informative visualization results. Lastly, ablation experiments were performed to demonstrate the
feasibility of individual modules within the DDTR framework. These experiments confirmed the
effectiveness and contributions of our approach.

Keywords: defect detection; global dependency; printed circuit board; vision transformer

1. Introduction

With the emergence of Industry 4.0, production processes have been enhanced by
incorporating cyber-physical systems that utilize an increased number of circuit boards to
create intelligent systems. To ensure the integrity of the circuit board layout, each element
needs to be carefully designed, including the through-holes in the hardware, to guarantee
high operational reliability. However, due to process uncertainty and noise, ensuring the
integrity of all produced circuit boards becomes challenging. Nevertheless, various machine
vision-based methods have been introduced to detect defects. With the upgrading of the
PCB production process, the circuit density of PCBs is increasing. The defects generated
during the PCB production process exhibit characteristics such as small area, large quantity,
and different shapes, requiring PCB defect detection methods to be highly precise and
fast. The rapid and widespread adoption of deep learning algorithms has led to the
development of numerous deep learning-based techniques in the field of electronic circuits,
particularly in identifying flaws in printed circuit boards (PCBs). The primary purpose of
a PCB is to provide mechanical support for connecting electronic components, achieved
through pads, conductive tracks, and soldering. However, environmental factors make PCB
surfaces highly vulnerable to quality issues that deviate from design and manufacturing

Sensors 2023, 23, 7755. https://doi.org/10.3390/s23187755 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187755
https://doi.org/10.3390/s23187755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6954-694X
https://doi.org/10.3390/s23187755
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187755?type=check_update&version=1


Sensors 2023, 23, 7755 2 of 18

specifications. For instance, Figure 1 displays six types of PCB defects: spur, mouse
bite, spurious copper, missing hole, short circuit, and open circuit. These defects not
only significantly affect the quality and performance of final products but also result in
substantial economic losses for relevant industries. As a result, detecting flaws on PCB
surfaces has become a crucial process in managing PCB production quality, attracting
significant attention from the industry.

(a) Missing hole (b) Short (c) Mouse bite

(d) Spur (e) Open circuit (f) Spurious copper

Figure 1. Some defect examples. (a) Missing hole, (b) Short, (c) Mouse bite, (d) Spur, (e) Open circuit,
(f) Spurious copper.

Through the adoption of automated optical inspection (AOI) techniques [1], manual
inspections have been largely replaced, leading to enhanced detection accuracy and effi-
ciency. While AOI systems are more convenient and cost-effective than human inspection,
they heavily rely on visible imaging sensors, which can be limiting. The quality of PCB
images captured by these visible imaging sensors is significantly impacted by illumination
conditions, resulting in uneven brightness levels and decreased detection accuracy for
various defect types.

Traditional defect detection methods utilize image-processing techniques, prior knowl-
edge, and conventional machine learning approaches to extract low-level features related to
defects. However, these methods necessitate the creation of specific classifiers for different
defect categories, which restricts their applicability across various application scenarios. In
recent years, a range of image processing algorithms have been investigated for PCB defect
detection. These include similarity measurement approaches [2], segmentation-based meth-
ods [3], and binary morphological image processing [4]. Nevertheless, these techniques
require the alignment of inspected images with standard samples during defect inspection.
Therefore, there is an urgent need to develop a novel defect detection framework capable
of adapting to diverse defect types seamlessly.

The introduction of deep learning has brought significant advancements to object
detection, including techniques such as fast R-CNN [5], RetinaNet [6], and You Only Look
Once (YOLO) [7], which have demonstrated impressive capabilities in feature extraction.
However, when it comes to PCB defect detection, these methods face certain limitations due
to the local feature nature of convolutional neural networks (CNN) [8,9]. Defect detection
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regions on PCBs often occupy only a small portion of the overall image, and even within
the same category of surface defects, there can be significant variations in morphology and
patterns. While various deep learning-based detectors have been developed to address
these challenges, current detectors struggle to simultaneously achieve high detection
accuracy, fast detection speed, and low memory consumption. Therefore, there is a need to
explore innovative approaches that can effectively address these limitations and meet the
requirements of high accuracy, efficient processing, and optimized resource utilization in
PCB defect detection.

In recent years, transformer-based deep learning methods have shown remarkable
achievements. Within the domain of object detection, transformers [10] have surpassed
convolutional neural networks (CNNs) in terms of accuracy. Prominent examples include
DETR [11] and Swin Transformer [12]. Unlike CNNs, which are limited to extracting local
features within their receptive fields, transformers have the capability to capture global
dependency information even in shallow network architectures. This characteristic is
especially advantageous for recognition and detection tasks.

However, transformers suffer from the drawback of high computational complexity.
To address this issue, a common approach is to divide the input image into patches before
feeding them into the transformer. Although this solves the computational challenge, it
inevitably results in a loss of local detail information. Therefore, the combination of CNN
and transformer has emerged as an optimal solution in numerous tasks across various
fields. By utilizing CNN to extract local detail information and transformer to capture
global dependency information, superior performance has been demonstrated.

Given the aforementioned problems, we propose a novel PCB surface defeat detection
network. To take full advantage of the deep information provided by the source input
images, we design a novel two-way cascading feature extractor.

A novel dual cascaded feature extractor, Residual Swin Transformer (ResSwinT),
consisting of ResNet and Swin Transformer, is proposed, which can simultaneously focus
on local detail information and global dependency information of images. By utilizing the
spatial and channel features of spatial multi-head self-attention (SSA) and channel multi-
head self-attention (CSA) fusion features, the network can focus on advantageous features.
A large number of experiments have been conducted on the PKU Market PCB dataset and
DeepPCB dataset, proving that our proposed defect detection converter (DDTR) can better
detect difficult defect targets, achieve higher precision defect detection, and improve the
yield of PCB production.

2. Related Works
2.1. PCB Defeat Detection

Over the past few decades, numerous vision-based defect detection methods have
been introduced in the field of PCB defect detection. For instance, Tang et al. [13] devel-
oped a deep model capable of accurately detecting defects by analyzing a pair of input
images—an unblemished template and a tested image. They incorporated a novel group
pyramid pooling module to efficiently extract features at various resolutions, which were
then merged by groups to predict corresponding scale defects on the PCB. Recognizing
the complexity and diversity of PCBs, Ding et al. [14] proposed a lightweight defect detec-
tion network based on the fast R-CNN framework. This method leveraged the inherent
multi-scale and pyramidal hierarchies of deep convolutional networks to construct feature
pyramids, strengthening the relationship between feature maps from different levels and
providing low-level structural information for detecting tiny defects. Additionally, they
employed online hard example mining during training to mitigate the challenges posed by
small datasets and data imbalance. Kim et al. [15] developed an advanced PCB inspection
system based on a skip-connected convolutional autoencoder. The deep autoencoder model
was trained to reconstruct non-defective images from defect images. By comparing the
reconstructed images with the input image, the location of the defect could be identified.
In recent years, significant progress has been made in object detection, including the rapid
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development of algorithms such as YOLO. Liao et al. [16] introduced a cost-efficient PCB
surface defect detection system based on the state-of-the-art YOLOv4 framework. Free
from the constraints of visible imaging sensors, Li et al. [17] designed a multi-source image
acquisition system that simultaneously captured brightness intensity, polarization, and
infrared intensity. They then developed a Multi-sensor Lightweight Detection Network
that fused polarization information and brightness intensities from the visible and thermal
infrared spectra for defect detection on PCBs.

Addressing the challenges posed by small defect targets and limited available samples
in the application of deep learning methods to real-world enterprise scenarios for PCB
defect detection, this paper presents a novel approach. The proposed method involves a
dual-way cascading feature extractor to extract more comprehensive and refined features
from PCB images. By employing this feature extractor, the model can effectively capture
relevant information for defect detection.

Furthermore, the paper introduces a multi-head spatial and channel self-attention
fusion algorithm. This algorithm enables the model to leverage the benefits of focusing on
different sizes and channel features of PCB defects. By applying spatial and channel self-
attention mechanisms, the model can selectively attend to relevant regions and channels,
enhancing its ability to detect defects accurately.

These advancements in feature extraction and attention fusion contribute to overcom-
ing the limitations commonly encountered in PCB defect detection. The proposed approach
has the potential to improve the performance and robustness of deep learning models
when applied to various enterprise scenarios for PCB defect detection.

2.2. Visual Transformer

The Vision Transformer (ViT) architecture, introduced by Google in 2020, has proven to
be an effective deep learning approach for a wide range of visual tasks. It serves as a general-
purpose backbone for various downstream tasks, including image classification [18], object
detection [19], semantic segmentation [20,21], human pose estimation [22], and image
fusion [23,24]. Unlike traditional convolutional neural networks (CNNs), ViT eliminates
the need for hand-crafted feature extraction and data augmentation, which can be time-
consuming. Additionally, ViT can leverage self-supervised learning techniques to train
models without labeled data.

In ViT, an image is divided into a grid of patches, and each patch is flattened into a
one-dimensional vector. These patch vectors are then processed by a series of Transformer
blocks, which operate in parallel and allow the model to attend to different parts of the
image. The output of the last Transformer block is fed into a multi-layer perceptron
to generate class predictions. ViT has achieved best performance on image classification
benchmarks, such as CIFAR, and has outperformed previous methods in multiple computer
vision tasks.

Researchers have explored and extended ViT for different applications. For instance,
Smriti et al. [25] compared ViT with various CNNs and transformer-based methods for
medical image classification tasks, demonstrating that ViT achieved state-of-the-art perfor-
mance and surpassed CNN and data-efficient Image Transformer-based models. Zhu et al.
introduced weakTr [26], a concise and efficient framework based on plain ViT, for weakly
supervised semantic segmentation. This approach enabled the generation of high-quality
class activation maps and efficient online retraining. Additionally, a saliency-guided vision
transformer [27] was proposed for few-shot keypoints detection, incorporating masked
self-attention and a morphology learner to constrain attention to foreground regions and
adjust the morphology of saliency maps.

In the context of PCB defect detection, the proposed Dual-branch Detection Trans-
former (DDTR) utilizes a ResSwinT to encode global dependencies and extract compre-
hensive features. This enables the subsequent detection branch to achieve robust and
comprehensive features for defect detection, resulting in notable advancements in detection
accuracy for the model.
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Overall, ViT has proven to be a versatile and effective architecture in computer vision
tasks, and its application and extensions show promising results across various domains,
including medical imaging, semantic segmentation, and keypoints detection. In the field
of PCB defect detection, the DDTR model leverages the strengths of ViT to improve the
accuracy and robustness of the detection process.

3. Methodology

Since the introduction of the Swin Transformer, numerous methods employing this ar-
chitecture have demonstrated remarkable performance in object detection. Given its unique
ability for parallel computing and managing global dependencies, the Swin Transformer
is employed to extract more comprehensive object information. Furthermore, traditional
CNNs can be employed to uncover edge features through shallow convolutional layers
and high-level features through deeper layers. This paper proposes their combination to
offer abundant semantic information for subsequent detections. Additionally, we introduce
a multi-source self-attention fusion strategy to bolster the robustness and flexibility of our
model.

3.1. Overall Architecture

The structure of our proposed DDTR as shown in Figure 2 is similar to the existing
object detection network Cascade R-CNN [28]. It can be divided into a backbone for feature
extraction, a neck for feature enhancement, and a head for recognition and detection.

Figure 2. The overall architecture of DDTR. Firstly, the image is input into a dual backbone network
called ResSwinT composed of Resnet and Swin Transformer to obtain the multi-scale features. In the
neck, feature enhancement is performed by mixing convolutional layers and Transformer. Due to
the various shapes of defects on PCBs, DDTR introduces a spatial attention mechanism to enable the
network to adaptively perceive important spatial features. Additionally, the features extracted by the
backbone exhibit high dimensionality in terms of channels, and DDTR will prioritize crucial channels
through channel attention. Lastly, in the head of DDTR, the same cascade heads as those in Cascade
R-CNN are employed to enhance the accuracy of PCB defect recognition and detection.

Firstly, the image X ∈ RH0×W0×C0 is input into a dual backbone network called
ResSwinT composed of Resnet and Swin Transformer. The multi-scale features obtained
by ResSwinT are represented as Xi ∈ RHi×Wi×Ci , where i = 1, 2, 3, 4. In the neck, feature
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enhancement is performed by mixing convolutional layers and Transformer. Due to
the various shapes of defects on PCBs, DDTR introduces a spatial attention mechanism
to enable the network to adaptively perceive important spatial features. Furthermore,
the features extracted by the backbone exhibit high dimensionality in terms of channels.
DDTR will emphasize significant channels through channel attention. Ultimately, the same
cascade heads used in Cascade R-CNN are employed to enhance the accuracy of PCB defect
recognition and detection in the head of DDTR.

3.2. Residual Swin Transformer (ResSwinT)

While traditional single-path CNNs can offer computational and memory efficiency,
their extraction of local features alone restricts the model from capturing the broader
contextual information present in the input image. This limitation proves critical for
the detection of minute defects in PCBs. To address this, we introduce a dual backbone
network called ResSwinT, illustrated in Figure 3. ResSwinT combines the residual modules
of ResNet with the self-attention mechanism of Swin Transformer, which employs shift
windows, to produce multi-scale features encompassing both global and local information
within the feature space.

Figure 3. The structure of stem layer and stage-1 in ResSwinT.

In the initial stage of ResSwinT, the image X ∈ RH0×W0×C0 will generate a feature
X0 ∈ RH0/4×W0/4×112 through the stem layer containing a partition and a convolutional
layer. The input image X in the partition is divided into patches of size 4× 4 and flattened
to obtain Xp ∈ RH0/4×W0/4×48. The stem layer contains convolution and max-pooling with
a stride of 2, and its output is Xc ∈ RH0/4×W0/4×64. So the calculation process is

Xp = Partition(X) (1)

Xc = Maxpool(Conv(X)) (2)

X0 = Xp ⊕ Xc (3)

where ⊕ represents the channel concatenation.
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The subsequent structure of ResSwinT consists of four stages, each consisting of multi-
layers perceptron (MLP), a residual part, and a swin part. In order to load the pre-trained
weights from ResNet and Swin Transformer, we do not change the structure of the residual
and swin parts. The input feature Xi−1 in i-th stage is first adjusted through MLP to match
the channel in the pre-trained network. The residual part of i-th stage contains nr

i residual
layers, which are composed of convolution, batch normalization (BN) [29], ReLU [30] and
shortcut, as shown in Figure 4. Its calculation process is

f r(X) = Res(X) + X, (4)

where Res(·) represents three convolution layers in the residual layer. By using the shortcut
of the residual layer, the degradation problem of deep networks can be solved.

Figure 4. The structure of stage-i in ResSwinT.

Due to partition in the stem layer, only MLP is used to adjust the channel in stage
1. However, in stage 2, 3, and 4, down-sampling is performed through partition before
feature extraction by swin transformer blocks. The swin transformer blocks contain two
transformer encoders, which are composed of multi-head self-attention (MSA), feed for-
ward (FF) network, and layer normalization (LN) [31], as shown in Figure 4. Unlike the
MSA of the transformer, the swin transformer adopts window multi-head self-attention
(W-MSA). In the W-MSA of the first encoder, the feature X only calculates local dependency
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information within the window of (w, w), as shown in Figure 4. In the next encoder, the
window is shifted by (w/2, w/2) to expand the area of extracting dependency information,
as shown in Figure 4. Its calculation process is

Zt
i = W −MSA(LN(Xt

i )) + Xt
i (5)

X̂t
i = FF(LN(Zt

i )) + Zt
i (6)

Ẑt
i = SW −MSA(LN(X̂t

i )) + X̂t
i (7)

Xt
i = FF(LN(Ẑt

i )) + Ẑt
i (8)

Through ns
i swin transformer blocks in the i-th stage, global dependency information can

be gradually extracted with less computational cost.
In summary, the calculation of ResSwinT is

Xr
i = f r

i (WiXi−1) (9)

Xs
i = f s

i (WiXi−1) (10)

Xi = Xr
i ⊕ Xs

i (11)

where Wi is the weight of MLP in i-th stage, Xr
i ∈ RHi×Wi×Cr

i is the multi-scale features
obtained by the residual part f r

i (·), Xs
i ∈

Hi×Wi×Cs
i is the multi-scale features extracted by

the swin part f s
i (·), where:

Hi = H0/(4× 2(i−1)) (12)

Wi = W0/(4× 2(i−1)) (13)

Cr
i = Cr

1 × 2(i−1) (14)

Cs
i = Cs

1 × 2(i−1) (15)

where i = 1,2,3,4. Then, Xi ∈ RHi×Wi×Ci generated by the channel concatenation between
Xr

i and Xs
i is fed into the next stage, where:

Ci = Cr
i + Cs

i (16)

3.3. Multi-Head Spatial and Channel Self-Attention

In the object detection network, the Neck connects the backbone and head, completing
the task of feature enhancement. In recent years, multi-scales feature fusion networks have
shown significant improvements in accuracy, such as feature pyramid networks (FPN) [32].
We propose a new multi-scale feature fusion strategy named multi-head spatial and channel
self-attention (SCSA), as shown in Figure 5. SCSA includes spatial self-attention (SSA)
and channel self-attention (CSA), aiming to solve the problem of difficulty in correctly
identifying defect targets due to significant differences in PCB defect size, shape, and
channel information.

3.3.1. SSA

Due to the large amount of computation involved in the global spatial attention, Xi

is firstly partitioned according to the size of a× a to obtain Ai ∈ RMA
i ×a2×Ci , as shown in

Figure 6, where MA
i = Hi ×Wi/a2. Afterwards, the Ai in each region will be clipped into

Pi ∈ RMA
i ×MP

i ×(a2×Ci) in units of p× p as shown in Figure 5 and the embedded feature
P̂i ∈ RMA

i ×MP
i ×d will be obtained by MLP, where MP

i = a2/p2. By using an encoder of SSA
to extract dependency information within local regions, its structure is shown in Figure 5,
and its calculation process can be represented as

P̂i = WiPi (17)
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F̂s
i = MSA(LN(P̂i)) + P̂i (18)

Fs
i = FF(LN(F̂s

i )) + F̂s
i (19)

where Wi is the embedded weight. The MSA is the same as the MSA in the original
transformer. Query vectors Q ∈ RMA

i ×MP
i ×d′ key vectors K ∈ RMA

i ×MP
i ×d′ , and value

vectors V ∈ RMA
i ×MP

i ×d′ are generated by

[Qi, Ki, Vi] = [WQ
i P̂i, WK

i P̂i, WV
i P̂i], (20)

where WQ
i , WK

i , and WV
i are the weights of the linear layer. Use key vectors to query on

the query vectors, and the query results are the sum weights corresponding to the value
vectors. The attention calculation process in MSA is as follows:

MSA(X) = Attention(Q, K, V)

= so f tmax(QKT
√

d′
)V,

(21)

where d′ is the dimension of the vectors. In the calculation process of MSA, all vectors are
evenly divided into each head for self-attention.

Figure 5. The structure of SCSA. The purple background module is SSA, and the blue background
module is CSA.

Figure 6. The operation process of partition.
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3.3.2. CSA

The features of the backbone are obtained by concatenating the features of two
branches on channel, resulting in a large amount of redundancy in the features. CSA
can calculate channel self-attention through spatial embedding encoding, making the
network more focused on advantageous channel features.

Similarly, CSA will first partition Xi to obtain Ai, but will not further clip the feature
into patches. Secondly, the transformed feature Ai ∈ RMA

i ×Ci×a2
is used to calculate channel

self-attention. By using an encoder of CSA to extract dependency information within local
regions, its structure is shown in Figure 5, and its calculation process can be represented as

Âi = Wi AT
i (22)

F̂c
i = MSA(LN(Âi)) + Âi (23)

Fc
i = FF(LN(F̂c

i )) + F̂c
i (24)

where Wi is the embedded weight. In SSA, patches are embedded in the channel dimension,
and spatial self-attention is the weighted sum between all patches. However, CSA is
embedded features within the channel, and channel self-attention is the weighted sum
between channels.

4. Experiment Results
4.1. Datasets

In this section, the PKU-Market-PCB [33] dataset and DeepPCB [13] dataset are used
to validate the performance of our proposed DDTR model.

4.1.1. PKU-Market-PCB Dataset

There are 693 PCB defect images in the PKU-Market-PCB dataset, with an average
shape of 2240× 2016. PCB defects include six types: missing hole, short, mouse bite, spur,
open circuits, and Spurious copper. The image only contains one defect type, but there
may be multiple defect targets. The training set contains a total of 541 images, the test set
contains 152 images.

Because of the large size of the image, the hardware cannot directly train and test on
the initial images. Therefore, we cropped all images into 512× 512 patches. Finally, the
training dataset contained 8508 images, while the test set contained 2897 images. More
detailed information can be found in Table 1.

Table 1. The target number of the PKU-Market-PCB dataset.

Before Cropping After Cropping

Train Test Train Test

Missing hole 362 126 1637 608
Short 351 131 1478 551

Mouse bite 365 126 1661 547
Spur 370 127 1641 587

Open circuits 366 126 1655 587
Spurious copper 371 132 1719 561

4.1.2. DeepPCB Dataset

All images in the DeepPCB dataset were obtained from linear scanning CCD, with a
resolution of approximately 48 pixels per 1 millimeter. Then, they are cropped into many
sub images of size 640× 640 and aligned using template matching technology. In order
to avoid illumination interference, images are converted to binary image after carefully
selecting the threshold. The dataset is manually annotated with six common PCB defect
types: open, short, mouse bite, spur, copper, and pin hole. The training set contains a total
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of 1000 images, the test set contains 500 images, and some instance images are shown in
Figure 7. In addition, the number of targets in the dataset is shown in Table 2.

Table 2. The target number of the DeepPCB dataset.

Train Test

Open 1283 659
Short 1028 478

Mouse bite 1379 586
Spur 1142 483

Copper 1010 464
Pin hole 1031 470

Figure 7. Examples of PKU-Market-PCB datasets and DeepPCB datasets.
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4.2. Evaluation Metrics

First, the confusion matrix between the ground truth and the prediction results of the
test set is calculated. When the predicted category is the same as the ground truth category,
and the Intersection over Union (IoU) between the predicted box and the ground truth box
is not lower than the threshold, the prediction is considered correct. True positive (TP) is
the number of positive samples for both the ground truth and the predicted result. False
positive (FP) is defined as the number of samples with negative ground truth and positive
predicted results. True negative (TN) is the number of negative samples for both ground
truth and predicted results. False negative (FN) is defined as the number of samples with
positive ground truth and negative predicted results.

We used F1-score, which is commonly used in the field of object detection, as the
metric for verifying performance. The definition of F1-score is as follows

F1− score =
2× P× R

P + R
(25)

where P is the precision, defined as

P =
TP

TP + FP
. (26)

R is the recall, and the calculation formula is

R =
TP

TP + FN
. (27)

4.3. Implemental Details

We have designed two types of ResSwinT for DDTR. One is the ResSwinT-T based on
ResNet50 and SwinT-T, which has a slightly smaller computational complexity. The another
is ResSwinT-S based on ResNet101 and SwinT-S, which has a slightly higher computational
complexity. The information for the two types of ResSwinT is shown in Table 3. For SSA in
SCSA, the area is 4× 4, the patch is 1× 1, and the input feature dimension for each head is
32. For CSA in SCSA, the area is 10× 10, and the input feature dimension for each head
is 25.

To verify the effectiveness of our proposed DDTR, we compared it with six advanced
object detection methods, including: (1) one-stage methods: YOLOv3, SSD [34], ID-
YOLO [35] and LightNet [36]; (2) two-stage methods: faster R-CNN [37] and cascade
R-CNN. During the training and testing process, all methods use a fixed input size of
640× 640. All the methods are trained on a Ubuntu18.04 server equipped with E5 2697v3
and RTX3090. Python is 3.7, PyTorch is 1.13.1, and CUDA is 11.7.

Table 3. The parameters of ResSwinT.

Layer Name Output Size
ResSwinT-T ResSwinT-S

Residual
Part Swin Part Residual Part Swin Part

Stem layer 160 × 160

Conv, 64, 7 × 7, stride 2
Maxpool, 3 × 3, stride 2 Partition, 4 × 4

Conv, 64, 7 × 7, stride 2
Maxpool, 3 × 3, stride 2 Partition, 4 × 4

Concatenation, 112 Concatenation, 112

Stage 1 160 × 160

MLP, 112, 64 Conv, 64, 1× 1, 1
Conv, 64, 3× 3, 1

Conv, 256, 1× 1, 1

× 3

MLP, 112, 48
MLP, 48, 96

[MSA, 96, 7× 7, 3]× 2

MLP, 112, 64 Conv, 64, 1× 1, 1
Conv, 64, 3× 3, 1

Conv, 256, 1× 1, 1

× 3

MLP, 112, 48
MLP, 48, 96

[MSA, 96, 7× 7, 3]× 2

Concatenation, 352 Concatenation, 352
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Table 3. Cont.

Layer Name Output Size
ResSwinT-T ResSwinT-S

Residual
Part Swin Part Residual Part Swin Part

Stage 2 80 × 80

MLP, 352, 256 Conv, 128, 1× 1
Conv, 128, 3× 3
Conv, 512, 1× 1

× 4

MLP, 352, 96
Partition, 2×2
MLP, 384, 192

[MSA, 192, 7× 7, 6]× 2

MLP, 352, 256 Conv, 128, 1× 1
Conv, 128, 3× 3
Conv, 512, 1× 1

× 4

MLP, 352, 96
Partition, 2 × 2
MLP, 384, 192

[MSA, 192, 7× 7, 6]× 2

Concatenation, 704 Concatenation, 704

Stage 3 40 × 40

MLP, 704, 512 Conv, 256, 1× 1
Conv, 256, 3× 3

Conv, 1024, 1× 1

× 6

MLP, 704, 192
Partition, 2 × 2
MLP, 768, 384

[MSA, 384, 7× 7, 12]× 6

MLP, 704, 512 Conv, 256, 1× 1
Conv, 256, 3× 3
Conv, 1024, 1× 1

× 23

MLP, 352, 96
Partition, 2 × 2
MLP, 384, 192

[MSA, 384, 7× 7, 12]× 18

Concatenation, 1408 Concatenation, 1408

Stage 4 20 × 20

MLP, 1408, 1024 Conv, 512, 1× 1
Conv, 512, 3× 3

Conv, 2048, 1× 1

× 3

MLP, 1408, 384
Partition, 2 × 2
MLP, 1536, 768

[MSA, 768, 7× 7, 24]× 2

MLP, 1408, 1024 Conv, 512, 1× 1
Conv, 512, 3× 3

Conv, 2048, 1× 1

× 3

MLP, 1408, 384
Partition, 2 × 2
MLP, 1536, 768

[MSA, 768, 7× 7, 24]× 2

Concatenation, 2816 Concatenation, 2816

Multi-scale outputs [352 × 160 × 160, 704 × 80 × 80, 1408 × 40 × 40, 2816 × 20 × 20]

The stride of the first 3 × 3 convolution layer in each stage is 2, and the rest is 1. [Conv, out channel, kernel size],
[MLP, in channel, out channel], [Maxpool, kernel size, ], [Partition, area size], [Concatenation, out channel], [MSA,
dim, window size, head number].

4.4. Experimental Results
4.4.1. Experimental Results of PKU-Market-PCB

The precision results on the PKU-Market-PCB dataset are shown in Table 4. From the
results, it can be seen that the accuracy of all two-stage methods exceeds one-stage object
detection methods. A backbone based on the Transformer architecture has higher detection
and recognition accuracy compared to CNN. The proposed DDTR method achieved the
best results in AP, AR, and F1-scores. Compared to YOLOv3, the DDTR improved 15.42%
on F1-score.

From the visualization results in Figure 8, the SSD and YOLO of one-stage object
detection have more false alarms. Due to the lack of global dependency information, there
are some overlapping target results in CNN-based object detection methods, which are
alleviated after using transformer. The proposed DDTR method has good visualization
results on the PKU-Market-PCB dataset.

Table 4. The indicator results of various methods on PKU-Market-PCB dataset.

Metric Missing-Hole Short Mouse-Bite Spur Open-Circuits Spurious-Copper Average

YOLOv3
AP 0.2303 0.3575 0.2828 0.3362 0.2764 0.3942 0.3129
AR 0.3512 0.4111 0.4002 0.4157 0.3596 0.4569 0.3991

F1-score 0.2781 0.3824 0.3314 0.3718 0.3126 0.4232 0.3508

SSD
AP 0.2716 0.3622 0.3045 0.3143 0.3191 0.3415 0.3189
AR 0.3735 0.4307 0.4066 0.3811 0.4061 0.4414 0.4066

F1-score 0.3145 0.3935 0.3482 0.3445 0.3574 0.3851 0.3574

Faster R-CNN
(ResNet50)

AP 0.3028 0.3521 0.3119 0.2914 0.3331 0.3752 0.3278
AR 0.3837 0.4285 0.3969 0.3666 0.4155 0.4704 0.4103

F1-score 0.3385 0.3866 0.3493 0.3247 0.3698 0.4175 0.3644

Faster R-CNN
(ResNet101)

AP 0.2958 0.3488 0.3113 0.3166 0.3499 0.3581 0.3301
AR 0.3840 0.4292 0.4110 0.3789 0.4256 0.4620 0.4151

F1-score 0.3342 0.3849 0.3542 0.3449 0.3841 0.4035 0.3678
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Table 4. Cont.

Metric Missing-Hole Short Mouse-Bite Spur Open-Circuits Spurious-Copper Average

Cascade R-CNN
(ResNet50)

AP 0.2873 0.3452 0.3475 0.3153 0.3457 0.3844 0.3375
AR 0.3908 0.4200 0.4099 0.3779 0.4210 0.4677 0.4145

F1-score 0.3311 0.3789 0.3761 0.3437 0.3796 0.4220 0.3721

Cascade R-CNN
(ResNet101)

AP 0.3152 0.3642 0.3522 0.3074 0.3472 0.3810 0.3445
AR 0.4061 0.4425 0.4152 0.3889 0.4341 0.4740 0.4268

F1-score 0.3549 0.3995 0.3811 0.3434 0.3858 0.4224 0.3813

Cascade R-CNN
(SwinT-T)

AP 0.3089 0.3605 0.3614 0.3172 0.3431 0.3803 0.3452
AR 0.3998 0.4358 0.4247 0.3956 0.4218 0.4756 0.4255

F1-score 0.3486 0.3946 0.3905 0.3521 0.3784 0.4226 0.3812

Cascade R-CNN
(SwinT-S)

AP 0.3094 0.3738 0.3195 0.2988 0.3814 0.4079 0.3485
AR 0.4095 0.4401 0.4026 0.3833 0.4521 0.4879 0.4293

F1-score 0.3525 0.4042 0.3562 0.3358 0.4138 0.4443 0.3847

ID-YOLO
AP 0.2783 0.3035 0.2960 0.2570 0.3289 0.3504 0.3024
AR 0.3124 0.3821 0.3501 0.3094 0.3972 0.3975 0.3581

F1-score 0.2944 0.3383 0.3208 0.2808 0.3598 0.3725 0.3279

LightNet
AP 0.2984 0.3417 0.3155 0.3141 0.3390 0.3788 0.3312
AR 0.3731 0.4409 0.4136 0.3805 0.4145 0.4813 0.4173

F1-score 0.3316 0.3850 0.3579 0.3441 0.3729 0.4239 0.3693

DDTR (ours)
(ResSwinT-T)

AP 0.3252 0.3742 0.3622 0.3174 0.3572 0.3910 0.3545
AR 0.4161 0.4525 0.4252 0.3989 0.4441 0.4840 0.4368

F1-score 0.3651 0.4096 0.3912 0.3535 0.3959 0.4325 0.3914

DDTR (ours)
(ResSwinT-S)

AP 0.3294 0.3938 0.3395 0.3188 0.4014 0.4279 0.3685
AR 0.4295 0.4601 0.4226 0.4033 0.4721 0.5079 0.4493

F1-score 0.3729 0.4244 0.3765 0.3561 0.4339 0.4645 0.4049

AP:AP@0.5:0.05:0.95, AR:AR@0.5:0.05:0.95, F1 = 2 × AP × AR/(AP + AR).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 8. Some visualization results on the PKU-Market-PCB dataset. (a) Input image, (b) ground
truth, (c) YOLOv3, (d) SSD, (e) Faster R-CNN_ResNet50, (f) Faster R-CNN_ResNet101, (g) Cascade
R-CNN_ResNet50, (h) Cascade R-CNN_ResNet101, (i) Cascade R-CNN_SwinT-T, (j) Cascade R-
CNN_SwinT-S, (k) DDTR_ResSwinT-T, (l) DDTR_ResSwinT-S.
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4.4.2. Experimental Results of DeepPCB

The accuracy results of the DeepPCB dataset are shown in Table 5. From the results, it
can be seen that the accuracy of all two-stage methods equally exceeds that of the one-stage
target detection methods. Compared to CNN, the Transformer-based backbone has higher
detection and recognition accuracy. The proposed DDTR method achieved the best results
in AP, AR, and F1-score. Compared to YOLOv3, the DDTR has improved 9.04% on F1-score.

Table 5. The indicator results of various methods on DEEPPCB dataset.

Metric Missing-Hole Short Mouse-Bite Spur Open-Circuits Spurious-Copper Average

YOLOv3
AP 0.6512 0.6099 0.7158 0.6948 0.8391 0.7319 0.7071
AR 0.7290 0.6872 0.7802 0.7580 0.8987 0.8628 0.7860

F1-score 0.6879 0.6462 0.7466 0.7250 0.8679 0.7920 0.7445

SSD
AP 0.6403 0.5598 0.7299 0.7036 0.8737 0.8435 0.7251
AR 0.7032 0.6385 0.7780 0.7534 0.9017 0.8870 0.7770

F1-score 0.6703 0.5966 0.7532 0.7276 0.8875 0.8647 0.7502

Faster R-CNN
(ResNet50)

AP 0.6426 0.5947 0.7393 0.7011 0.8539 0.8156 0.7245
AR 0.7109 0.6776 0.7932 0.7594 0.8894 0.8621 0.7821

F1-score 0.6751 0.6335 0.7653 0.7291 0.8713 0.8382 0.7522

Faster R-CNN
(ResNet101)

AP 0.6421 0.5764 0.7286 0.6952 0.8768 0.8512 0.7284
AR 0.7036 0.6475 0.7749 0.7468 0.9069 0.8938 0.7789

F1-score 0.6715 0.6099 0.7510 0.7200 0.8916 0.8720 0.7528

Cascade R-CNN
(ResNet50)

AP 0.6652 0.6056 0.7561 0.7272 0.9218 0.8779 0.7590
AR 0.7252 0.6810 0.8038 0.7822 0.9455 0.9355 0.8122

F1-score 0.6939 0.6411 0.7792 0.7537 0.9335 0.9058 0.7847

Cascade R-CNN
(ResNet101)

AP 0.6729 0.6135 0.7537 0.7356 0.9265 0.8810 0.7639
AR 0.7326 0.6845 0.8048 0.7855 0.9517 0.9326 0.8153

F1-score 0.7015 0.6471 0.7784 0.7597 0.9390 0.9060 0.7887

Cascade R-CNN
(SwinT-T)

AP 0.6880 0.6306 0.7658 0.7403 0.9284 0.8811 0.7724
AR 0.7451 0.6967 0.8169 0.7977 0.9582 0.9500 0.8274

F1-score 0.7154 0.6620 0.7905 0.7679 0.9431 0.9143 0.7989

Cascade R-CNN
(SwinT-S)

AP 0.6791 0.6365 0.7770 0.7462 0.9355 0.8703 0.7741
AR 0.7480 0.7079 0.8253 0.8004 0.9621 0.9534 0.8328

F1-score 0.7118 0.6703 0.8004 0.7724 0.9486 0.9100 0.8024

ID-YOLO
AP 0.6138 0.5730 0.7016 0.6862 0.8703 0.8438 0.7148
AR 0.7078 0.6850 0.7328 0.7477 0.9246 0.8591 0.7762

F1-score 0.6574 0.6240 0.7168 0.7156 0.8966 0.8514 0.7442

LightNet
AP 0.6742 0.6184 0.7323 0.7313 0.9321 0.8851 0.7622
AR 0.7304 0.6879 0.7988 0.7993 0.9314 0.9127 0.8101

F1-score 0.7012 0.6513 0.7641 0.7638 0.9317 0.8987 0.7854

DDTR (ours)
(ResSwinT-T)

AP 0.6823 0.6459 0.7776 0.7577 0.9491 0.9120 0.7875
AR 0.7473 0.7061 0.8247 0.8101 0.9670 0.9564 0.8353

F1-score 0.7134 0.6746 0.8005 0.7831 0.9580 0.9337 0.8107

DDTR (ours)
(ResSwinT-S)

AP 0.6860 0.6475 0.7825 0.7579 0.9524 0.8911 0.7862
AR 0.7490 0.7157 0.8343 0.8104 0.9698 0.9551 0.8390

F1-score 0.7161 0.6799 0.8076 0.7833 0.9610 0.9220 0.8118

AP:AP@0.5:0.05:0.95, AR:AR@0.5:0.05:0.95, F1 = 2 × AP × AR/(AP + AR).

From the visualization results in Figure 9, it can be seen that SSD and YOLO have more
false alarms. Due to the lack of global dependency information, there are some overlapping
target results in CNN-based object detection methods, which have been alleviated by the
use of transformer. Due to the lack of attention information, all comparison methods have
a significant amount of false positives in the digital area. The proposed DDTR method has
good visualization performance on the DeepPCB dataset.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 9. Some visualization results on the DeepPCB dataset. (a) Input image, (b) ground truth,
(c) YOLOv3, (d) SSD, (e) Faster R-CNN_ResNet50, (f) Faster R-CNN_ResNet101, (g) Cascade
R-CNN_ResNet50, (h) Cascade R-CNN_ResNet101, (i) Cascade R-CNN_SwinT-T, (j) Cascade R-
CNN_SwinT-S, (k) DDTR_ResSwinT-T, (l) DDTR_ResSwinT-S.

4.5. Ablation Experiments

We conducted some ablation experiments on the proposed module, as shown in
Table 6, where the best performing ones are highlighted in bold. Firstly, we use ResNet101
Cascade R-CNN as the baseline, which has 0.3813 F1-score on the PKU-MARKET-PCB
dataset. If SwinT-S is used to replace ResNet101, it has a 0.89% improvement. If the
proposed ResSwinT-S is used as the backbone, it has a 2.89% improvement. On this basis,
networks using SSA have a 4.44% improvement compared to Baseline, and networks using
CSA is 4.69%. The difference between the SSA and CSA is not significant, indicating that
SSA and CSA can enhance the expression ability of features in different dimensions. When
ResSwinT-S and SCSA are introduced simultaneously, addition of the feature SSA and CSA
shows a 5.99% improvement, while channel concatenation is 6.19%.

Table 6. Results of ablation experiment on PKU-Market-PCB.

Cascade R-CNN AP AR F1-Score

ResNet101 (baseline) 0.3445 0.4268 0.3813 (±0.00%)
SwinT-S 0.3485 0.4293 0.3847 (+0.89%)

ResSwinT-S 0.3573 0.4343 0.3921 (+2.82%)
ResSwinT-S/SSA 0.3615 0.4433 0.3982 (+4.44%)
ResSwinT-S/CSA 0.3616 0.4455 0.3992 (+4.69%)

ResSwinT-S/SSA + CSA 0.3668 0.4500 0.4041 (+5.99%)
ResSwinT-S/SSA⊕CSA 0.3685 0.4493 0.4049 (+6.19%)

5. Conclusions

DDTR has designed a new backbone for extracting multi-scale features, named ResS-
winT. ResSwinT combines ResNet and Swin Transformer to extract local details and global
dependency information. And it can load pre-trained model weights to assist training.
Secondly, due to the higher complexity of the features extracted by ResSwinT, we designed
a spatial channel multi-head self-attention structure. Spatial multi-head self-attention can
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encode space features through channel information, and use a self-attention mechanism to
achieve weighted summation of spatial features within the region. Channel multi-head self-
attention can encode channel features through spatial information, and use a self-attention
mechanism to achieve a weighted sum of channel features within the region.

We conducted extensive experiments on the PKU-MARKET-PCB and DeepPCB datasets,
and compared to the existing one-stage and two-stage detection models, the proposed
DDTR can improve the F1-score by up to 15.42%. The results of multiple visualizations also
show that DDTR demonstrates better detection performance. To verify the effectiveness
of the module, we conducted a series of ablation experiments. The results of ablation ex-
periments show that ResSwinT and SCSA can improve the accuracy of defect detection.So
if DDTR is applied to automated defect detection in the PCB production process, it can
accurately detect PCB defects and improve the yield of PCB production.
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