
Citation: Luo, Z.; Wang, P.; Xie, W;

Zhou, X; Wang, B. IoTSim: Internet of

Things-Oriented Binary Code

Similarity Detection with Multiple

Block Relations. Sensors 2023, 23,

7789. https://doi.org/10.3390/

s23187789

Academic Editor: Jian Li

Received: 7 August 2023

Revised: 3 September 2023

Accepted: 6 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

IoTSim: Internet of Things-Oriented Binary Code Similarity
Detection with Multiple Block Relations
Zhenhao Luo, Pengfei Wang *, Wei Xie, Xu Zhou and Baosheng Wang

College of Computer, National University of Defense Technology, Changsha 410073, China
* Correspondence: pfwang@nudt.edu.cn

Abstract: Binary code similarity detection (BCSD) plays a crucial role in various computer security
applications, including vulnerability detection, malware detection, and software component analysis.
With the development of the Internet of Things (IoT), there are many binaries from different instruction
architecture sets, which require BCSD approaches robust against different architectures. In this study,
we propose a novel IoT-oriented binary code similarity detection approach. Our approach leverages
a customized transformer-based language model with disentangled attention to capture relative
position information. To mitigate out-of-vocabulary (OOV) challenges in the language model, we
introduce a base-token prediction pre-training task aimed at capturing basic semantics for unseen
tokens. During function embedding generation, we integrate directed jumps, data dependency,
and address adjacency to capture multiple block relations. We then assign different weights to
different relations and use multi-layer Graph Convolutional Networks (GCN) to generate function
embeddings. We implemented the prototype of IoTSim. Our experimental results show that our
proposed block relation matrix improves IoTSim with large margins. With a pool size of 103, IoTSim
achieves a recall@1 of 0.903 across architectures, outperforming the state-of-the-art approaches Trex,
SAFE, and PalmTree.

Keywords: IoT security; binary code similarity detection; vulnerability detection

1. Introduction

Nowadays, the wide usage of Internet of Things (IoT) devices in various fields, in-
cluding smart medical care and smart homes, has significantly improved people’s lives.
According to a report by IoT statistics [1], the number of connected IoT devices is expected
to exceed 29 billion by 2030. However, the rapid growth in demand for IoT devices has led
to the development of IoT firmware heavily relying on third-party components (TPCs), of-
ten without necessary security audits. Although this way improves development efficiency
and reduces costs, it also exposes the firmware to vulnerabilities and weaknesses, making
them attractive targets for attackers. Numerous security issues [2–7] indicate the fragility
of the current IoT ecosystem, raising public concern about IoT security risks.

However, detecting these vulnerabilities in IoT firmware is challenging due to the
following reasons. Firstly, many IoT firmware images only provide binary files, making
source code unavailable for security analysis. Secondly, IoT firmware originates from
different instruction set architectures (ISAs), necessitating extensive reverse engineering
expertise and specialized knowledge for security analysis. Thirdly, analyzing more than
29 billion IoT devices and discovering their vulnerabilities significantly burdens researchers.
Therefore, there is an urgent need for an accurate and automated technique to identify
these vulnerable TPCs and vulnerable functions. As a result, binary code similarity detec-
tion (BCSD) has become an active research focus for detecting vulnerabilities hidden in
IoT devices.

Binary code similarity detection is a fundamental technique in computer security that
can detect similarities between two binary code snippets. It is widely used for various

Sensors 2023, 23, 7789. https://doi.org/10.3390/s23187789 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187789
https://doi.org/10.3390/s23187789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0075-5003
https://doi.org/10.3390/s23187789
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187789?type=check_update&version=1

Sensors 2023, 23, 7789 2 of 22

applications, including vulnerability detection [8–22], malware analysis [23–28], and binary
patch analysis [29–31]. Figure 1 shows an example of BCSD usage in firmware security
analysis. Given an IoT firmware without symbol tables, the BCSD approaches extract its
functions and match them with functions in the vulnerability database based on function
similarity to detect vulnerable functions in the firmware. For example, function sub_5686c
is matched with function BN_hex2bn, which is associated with the vulnerability in the
Common Vulnerabilities and Exposures (CVE) database. Furthermore, according to the
BCSD results, the function name, the symbol table, the project name, and even the source
code can be restored. This can locate vulnerabilities in massive IoT firmware and provide
reverse analysts with critical information, e.g., source code and symbol tables.

Prior to the utilization of machine learning (ML) in Binary Code Similarity Detection
(BCSD) tasks, traditional BCSD approaches [20,21,32,33] heavily rely on specific features,
including control flow graphs (CFGs), the count of basic blocks, and string constants.
However, determining the weights of these syntactic features requires extensive experience
and expert knowledge, and they may vary with different compilers and optimization
options. Moreover, traditional graph-based methods such as graph isomorphism matching
are excessively time-consuming for analyzing large-scale firmware, leading to relatively
lower accuracy and scalability.

libcrypto.so

......
sub_563b4

sub_56490

sub_565f4

sub_5686c

sub_56a9c

sub_56cc8

......

Function Name: BN_hex2bn
Project: OpenSSL-1.0.2d
Vulnerability: CVE-2016-0797
Source file: crypto/bn/bn_print.c
Source code:

Function Name: BN_dec2bn
Project: OpenSSL-1.0.2d
Vulnerability: CVE-2016-0797
Source file: crypto/bn/bn_print.c
Source code: int BN_dec2bn{...}

int BN_hex2bn(BIGNUM **bn, const char *a){
 BIGNUM *ret = NULL;

 for (i = 0; isxdigit((unsigned char)a[i]); i++) ;

}

IoT Firmware

Matched

Matched

Figure 1. An example of using BCSD in IoT firmware analysis.

In recent years, researchers have increasingly adopted learning-based approaches to
tackle BCSD tasks, and the current state-of-the-art BCSD approaches [11,13,14,34,35] are
predominantly based on machine learning (ML) techniques. These approaches typically
involve the disassembly of binary code into either assembly language or intermediate rep-
resentation (IR). Subsequently, trained neural networks are utilized to extract the semantic
information from functions and embed them into high-dimensional representations. Finally,
function matching is performed based on the similarity of these embeddings. Gemini [36]
manually selects statistical features of basic blocks and employs graph neural networks
(GNNs) to generate function embeddings for function matching. More recently, the field of
natural language processing (NLP) has achieved significant advancements in semantic ex-
traction. Consequently, NLP techniques have been introduced into BCSD tasks by methods
such as jTrans [11], PalmTree [34], and SAFE [35]. These techniques aim to automatically
extract semantics and generate function embeddings for calculating function similarity.
Despite the progress made by learning-based models, they still have limitations when it
comes to new application scenarios of the BCSD for IoT firmware.

P1: IoT firmware originates from different architectures such as x86, arm, and mips.
This leads to the inclusion of instructions from different architectures, and poses significant
risks of encountering out-of-vocabulary (OOV) challenges. OOV problems are widely recog-
nized in the NLP field. When a word has not been encountered during training, it is referred
to as an OOV word, and the word embedding model becomes incapable of generating
semantic representations for such words. The OOV issue in BCSD for IoT firmware is fur-
ther exacerbated by the existence of various instruction sets, address offsets, and registers.

Sensors 2023, 23, 7789 3 of 22

Figure 2 illustrates the assembly code compiled from the same source code but targeting dif-
ferent architectures (i.e., x86-64 and arm). Notably, the assembly code generated for these
two architectures exhibits stark dissimilarities. As a consequence, considerable differences
arise at the lexical and syntactic levels, resulting in severe OOV challenges.

push
mov
mov
bl
mov
mov
pop
b

{r4-r6,lr}
r5, siz
r4, buf
fileno_stdout
r2, siz
r1, buf
{buf-r6,lr}
write

rbp
rbp, buf
rbx
ebx, esi
rsp, 8
fileno_stdout
rdx, ebx
rsi, buf
edi, eax
_write
rsp, 8
siz
buf

endbr64
push
mov
push
mov
sub
call
movsxd
mov
mov
call
add
pop
pop
retn

int raw_write_stdout (const void *buf, int siz)

{

return write(fileno_stdout(), buf, siz);

}

Source Code

Assembly Code: x86-64

Assembly Code: arm

Figure 2. Assembly code on the different architectures. Both assembly sequences are from the same
source code in the OpenSSL project. However, their opcodes, operands, and calling conventions are
very different due to the different architectures.

For OOV words, existing approaches [11,34,35,37] use normalization based on pre-
defined rules to deal with string literals, immediate numbers, and address offsets. However,
when these special words are replaced with dummy tokens, the essential semantics may
be compromised. Moreover, when confronted with unknown expressions found in IoT
firmware, these approaches still encounter OOV challenges. For example, despite being
trained on multiple ISAs, SAFE [35] still suffers from OOV issues and does not exhibit
satisfactory performance in cross-architecture BCSD tasks.

P2: Existing approaches extract superficial features from Control Flow Graphs (CFGs),
such as adjacency matrices, which overlooks critical semantic information. A CFG repre-
sents all possible paths during execution, which consists of basic blocks. Multiple relations
exist between connected basic blocks: (1) edges between basic blocks are directed, (2) ad-
dress adjacent basic blocks often have a stronger mutual influence, and (3) data flow
dependencies may exist between basic blocks. Adjacency matrices alone cannot capture
these in-depth multiple relations. Neglecting these semantic and structural nuances makes
it challenging to build an accurate model for BCSD tasks for IoT firmware. Previous ap-
proaches [19,36] primarily concentrate on connections between basic blocks, disregarding
various associations like data dependencies, which results in low performance.

To solve the aforementioned problems, in this paper, we present IoTSim, a novel
deeply customized cross-architecture approach for binary code similarity detection in IoT
firmware, which supports vulnerability discovery and firmware component analysis. We
use an NLP-based model DeBERTa [38] to capture basic block semantics, and use GNNs to
capture the control and data flow information, to generate binary function semantic embed-
dings. To resolve the challenges in problem P1, we lift assembly code into an intermediate
representation, namely microcode, to mitigate differences in instruction sets, registers,
and calling conventions. During the training phase, we do not use normalization to deal
with string literals and immediate numbers, in order to preserve important semantics. For
OOV issues in testing, we tokenize these OOV words into their base-tokens and generate
semantic embeddings. To this end, we propose a newly designed pre-training task, namely
Base-Token Prediction (BTP), so that base-tokens include the basic semantics of their types.
Furthermore, in binary code, the attention weight of an instruction pair depends on not
only their contextual instructions but also their relative positions. Adjacent instructions
tend to have stronger dependencies. Therefore, we utilize relative position embeddings
based on disentangled attentions to capture content-to-content (c2c), content-to-position
(c2p), and position-to-content (p2c) attentions for higher precision.

Sensors 2023, 23, 7789 4 of 22

To address problem P2, we propose using directed adjacency, data dependency, and
address matrices to represent relations between basic blocks. For multiple relations between
connected basic blocks, first, we determine the direction relations based on the predecessors
and successors of the basic block. Then, according to the address and connection of the
basic blocks, the larger address distances between blocks generally indicate weaker mutual
influence. Furthermore, variables in binary code are required to be defined before being
used. Based on the def-use chains at the basic block level, we can determine the data
dependencies between basic blocks. Thus, we generate an abundant data-based control
flow graph (DCFG) to represent the CFG deeply. Section 5.3 shows that DCFGs can
improve recall@1 by 15.5± 6.1% compared to CFGs solely in the function level BCSD tasks
with 103 candidates.

In summary, we have made the following contributions:

• We propose a novel deeply cross-architecture approach using NLP techniques for
IoT-oriented binary code similarity detection tasks. To resolve problem P1, we lift
assembly code into microcode and propose a newly designed pre-training task to
mitigate OOV issues;

• To resolve problem P2, we consider multiple relations between basic blocks to generate
DCFGs to capture rich contextual information between basic blocks. We then use
a GNN model to integrate basic block embeddings based on DCFGs for generating
function embeddings;

• We implement IoTSim which can be used for vulnerability detection and firmware
component analysis in the real world. We evaluate IoTSim with extensive experiments.
The experiments show that IoTSim outperforms the state-of-the-art approaches such
as Trex, SAFE, GMN, and PalmTree.

The remaining sections of the paper are structured as follows: Section 2 provides an
overview of the relevant literature. Section 3 clarifies key points of this paper. In Section 4,
we present a detailed description of the design of IoTSim. Section 5 conducts extensive
experiments to evaluate the performance of IoTSim. Lastly, Section 6 concludes the paper
and provides final remarks.

2. Related Work

In this section, we provide a concise overview of the relevant literature concerning
binary code similarity detection. We discuss both mono-architecture approaches and
cross-architecture approaches.

Mono-architecture Approaches: Extensive progress has been made in research on
detecting binary code similarity for mono-architecture binaries. For example, various
approaches [20,23,28,39,40] utilize syntax, structural, and statistical features to match sim-
ilar binary functions. Tracelet [41] decomposes binary functions into continuous traces
and measures the similarity between two traces by constraint solving and data depen-
dencies. BLEX [42] executes functions under a randomized environment and compares
their similarity based on the corresponding I/O values collected. BinSim [23] proposes
a hybrid fine-grained approach using system call sliced segment to identify binary code
similarities with symbolic execution. Similarly, CoP [43] employs symbolic execution and
a theorem prover to compare binary code similarity by matching the longest common
sub-sequence with basic blocks as elements. Nonetheless, due to their computational
complexity, these approaches may not be practical when dealing with extensive function
repositories. Drawing inspiration from Natural Language Processing (NLP) techniques,
many researchers [11,14,22,34,44,45] introduce language models to extract the semantics of
binary code for BCSD tasks. Ding et al. [14] propose Asm2Vec, which represents binary
functions as high-dimensional embeddings and utilizes the Distributed Memory Model
of Paragraph Vectors (PV-DM) model [46] to extract semantics from binary functions for
function embedding generation. Li et al. [34] employ PalmTree, a transformer-based NLP
model using BERT [47], to measure the similarity of binary code in assembly language.
Additionally, jTrans [11] presents a transformer-based approach that incorporates control

Sensors 2023, 23, 7789 5 of 22

flow information through jump-aware representation. These approaches involve represent-
ing binary functions as high-dimensional embeddings, facilitating the search for similar
candidate functions within extensive function repositories. However, in the IoT scenarios,
firmware images and executable files from different architectures require BCSD approaches
to support finding similar functions across various architectures.

Cross-architecture Approaches: With the urgent need for cross-architectural BCSD
approaches, recent research has focused on cross-architecture BCSD tasks. Traditional
methods typically involve selecting architecture-robust features, such as statistical, syntactic,
and structural features, to compute the similarity of binary code. These include BinDiff [32],
DiscovRE [48], Esh [15], GitZ [49], Genius [19], and Gemini [36]. Esh [15] and GitZ [49]
decompose binary procedures into comparable fragments using data flow analysis and use
a statistical framework to detect similar binary fragments. Genius [19] and Gemini [36]
adopt machine learning and consider statistical features as attributes of CFGs to graph
embeddings for BCSD tasks. Both of them rely on hand-crafted features, which necessitate
rich experience and domain knowledge to match similar functions. Trex [13] proposes
a transformer-based model using micro-traces to capture execution semantics of functions
for cross-architecture BCSD tasks. VulHawk [50] integrates basic block features and CFGs
to detect vulnerabilities across architectures. SAFE [35] trains a Word2Vec model [51] using
binaries from various architectures, including x86 and arm, to detect binary code across
different architectures. However, in our experiments, we observe that despite being trained
using multiple architecture binaries, SAFE still suffers from a large number of OOV issues
in the experiments, which severely affects its performance.

Furthermore, there are multiple relations (e.g., directed jumps, data dependency, and
address adjacency) in binary functions, which contain important semantic information
for BCSD tasks. The existing approaches use single basic block relations and do not deeply
consider the combination of multiple relations, which may miss critical semantic information
to distinguish dissimilar functions with minor differences. Facing high pool size scenarios, it is
difficult for them to achieve good performance in numerous candidate functions.

3. Problem Definition

In this section, we aim to clarify key points of this paper to enhance the clarity of
the presentation.

Detection Granularity. This paper focuses on measuring the similarity of two binaries
at the function level. In the analysis of IoT firmware, giving the similarity and symbol
tables of functions can help researchers understand binary code and greatly reduce the
manual workload.

Similarity Explanation. In the existing BCSD literature [14,27,52], there are four
types of function similarity: (1) literal identity, (2) syntactic equivalence, (3) functional
equivalence, and (4) the same or logic similar source code. Due to the usage of different
compilers and optimization options in IoT firmware, there may still be literal and syntactic
differences among binary functions originating from the same source code. The same
functionality has various implementations (e.g., bubble sort and quick sort), but they cannot
share the symbol tables. Consequently, types (1), (2) and (3) are not suitable for vulnerability
discovery and firmware component analysis with symbol table supplementation. Our
focus lies on type (4), which involves binary functions that may exhibit syntactic differences
but share similar functional logic in their source code.

Binary Code Similarity Detection. BCSD approaches are employed to calculate
the similarity between two binary functions. In IoT firmware analysis, binary functions
are compiled using diverse compilers (e.g., GCC and Clang) with various optimization
options (e.g., O0, O1, O2, O3, and Os) on multiple architectures (e.g., arm, mips, and x86). As
a result, even when two functions originate from the same source code, they may have
different instructions and structures. Therefore, an effective IoT-oriented BCSD approach
should be robust across architectures, compilers, and optimization options. Furthermore,
it also supports working on large pools of candidate binary functions. In practice, given

Sensors 2023, 23, 7789 6 of 22

a query function, BCSD approaches need to calculate the similarity between the query
function and a large pool of candidate functions, selecting the most similar one [11]. This
requires accurately identifying the most similar functions from the candidate pool while
distinguishing irrelevant ones.

4. Design

To address the problems mentioned in Section 1, we propose a BCSD approach named
IoTSim, for IoT-oriented BCSD tasks. Figure 3 shows the overview of IoTSim, including
three modules to implement its functionality.

0 1 1 0

1 0 0 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

0 0 0 0

f30f1efa4
1544989fc
534889f3
4883ec08
e8aa0afbf
f41b8010
00000488
9034885c
0740c488
3c408448
9c05b415
cc390488
d05098b0
3004c89e
1488d15a
fa703······

Binary Code

Microcode

mov
mov
mov
call
mov
stx
setz
jcnd
······

rdi
rsi
#0

#1
rax
rax
zf

ds
#0

r12
rbx
zf
sub_346f0
r8
rbx
zf
zf

DCFG

𝐸2

𝐸𝑛

𝐸1

… … … 𝑇2

𝑇𝑛

𝑇1

…

Trm

Trm

Trm

Trm

Trm

Trm

Language Model

BTPMLMSBM

Address

Adjacency

Data

Dependence

Directed

Adjacency

0 1 1 0

1 0 0 0

1 0 0 0

0 0 0 0
1 2

2 4

1 2

1 3

1 2

def: rax

use: rax use: rax

Data Flow

3 4

000 111 101 000

001 000 000 100

001 000 000 110

000 000 000 000

Block Relation Matrix

[-0.45, 0.57, ..., 0.99]

[0.79, -0.70, ..., 0.75]

[0.62, 1.12, ..., 0.41]

[-0.75, 1.81, ..., 1.70]

···

Function RepositoryFunction

Embeddings

Figure 3. The overview of IoTSim, which consists of a preprocessor, a block semantic model, and
a function embedding model.

Preprocessor. Firstly, IoT binaries are disassembled and their binary code is trans-
formed into microcode. By analyzing the def-use chains, we obtain data dependencies
based on defined variables and used variables for each basic block. Subsequently, CFGs
and data dependencies are integrated to generate data-based control flow graphs (DCFGs).
Based on the various relations between basic blocks in DCFGs, we create the address matrix,
the directed matrix, and the data dependencies.

Block Semantic Model. This module utilizes an NLP model to produce semantic
embeddings for basic blocks using microcode sequences. We employ a language model
based on DeBERTa [38] to construct basic block embeddings. To optimize model parameters,
we utilize two pre-training tasks: (1) the masked language model (MLM) task helps the
model learn semantic relations between microcode; and (2) the base-token prediction (BTP)
task assists the model in learning and complementing the semantics of base-tokens.

Function Embedding Model. This module combines basic block embeddings and
graph features to generate function embeddings. We establish a block relation matrix
that incorporates multiple relations such as directed adjacency, data dependencies, and
address adjacency. Leveraging the block relation matrix and basic block embeddings, we
utilize graph neural networks (GNNs) to capture control-flow and data-flow relations for
generating function embeddings. During training, we use the normalized temperature-
scaled cross-entropy loss (NT-Xent) [53] to optimize the model parameters, making the
similar functions’ embeddings closer in the semantic space.

4.1. Preprocessor

The preprocessor generates the function features used by the Block Semantic Model and
Function Embedding Model, including instructions, control-flow, and data-flow features.

We initially disassemble binary files and convert their binary code into microcode to
address the cross-architecture differences. The microcode is an architecture-agnostic inter-

Sensors 2023, 23, 7789 7 of 22

mediate representation from IDA Pro [54]. Figure 4 illustrates the conversion of assembly
code from diverse architectures into microcode. Notably, there are significant dissimilarities
in assembly snippets when comparing the same source code across different architectures
(e.g., x86 and arm). Their registers (e.g., eax and W0), opcodes (e.g., jz and B.EQ), and
calling conventions look completely different. After converting to microcode, they have
the same opcodes and calling conventions. Consequently, this conversion mitigates the
differences introduced by instruction sets and calling conventions. Within the microcode,
intricate instruction nests can be observed, as demonstrated in Ln. 7 of the microcode (x86)
in Figure 4, which are compounded by multiple semantics and are susceptible to OOV
issues. To address such OOV problems, we analyze sequences of microcode instructions
and split these nests into individual instructions. We consider an instruction with multiple
operands nested within it to be an instruction nest. For example, the instruction of Ln.7 in
microcode (x86) is an instruction nest, which nests three opcodes call, xdu, and add. After
analysis, we split it into three sub-instructions of Ln.11-13 in detailed microcode. These
instructions are semantically equivalent to the original instruction nest and can reduce the
OOV issues caused by instruction nesting.

0x0980: STP
0x0984: MOV
0x0988: STR
0x098C: BL
0x0990: MOV
0x0994: CMP
0x0998: B.EQ
0x099C: SUB
0x09A0: BL
0x09A4: MOV
0x09A8: LDR
0x09AC: LDP
0x09B0: RET
0x09B4: ADD
0x09B8: BL
0x09BC: MOV
0x09C0: LDR
0x09C4: LDP
0x09C8: RET

X29, X30, [SP,-0x20]
X29, SP
X19, [SP,#0x10]
input
W19, W0
W0, #3
0x09B4
W0, W0, #1
foo2
W0, W19
X19, [SP,#0x10]
X29, X30, [SP],#0x20

W0, W0, #2
foo1
W0, W19
X19, [SP,#0x10]
X29, X30, [SP],#0x20

r12
eax, eax
input
r12d, eax
eax, 3
0x1268
edi, [rax-1]
foo2
eax, r12d
r12

edi, [rax+2]
foo1
eax, r12d
r12

0x1240: endbr64
0x1244: push
0x1246: xor
0x1248: call
0x124D: mov
0x1250: cmp
0x1253: jz
0x1255: lea
0x1258: call
0x125D: mov
0x1260: pop
0x1262: retn
0x1268: lea
0x126B: call
0x1270: mov
0x1273: pop
0x1275: retn

Source Code

Binary

Binary

Assembly Code: arm

Assembly Code: x86

call $input, eax
eax, er12
eax, #3, @7
$foo2(xdu(eax-#1))
er12, rax
@9
$foo1(xdu(eax+#2))
er12, rax

call $input, w0
w0, w19
w0, #3, @7
$foo2(xdu(w0-#1))
w19, x0
@9
$foo1(xdu(w0+#2))
w19, x0

Disassemble

Lift

Microcode (arm)

Analyze

Microcode (x86)

Detailed Microcode

mov
mov
jz
call
xdu
goto
call
xdu
ret

1:
2:
3:
4:
5:
6:
7:
8:
9:

mov
mov
jz
call
xdu
goto
call
xdu
ret

1:
2:
3:
4:
5:
6:
7:
8:
9:

call
mov
mov
setz
jcnd

$input, l_result
l_result, eax
eax, er12
eax, #3, zf
zf, @11

1:
2:
3:
4:
5:

sub
xdu
call
xdu
goto

eax, #1, l_result
l_result, _input
$foo2
er12, rax
@15

6:
7:
8:
9:

10:

add
xdu
call
xdu

eax, #2, l_result
l_result, _input
$foo1
er12, rax

11:
12:
13:
14:

ret15:

Block1

Define:

Use:

Prior:

Next:

Block2

Define:

Use:

Prior:

Next:

Block3

Define:

Use:

Prior:

Next:

Block4

eax, er12

Block2, 3

rax

eax

Block1

Block4

rax

eax

Block1

Block4

Block1

Define eax, er12

Use

Prior

Next Block2, 3

Block4

Block3

Define rax

Use eax

Prior Block1

Next Block4

Block2

Define rax

Use eax

Prior Block1

Next Block4

Figure 4. An example control flow of a binary function. The left is the linear layout assembly code
with jump addresses, and the right is the corresponding control-flow graph.

To capture the data dependency among basic blocks, we use def-use chains to capture
defined variables and used variables for each basic block to generate Data-based Control
Flow Graphs (DCFGs). In binary code, variables should be defined before being used. The
def-use chains enable us to monitor the usage and definition of variables. Here, we focus on
defining and using variables at the basic block level. For example, in optimized microcode,
Block3 uses eax, which is defined by Block1. This indicates a data dependency between
Block1 and Block3. We integrate CFGs based on prior and next blocks of basic blocks, and
data dependencies based on the definition and use of variables between basic blocks, to
construct DCFGs for binary functions.

4.2. Block Semantic Model

In this section, we employ a customized transformer-based language model with
disentangled attention to learn microcode semantics and generate semantic embeddings
at the basic block level. Compared with instructions, basic blocks have richer semantics;
and compared with functions, basic blocks do not have complex multi-branch structures,
which facilitates semantic extraction. We consider instructions as words and basic blocks
as sentences. Considering the important influence of instruction content and position on
block semantics, we adopt disentangled attention to capturing relative position semantics.
Subsequently, we utilize two self-supervised pre-training tasks, namely Masked Language
Model (MLM) and Base-Token Prediction (BTP), to train our model.

4.2.1. Language Model

The transformer-based architectures have shown encouraging results in NLP tasks.
Our model is built upon the DeBERTa [38] model, one of the state-of-the-art NLP models.
Figure 5 illustrates the architecture of our language model, comprising stacked transformer

Sensors 2023, 23, 7789 8 of 22

blocks for generating embeddings. For each input sequence, we utilize a tokenizer to
convert microcode into token objects. These tokens are then processed through transformer
stacks to produce hidden states, with the final hidden states representing the semantics of
the microcode.

𝑡3𝑡2 𝑡𝑁𝑡1 ……

𝑇3𝑇2 𝑇𝑁𝑇1 ……

Transformer Encoder

eaxmov ret[CLS] ……

𝑟3𝑟2 𝑟𝑁𝑟1

Input

Sequence

Token

Embedding

Hidden States

𝐸3𝐸2 𝐸𝑁𝐸1

……

……

Type

Embedding

𝐸0 𝐸1 𝐸2 ··· 𝐸𝑁

𝐸1 𝐸0 𝐸1 ··· 𝐸𝑁−1

𝐸1 𝐸1 𝐸0 ··· 𝐸𝑁−2

··· ··· ··· ··· ···

𝐸𝑁 𝐸𝑁−1 𝐸𝑁−2 ··· 𝐸1

Relative Position

Embedding

Figure 5. The architecture of the language model.

Tokenizer. The problem of out-of-vocabulary (OOV) is widely recognized in NLP.
In the context of BCSD for IoT firmware, the OOV issue is further amplified due to the
presence of various instruction sets. Even when converting binary code into microcode,
the OOV issue can still arise from string literals, address offsets, registers, and function
names. To mitigate the OOV issues, Inter-BIN [55] adopts a character-level tokenizer,
which has a smaller vocabulary and rarely suffers from OOV issues. However, a single
character is less meaningful and may lead to incorrect semantics. Also, it requires more
computing resources for each character computation. And, other approaches [11,35,37]
replace special words (e.g., string literals and constant values) with dummy tokens, which
may lose important semantics.

We perform tokenization of the microcode at the opcode/operand level. To han-
dle low-frequency operands, we replace them with their base-tokens instead of using
dummy tokens. The microcode provides a basic type for each operand. For example,
the addresses 0x400C8D and 0x400A30 are both specific address offsets that may result in
out-of-vocabulary (OOV) issues, while microcode categorizes them into the address type
(mop_a), which represents their common basic semantics. This is particularly useful for ad-
dressing OOV issues, as it allows us to map OOV words to their corresponding base-tokens
based on their basic types. To construct our vocabulary, we initially iterate through all the
microcode and filter out infrequently occurring tokens with frequencies lower than 100.
Subsequently, we include all basic types in our vocabulary as base-tokens. During the
tokenization process, any OOV words are mapped to their corresponding base-tokens
according to their basic types.

Relative Position Embedding. The positions of instructions play a crucial role in de-
termining basic block semantics. Recent studies [38,47,56,57] have shown that relative posi-
tions are more effective than absolute positions for NLP tasks. Inspired by DeBERTa [38], in
each transformer encoder layer, we utilize disentangled attentions in each transformer en-
coder layer to generate relative position embeddings that capture content-to-content (c2c),
content-to-position (c2p), and position-to-content (p2c) attentions. The cross attention score
between tokens i and j is calculated as follows:

Ai,j = {Hi, Pi|j} × {Hj, Pj|i}ᵀ

= Hi Hj
ᵀ︸ ︷︷ ︸

c2c

+ HiPj|i
ᵀ︸ ︷︷ ︸

c2p

+Pi|jHj
ᵀ︸ ︷︷ ︸

p2c

+Pi|jPj|i
ᵀ︸ ︷︷ ︸

p2p

(1)

Sensors 2023, 23, 7789 9 of 22

where Hi and Pi|j represent its content and relative position with the token j, respec-
tively. In microcode, the position-to-position (p2p) term does not provide much additional
information, we do not consider it in implementation.

The formulation for the standard self-attention calculation [58] is as follows:

Q = HWq, K = HWk, V = HWv

Ho = softmax(
A√

d
)V

(2)

where H ∈ RN×d is the input hidden vectors, Ho ∈ RN×d represents the output of self-
attentions, Q, K, and V are three matrices, and Wq, Wk, and Wv are their projection matrices.
We put the content input H and the relative position P into Equation (2), where W c and
W r represent content position matrix and relative position projection matrix, respectively.

Qc = HW c
q , Kc = HW c

k , V = HW c
v ,

Qr = PW r
q , Kr = PW r

k
(3)

According to Equations (1) and (3), the elements Ãi,j of attention matrix Ã are calculated
as follows:

Ãi,j = Qc
i Kc

j
ᵀ + Qc

i Kr
δ(i,j)

ᵀ + Kc
j Qr

δ(j,i)
ᵀ (4)

where δ(i, j) represent the maximum relative distance from token i to token j, and the
output Ho of disentangled attentions can be formulated as:

Ho = softmax(
Ã√
3d

)Vc (5)

We feed the output Ho into a fully connected feed-forward network to obtain the
transformer encoder layer output.

4.2.2. Pre-Training Tasks

For large-scale training our model, we incorporate the Masked Language Model
(MLM) task, similar to other NLP model training approaches, but with domain-specific
adaptations. Specifically, we propose a novel pre-training task, Base-Token Prediction
(BTP), to improve the semantic understanding of base-tokens in IoTSim.

Masked Language Model. This model is employed to perform fill-in-the-blank tasks,
enabling the model to utilize the tokens surrounding a mask token for predicting the masked
token [47]. Through the MLM task, the model learns the connections between tokens.

Given a token sequence X = {xi|i ∈ (0, n)}, we randomly select 15% of the token
sequence to be replaced. Among the selected tokens, 80% of them are substituted by
the [MASK] token, 10% are replaced with other tokens, and 10% remain unchanged. This
replacement process yields a masked sequence denoted as X̃. Subsequently, we input X̃
into the block semantic model and feed the output into an MLM head to reconstruct X by
predicting the masked tokens x̃ conditioned on X̃. The loss function is as follows:

LMLM(θ1, θ2) = − log p{θ1,θ2}(X|X̃) (6)

where θ1 and θ2 are the parameters of the block semantic model and the MLM
head, respectively.

Base-Token Prediction. In our model, the tokenizer is utilized to replace OOV
operands with their base-tokens. To establish semantic connections between tokens and
their respective base-tokens, we propose a task called Base-Token Prediction (BTP). This
task aims to facilitate the learning of common semantics among basic types of tokens by
their corresponding base-tokens.

Sensors 2023, 23, 7789 10 of 22

Given a sequence of tokens denoted as X = {xi|i ∈ (0, n)}, we randomly select
15% of the token sequence to substitute them with their base-tokens. As a result, we
obtain a replaced sequence denoted as X̃b. Figure 6 illustrates an example of the BTP task,
where tokens such as eax (register), #2 (immediate number), and $foo2 (function name)
are selected. These tokens are replaced with their respective base-tokens; for instance, #2 is
substituted with mop_n, which represents immediate number constants.

Input

Prediction #2eax

xdumop_radd mop_n l_result calll_result mop_z _input mop_v

$foo2

xdueaxadd #2 l_result calll_result mop_z _input $foo2

Figure 6. Base-token prediction

We feed X̃b into the block semantic model and feed the output into a BTP head to
reconstruct X by predicting the replaced tokens x̃ conditioned on X̃. The loss function is
as follows:

LBTP(θ1, θ3) = − log p{θ1,θ3}(X|X̃) (7)

where θ1 and θ3 are the parameters of the block semantic model and the BTP head, respectively.
The loss function of the block semantic model is the combination of loss functions:

L = LMLM + LBTP (8)

4.3. Function Embedding Model

The objective of the function embedding model is to generate semantic function em-
beddings by integrating basic block embeddings and graph features. Binary functions
encompass both control-flow information and data-flow information. Control-flow infor-
mation describes the potential execution paths of a function, while data-flow information
describes the data dependencies between basic blocks. Hence, these semantic and structural
features are crucial in the generation of function embeddings.

We first generate directed matrices, data dependency matrices, and address matrices
according to DCFGs. Then, we combine these matrices into a block relation matrix. Fi-
nally, we integrate the block relation matrix and block embeddings to generate function
embeddings using Graph Convolutional Networks (GCNs) [59].

4.3.1. Block Relation Matrix

In binary functions, basic blocks have multiple relations. First, connected basic blocks
are directed. Second, basic blocks with adjacent addresses indicate relatively more de-
pendencies. Third, data flow dependencies exist between connected basic blocks or not.
These relations result in different mutual influences between basic blocks. Capturing
these multiple relations is critical to building an accurate function embedding model for
BCSD tasks.

Figure 7 shows an example of constructing a block relation matrix. In the Figure,
the DCFG is composed of 4 basic blocks, and there are different relations between these
basic blocks. For example, À Block1 and Block2 are adjacent and have data dependencies,
Á Block2 and Block4 have a directed edge, and Â Block2 and Block3 have no relations.
We first base on directed edges, data dependencies, and address adjacency of the DCFG
to generate its directed matrix, data dependency matrix, and address matrix, respectively.
Then, we combine the above three matrices to construct the block relation matrix. The
combination formula is as follows:

mB = (mA << 2) + (mC << 1) + mD

where mB, mA, mC, and mD represent the corresponding elements in the block rela-
tion matrix, directed matrix, address matrix, and data dependency matrix, respectively,
and << denotes the left shift operation. The constructed block relation matrix distinguishes

Sensors 2023, 23, 7789 11 of 22

different relations between basic blocks. For example, the relation from Block1 to Block2
is represented as 111, the relation from Block2 to Block4 is represented as 100, and the
relation from Block2 to Block3 is represented as 000, which indicates no relations.

1

32

4

Data Dependency Directly Jump

0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

/ Conditional Jump

0 1 1 0

1 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

Data Dependency

Edge Direction

Address Adjacency
000 111 101 000

001 000 000 100

001 000 000 110

000 000 000 000

Combine

Block Relation Matrix

(Binary Format)
Directed Matrix

Address Matrix

Data Dependency Matrix

DCFG

Figure 7. Block relation matrix.

4.3.2. Function Embedding Generation

A binary function consists of basic blocks that exhibit mutual influences. In order to
generate function embeddings, we combine the basic block embeddings produced by the
Block Semantic Model with the block relation matrix. To deeply combine graph information
and basic block embeddings, we utilize Graph Convolutional Networks (GCNs) [59] for
embedding generation. Within this framework, we view binary functions as attributed
graphs, where the basic blocks serve as nodes and their corresponding embeddings serve
as node attributes. The block relation matrix indicates different relations between nodes in
the graph. We feed basic block embeddings and the block relation matrix into a multi-layer
GCN. X(`) represents the node embeddings of the `-th layer, and B represents the block
relation matrix. The `-th layer GCN’s output X(`+1) is computed as follows:

A = F (B)

Ã = A + IN

D̃ii = ∑ Ãij

X(`+1) = σ(D̃−
1
2 ÃD̃−

1
2 X(`)W (`))

(9)

where A is a weighted adjacency matrix which encodes the relations of B. Here, we
use a learnable function F (B) to encode different relation types into numeric weights.
Ã represents a weighted adjacency matrix that includes self-connections. IN is an identity
matrix. D̃ii denotes the degree matrix of each node, while W(`) represents a trainable weight
matrix specific to each layer. The activation function σ is the rectified linear unit ReLU(·).
To comprehensively learn the semantic and structural aspects of CFGs, we adopt a 16-layer
GCN to propagate block semantics using the block relation matrix. Finally, by applying
mean pooling on the outputs of the final GCN layer, we generate function embeddings.

4.3.3. Model Training

In the BCSD tasks, the main objective of the Function Embedding Model is to map
similar functions to nearby regions in the embedded space. To measure the similarity
between functions, we utilize the cosine similarity score of function embeddings. By
leveraging Debugging with Attributed Record Formats (DWARF) information, it becomes
feasible to automatically generate ground truth for function similarity based on function
names and source files. Therefore, supervised training is employed to optimize the Function
Embedding Model.

Function Ground truth. We automatically construct a function ground truth based on
function names and the source files. Given a function f , we pick the functions whose names
are the same as f from the same project, and label them as a similar function group Fsim.
We randomly sample the functions whose names differ from f , and label them as a similar

Sensors 2023, 23, 7789 12 of 22

function group Fdissim against f . These functions of Fsim and Fdissim can be compiled by
different compilers (e.g., GCC and Clang) with different optimization levels (O0, O1, O2, O3,
and Os) on any architectures (e.g, x86, arm, and mips), which increases the diversity of
the dataset.

Training Objective. During the training process, we aim to maximize the cosine
similarity scores between embeddings of similar function pairs while minimizing those
between embeddings of dissimilar function pairs. The number of dissimilar function pairs
in the real world is much greater than that of similar function pairs. Given a binary function
fi, we pick one of the corresponding similar functions f j from the dataset DF based on
its function name and source code. The function f j can come from different architectures,
compilers, and optimization levels against function fi. The Function Embedding Model
encodes both fi and f j to generate the function embeddings ei and ej. We randomly sample
N − 1 functions from DF to construct negative samples against the function fi. We use the
normalized temperature-scaled cross-entropy loss (NT-Xent) [53] as the training loss:

LFunction = − log
exp(cos(ei, ej)/τ)

∑N
k=1 1[k 6=i] exp(cos(ei, ek)/τ)

(10)

where cos(·) denotes the cosine similarity score function, 1 is the indicator, and τ is a hyper-
parameter which controls the temperature.

5. Evaluation

In this section, we evaluate IoTSim and answer the following research questions:

• RQ.1: can IoTSim effectively identify similar function pairs when given functions from
different compilers, architectures, and optimization levels?

• RQ.2: how much does DCFG contribute to the performance of IoTSim?
• RQ.3: what are the applications of IoTSim in practice?

5.1. Implementation and Setup

We utilized Python v3.8.5 and PyTorch [60] to implement the IoTSim framework.
We employed the DeBERTa model based on Transformers [61] and Graph Convolutional
Networks (GCNs) relying on PyTorch Geometric [62]. By default, our DeBERTa model
consists of six layers, and the output embeddings are set to a dimension of 256. In the
Function Embedding Model, we employ 16-layer GCNs for generating embeddings, and
the NT-Xent loss function adopts a hyper-parameter τ with a value of 0.1. The model
training and evaluation experiments were conducted on a desktop computer operating
Windows 10, equipped with an Intel Core i9-10920X CPU, 128 GB RAM, and one NVIDIA
RTX 3090 GPU. The model training process lasted for one week, during which we retained
the best-performing checkpoints for evaluation.

5.1.1. Baselines

To provide a comprehensive comparison, we select the following state-of-the-art
approaches as baselines for evaluation. The chosen baseline approaches are as follows:

• Graph Matching Networks (GMN). Marcelli et al. [63] show that a GMN based on
CFGs has natural advantages in cross-architecture scenarios;

• PalmTree [34], one of the state-of-the-art BCSD methods, employs pre-trained models
using the BERT model to generate semantic embeddings for binary code (https://github.
com/palmtreemodel/PalmTree, accessed on 10 March 2023);

• SAFE [35] uses a word2vec model [51] and a recurrent neural network to generate
function embeddings (https://github.com/facebookresearch/SAFEtorch, accessed on 10
March 2023);

• Trex [13], the state-of-the-art BCSD approach, uses transfer-learning-based models
that utilize micro-traces to generate function embeddings for comparing similar func-
tions (https://github.com/CUMLSec/trex, accessed on 10 March 2023).

https://github.com/palmtreemodel/PalmTree
https://github.com/palmtreemodel/PalmTree
https://github.com/facebookresearch/SAFEtorch
https://github.com/CUMLSec/trex

Sensors 2023, 23, 7789 13 of 22

These selected baselines are representative BCSD approaches involving NLP tech-
niques, CFG, and micro-traces. By comparing IoTSim with these state-of-the-art approaches,
we aim to conduct a comprehensive evaluation of its performance improvements.

5.1.2. Benchmarks

To evaluate IoTSim in depth and detail, we used the following two datasets:
Dataset-1 is a function dataset, which is used to evaluate the performance of IoTSim at

the function level. We construct Dataset-1 using including seven projects, i.e., Linux-source,
CoreUtils, OpenSSL, DiffUtils, FindUtils, Libmicrohttpd, and SQLite. These projects
are compiled using two compilers (GCC and Clang) with five optimization levels (O0, O1, O2,
O3, and Os) on three architectures (arm, mips, and x86). Dataset-1 consists of 913,508 func-
tions, which are further divided into three subsets (XO, XC, and XA) to fulfill different
tasks. We also use 10-fold cross-validation to split Dataset-2 into three disjoint subsets of
functions for training, validation, and testing, respectively.

Dataset-2 is designed specifically for evaluating IoTSim’s capability in vulnerability
detection. This dataset builds upon embedded firmware and vulnerabilities in previous
works [50,63], including 20 firmware images from three vendors (D-Link, TP-Link, and
NetGear) and 48 vulnerable functions from the OpenSSL project, as shown in Table 1.

Table 1. The vulnerabilities involved in Dataset-2.

CVE Vulnerable Function Confirmed #

CVE-2016-6303 MDC2_Update 10
CVE-2016-2182 BN_bn2dec 14
CVE-2021-23840 EVP_DecryptUpdate 17
CVE-2015-1789 X509_cmp_time 3
CVE-2016-0798 SRP_VBASE_get_by_usr 4

5.1.3. Metrics

The performance of IoTSim and the baselines is measured using the following metrics:

• Recall represents the ratio of correctly matched functions to the total number of
function pairs with similar functions. A high recall suggests a low false-negative rate;

• Precision denotes the ratio of correctly matched functions to the total number of
function pairs predicted as similar. High precision indicates a low false-positive rate;

• MRR stands for Mean Reciprocal Rank, which is a relative score that calculates the
average or mean of the inverse of the ranks at which the first relevant function is
retrieved for a set of queries.

5.2. Evaluation on Multiple Scenarios

In this subsection, we conduct experiments to evaluate the performance of IoTSim
and other baselines at the function level. All evaluations in this subsection are conducted
on Dataset-1. We perform IoTSim and baselines under multiple scenarios, including cross-
architecture, cross-compiler, and cross-optimization scenarios, to thoroughly assess their
performance. In a real-world BCSD task at the function level, a queried function is typically
compared to numerous candidate functions to calculate similarity and retrieve the optimal
result. Hence, we employ multiple pool sizes to evaluate IoTSim’s performance in different
scenarios and discuss the effects of pool sizes on BCSD approaches. Furthermore, to
evaluate the contribution of Data-based Control Flow Graphs (DCFGs) to IoTSim, we
configure IoTSimCFG using Control Flow Graphs (CFGs) instead of DCFGs.

Tables 2–4 report the recall@1 and MRR results for each approach across different
compilers (XC), optimization levels (XO), architectures (XA), and combined scenarios
(i.e., XO + XC, XO + XA and All) in different pool sizes (10, 100 and 1000). IoTSim
consistently outperforms all the baselines in terms of average recall@1 and MRR by consider-
able margins.

Sensors 2023, 23, 7789 14 of 22

Table 2. BCSD results on multiple scenarios at the function level (poolsize = 10).

Recall@1 MRR

Models XO XA XC XO + XC XO + XA XA + XC All XO XA XC XO + XC XO + XA XA + XC All

SAFE 0.942 0.100 0.937 0.920 0.090 0.103 0.085 0.965 0.287 0.963 0.952 0.278 0.293 0.278
PalmTree 0.892 - 0.866 0.814 - - - 0.934 - 0.919 0.886 - - -
GMN 0.473 0.516 0.349 0.301 0.333 0.374 0.296 0.616 0.655 0.525 0.488 0.506 0.542 0.479
Trex 0.895 0.800 0.938 0.872 0.680 0.744 0.624 0.930 0.877 0.964 0.916 0.791 0.842 0.753
IoTSim 0.980 0.986 0.969 0.972 0.980 0.962 0.963 0.988 0.991 0.981 0.983 0.987 0.977 0.978
IoTSimCFG 0.948 0.956 0.922 0.930 0.945 0.912 0.899 0.965 0.972 0.950 0.954 0.965 0.944 0.936

Table 3. BCSD results on multiple scenarios at the function level (poolsize = 102).

Recall@1 MRR

Models XO XA XC XO + XC XO + XA XA + XC All XO XA XC XO + XC XO + XA XA + XC All

SAFE 0.839 0.014 0.806 0.745 0.010 0.008 0.006 0.886 0.056 0.866 0.821 0.051 0.053 0.050
PalmTree 0.732 - 0.638 0.545 - - - 0.800 - 0.738 0.660 - - -
GMN 0.279 0.319 0.142 0.106 0.132 0.164 0.113 0.359 0.405 0.230 0.190 0.218 0.250 0.197
Trex 0.750 0.521 0.790 0.681 0.376 0.426 0.316 0.811 0.639 0.859 0.764 0.499 0.559 0.448
IoTSim 0.948 0.947 0.909 0.921 0.946 0.906 0.912 0.962 0.963 0.935 0.941 0.960 0.931 0.936
IoTSimCFG 0.890 0.903 0.830 0.846 0.871 0.808 0.803 0.913 0.926 0.872 0.881 0.901 0.854 0.848

Table 4. BCSD results on multiple scenarios at the function level (Poolsize = 103).

Recall@1 MRR

Models XO XA XC XO + XC XO + XA XA + XC All XO XA XC XO + XC XO + XA XA + XC All

SAFE 0.687 0.002 0.618 0.523 0.001 0.001 0.001 0.749 0.010 0.702 0.616 0.007 0.007 0.007
PalmTree 0.590 - 0.406 0.335 - - - 0.648 - 0.497 0.424 - - -
GMN 0.193 0.190 0.066 0.042 0.053 0.073 0.038 0.230 0.237 0.098 0.071 0.085 0.112 0.070
Trex 0.627 0.280 0.603 0.465 0.186 0.198 0.133 0.673 0.375 0.678 0.549 0.263 0.286 0.208
IoTSim 0.901 0.903 0.833 0.849 0.905 0.812 0.832 0.922 0.924 0.868 0.880 0.926 0.851 0.867
IoTSimCFG 0.823 0.825 0.740 0.744 0.781 0.688 0.684 0.851 0.858 0.782 0.789 0.818 0.739 0.734

For example, in the XC experiment with a pool size of 10, IoTSim achieves a recall@1
of 0.981 and a MRR of 0.970, which represents improvements of 4.6%, 13.2%, and 4.5%
over SAFE, PalmTree, and Trex, respectively. Since IoT firmware originates from diverse
architectures in the real world, we also evaluate IoTSim and other baselines in the cross-
architecture scenario. In the XA experiment with a pool size of 100, IoTSim surpasses
its closest competitor baseline (Trex [13]) by 0.426 for the recall@1, and over 50% for the
MRR. We observe that SAFE achieves only a recall@1 of 0.014, while PalmTree fails in the
cross-architecture scenario. PalmTree specifically focuses on the x86 mono-instruction set
and is unable to handle functions from different architectures. Although SAFE trains its
model on different instruction sets, it remains challenging to establish semantic relations
between instructions from diverse architectures and embed similar functions from different
architectures into comparable embeddings. This limitation is also acknowledged in the
Github issues (https://github.com/gadiluna/SAFE/issues/4, accessed on 30 March 2023),
which shows current SAFE hardly supports cross-architecture BCSD tasks.

IoTSim addresses the challenge of different architectures by converting binary code
into microcode. To tackle out-of-vocabulary (OOV) issues, IoTSim substitutes OOV words
with their base tokens, preserving their semantics. This allows IoTSim to capture the basic
semantics of OOV words, alleviating the problem of lost semantics due to OOV issues.

The experimental results, presented in Tables 2–4, indicate a decline in recall@1 and
MRR for BCSD approaches as the pool size increases. In order to further investigate the
impact of the pool size on the performance of BCSD approaches, we conduct experiments
with pool sizes ranging from 100 to 104. Figures 8 and 9 illustrate the results of these
experiments with a variety of pool sizes (1, 10, 50, 100, 500, 1000, 5000, and 10,000) under
various experimental settings. For the sake of observation, we use a logarithmic x-axis
in Figures 8 and 9. As the pool size increases, the performance of all BCSD approaches
decreases. Compared to IoTSim, all baselines’ relative performance worsens as the pool
size increases. IoTSim does not display sharp drops in its performance, while the baselines’

https://github.com/gadiluna/SAFE/issues/4

Sensors 2023, 23, 7789 15 of 22

performance generally declines more rapidly once poolsize over 102. For example, when
the pool size is 100, the recall@1 achieved by SAFE and IoTSim is 0.989 and 0.994, respec-
tively, in the XO experiments. When the pool size is 104, IoTSim achieves a recall@1 of
0.842 (−15.3%), demonstrating greater stability compared to other baselines. In contrast,
SAFE only achieves a recall@1 of 0.569 (−42.5%) when the pool size is 104. This suggests
that our approach is not affected by the pool size as much as other baselines.

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1 IoTSim

IoTSimCFG

PalmTree
SAFE
Trex
GMN

(a)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

IoTSim
IoTSimCFG

SAFE
Trex
GMN

(b)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1 IoTSim

IoTSimCFG

PalmTree
SAFE
Trex
GMN

(c)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0
Re

ca
ll@

1 IoTSim
IoTSimCFG

PalmTree
SAFE
Trex
GMN

(d)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

IoTSim
IoTSimCFG

SAFE
Trex
GMN

(e)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

IoTSim
IoTSimCFG

SAFE
Trex
GMN

(f)

Figure 8. Recall@1 results of multiple scenarios with different poolsizes. (a) Recall@1, XO. (b) Recall@1,
XA. (c) Recall@1, XC. (d) Recall@1, XO + XC. (e) Recall@1, XO + XA. (f) Recall@1, XA + XC.

Sensors 2023, 23, 7789 16 of 22

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR

IoTSim
IoTSimCFG

PalmTree
SAFE
Trex
GMN

(a)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR IoTSim

IoTSimCFG

SAFE
Trex
GMN

(b)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR

IoTSim
IoTSimCFG

PalmTree
SAFE
Trex
GMN

(c)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR

IoTSim
IoTSimCFG

PalmTree
SAFE
Trex
GMN

(d)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR IoTSim

IoTSimCFG

SAFE
Trex
GMN

(e)

100 101 102 103 104

Number of Poolsize

0.2

0.4

0.6

0.8

1.0

M
RR IoTSim

IoTSimCFG

SAFE
Trex
GMN

(f)

Figure 9. MRR results of multiple scenarios with different poolsizes. (a) MRR, XO. (b) MRR, XA.
(c) MRR, XC. (d) MRR, XO + XC. (e) MRR, XO + XA. (f) MRR, XA + XC.

5.3. Ablation Study

We conduct experiments on IoTSim to evaluate the contributions of our proposed
block relation matrix.

In binary functions, the relations between basic blocks are various. Previous approaches
use control flow graphs as function structure features, which mainly consider connected
relations without data dependence, edge direction, and address adjacency. We propose DCFGs
to capture functions’ structures deeply and generate block relation matrix integrating data
dependence, directed adjacency, and address adjacency. In Tables 2–4, IoTSim outperforms
IoTSimCFG in terms of average recall@1 and MRR by considerable margins. Figures 8 and 9
also show IoTSim achieves higher performance than IoTSimCFG and is less impacted by
poolsize than IoTSimCFG. For example, IoTSim improves the recall@1 by 21.6% over
IoTSimCFG in the All scenario (poolsize = 103). With the help of the DCFGs, IoTSim
captures more accurate data and control flow structures of functions, which makes IoTSim
identify similar functions and distinguish dissimilar functions with a higher recall@1 and MRR.

Sensors 2023, 23, 7789 17 of 22

5.4. Applications

We evaluate IoTSim and baselines in two practical applications: vulnerability detection
and component analysis.

5.4.1. Vulnerability Detection

Vulnerability detection is a crucial application in the field of computer security. Within
the IoT context, routers play a vital role in facilitating communication between connected
IoT devices. In this subsection, we gather 20 firmware images of routers from three vendors,
namely D-Link, TP-Link, and NetGear. We identify five known vulnerabilities in OpenSSL
from the CVE database. These firmware images and vulnerabilities are then used to
evaluate the performance of IoTSim and other baselines in the vulnerability detection tasks.
In total, there are 47,090 functions, including 48 related vulnerable functions. In order to
construct the vulnerability repository, we utilize IoTSim to generate function embeddings
for each vulnerable and patched functions. During the vulnerability detection phase, we
use all functions in the firmware libraries as function queries and search for the most similar
function in the built vulnerability repository.

Figure 10 shows the results of the recall, precision, and F1-score of each CVE vulnerability.
We compare IoTSim with other baselines. It is clear that for most of the CVEs, IoTSim’s
performance is significantly higher than the state-of-the-art approaches, e.g., SAFE and Trex.
For instance, in the case of CVE-2016-2182 from the OpenSSL project, our method achieves
a recall of 100%, successfully identifying all 14 vulnerable functions. In contrast, SAFE and
Trex achieve recall values of 85.7% and 64.3%, respectively. Furthermore, it is worth noting that
SAFE and Trex fail to obtain any recall for CVE-2015-1789 due to their reliance on capstone
and objdump, which cannot deal with complex binary formats. For example, objdump
(version 2.34) cannot extract function features from ELF files without a section table, which
makes them fail to perform BCSD task in these binaries. This reflects the difficulty of the BCSD
task in IoT scenarios, and the necessity of our approach. The results demonstrate that IoTSim
can be effectively deployed as a reliable tool for detecting vulnerabilities in IoT scenarios.

CVE-2016-6303
CVE-2016-2182

CVE-2021-23840
CVE-2015-1789

CVE-2016-0798
0.00

0.25

0.50

0.75

1.00

1.0
00

1.0
00

1.0
00

1.0
00

1.0
00

0.9
00

0.8
57 1.0

00

<0.0
01

0.7
500.9

00

0.6
43 0.7

65

<0.0
01 0.2

14

1.0
00

1.0
00

1.0
00

IoTSim
SAFE
Trex
GMN

(a)

Figure 10. Cont.

Sensors 2023, 23, 7789 18 of 22

CVE-2016-6303
CVE-2016-2182

CVE-2021-23840
CVE-2015-1789

CVE-2016-0798
0.00

0.25

0.50

0.75

1.00 1.0
00

1.0
00

0.8
10

1.0
00

1.0
00

1.0
00

0.0
03

0.8
95

<0.0
01

1.0
00

1.0
00

1.0
00

1.0
00

<0.0
01

<0.0
01

0.0
13

0.0
16

0.0
20

IoTSim
SAFE
Trex
GMN

(b)

CVE-2016-6303
CVE-2016-2182

CVE-2021-23840
CVE-2015-1789

CVE-2016-0798
0.00

0.25

0.50

0.75

1.00 1.0
00

1.0
00

0.8
95 1.0

00

1.0
00

0.9
47

0.0
06

0.9
44

0.8
570.9

47

0.7
83 0.8

67

<0.0
01

0.0
26

0.0
31

0.0
39

IoTSim
SAFE
Trex
GMN

(c)

Figure 10. Results of real-world vulnerability detection. (a) Recall. (b) Precision. (c) F1-score.

5.4.2. Component Analysis

BCSD approaches can provide component analysis for unknown executable binary
files and match symbol tables and source code for reference, making it easier for reverse
engineers to analyze unknown binaries in IoT security. In this section, we use the OpenSSL
project, which is widely used in IoT firmware, as the benchmark to evaluate the performance
of our proposed approach and other baselines on component analysis. Given an input
binary file, the BCSD approaches compare it with our labeled binaries that contain debug
information to match symbol tables.

Figure 11 shows recall results in component analysis with labeled binaries from differ-
ent architectures (i.e., x86, arm, and mips). IoTSim achieves high recalls in all component
analysis experiments. For example, IoTSim obtains a recall of 0.814 when the input files are
from mips and the labeled binaries are from arm, which means more than 80% functions
in the input binaries can be correctly matched to their symbol tables and their source
code. This significantly reduces the manual burden when analyzing unknown binary files.
Compared with the state-of-the-art approaches, IoTSim achieves the average recall of 0.874,
which improves the recall by 3.0×, 0.8× and 2.1×, compared to SAFE, GMN, and Trex.

arm x86 mips
0.0

0.2

0.4

0.6

0.8

1.0 0.989

0.792 0.814
0.977

0.002 0.002

0.771

0.076
0.002

0.822

0.188

0.411
IoTSim
SAFE
Trex
GMN

(a)

Figure 11. Cont.

Sensors 2023, 23, 7789 19 of 22

arm x86 mips
0.0

0.2

0.4

0.6

0.8

1.0
0.790

0.991

0.844

0.002

0.977

0.0010.086

0.726

0.002
0.191

0.818

0.407
IoTSim
SAFE
Trex
GMN

(b)

arm x86 mips
0.0

0.2

0.4

0.6

0.8

1.0
0.811 0.845

0.995

0.000 0.000 0.0000.000 0.001

0.853

0.405 0.407

0.822

IoTSim
SAFE
Trex
GMN

(c)

Figure 11. Results of the component analysis on different architectures. (a) arm. (b) x86. (c) mips.

6. Conclusions

In this paper, we propose a novel IoT-oriented binary code similarity detection ap-
proach, called IoTSim. Our approach leverages a customized transformer-based language
model with disentangled attention to generate embeddings for basic blocks. To address
OOV challenges, we introduce a pre-training task called BTP that captures basic semantics
for unseen tokens. To help IoTSim understand multiple relations between basic blocks, we
integrate directed jumps, data dependency, and address adjacency to build block relation
matrix. We then assign different weights to different relations in block relation matrix and
use multi-layer GCN to generate function embeddings.

We implemented a prototype of IoTSim and conducted experiments to evaluate its
performance. The experiment results show that IoTSim surpasses the state-of-the-art
approaches Trex, SAFE, and PalmTree. Additionally, we observe that data-based control
flow graphs have positive effects for IoTSim. In real-world applications, IoTSim proves
valuable in helping researchers detect vulnerabilities and identify components in unknown
binaries within various IoT firmware. These findings demonstrate that our proposed BCSD
approach contributes to practical applications in security analysis within the IoT ecosystem,
relieving researchers from the burdensome task of security analysis.

Author Contributions: Methodology, Z.L. and P.W.; software, Z.L.; formal analysis, Z.L., P.W. and
B.W.; data curation, Z.L.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L.,
P.W., W.X., X.Z. and B.W.; supervision, B.W.; project administration, B.W.; funding acquisition, P.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National University of Defense Technology Research
Project (ZK20-17, ZK20-09), the National Natural Science Foundation China (62272472, 61902405), the
HUNAN Province Natural Science Foundation (2021JJ40692), and the National Key Research and
Development Program of China under Grant No. 2021YFB0300101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7789 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

BCSD Binary Code Similarity Detection
IoT Internet of Things
OOV Out-of-Vocabulary
TPC Third-Parity Components
ISA Instruction Set Architecture
CVE Common Vulnerabilities and Exposures
ML Machine Learning
CFG Control Flow Graph
IR Intermediate Representation
GNN Graph Neural Network
NLP Natural Language processing
GCN Graph Convolutional Network

References
1. Lionel Sujay Vailshery. IoT Connected Devices Worldwide 2019–2023. 2023. Available online: https://news.sophos.com/en-us/

2022/05/04/attacking-emotets-control-flow-flattening/ (accessed on 3 March 2023).
2. Zhao, B.; Ji, S.; Lee, W.H.; Lin, C.; Weng, H.; Wu, J.; Zhou, P.; Fang, L.; Beyah, R. A large-scale empirical study on the vulnerability

of deployed iot devices. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1826–1840. [CrossRef]
3. Wang, Q.; Ji, S.; Tian, Y.; Zhang, X.; Zhao, B.; Kan, Y.; Lin, Z.; Lin, C.; Deng, S.; Liu, A.X.; et al. MPInspector: A Systematic

and Automatic Approach for Evaluating the Security of IoT Messaging Protocols. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21), Virtual, 11–13 August 2021; pp. 4205–4222.

4. Costin, A.; Zaddach, J. Iot malware: Comprehensive survey, analysis framework and case studies. BlackHat USA 2018, 1, 1–9.
5. Luo, Z.; Wang, B.; Tang, Y.; Xie, W. Semantic-based representation binary clone detection for cross-architectures in the internet of

things. Appl. Sci. 2019, 9, 3283. [CrossRef]
6. Sun, H.; Wang, X.; Buyya, R.; Su, J. CloudEyes: Cloud-based malware detection with reversible sketch for resource-constrained

internet of things (IoT) devices. Softw. Pract. Exp. 2017, 47, 421–441. [CrossRef]
7. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [CrossRef]
8. Feng, Q.; Wang, M.; Zhang, M.; Zhou, R.; Henderson, A.; Yin, H. Extracting conditional formulas for cross-platform bug search.

In Proceedings of the 2017 ACM Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates,
2–6 April 2017; pp. 346–359. [CrossRef]

9. Pewny, J.; Garmany, B.; Gawlik, R.; Rossow, C.; Holz, T. Cross-architecture bug search in binary executables. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 709–724.

10. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J. Vulseeker: A semantic learning based vulnerability seeker for cross-platform binary.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France,
3–7 September 2018; pp. 896–899. [CrossRef]

11. Wang, H.; Qu, W.; Katz, G.; Zhu, W.; Gao, Z.; Qiu, H.; Zhuge, J.; Zhang, C. jTrans: Jump-Aware Transformer for Binary Code
Similarity. arXiv 2022, arXiv:2205.12713.

12. Lin, J.; Wang, D.; Chang, R.; Wu, L.; Zhou, Y.; Ren, K. EnBinDiff: Identifying Data-only Patches for Binaries. IEEE Trans. Dependable
Secur. Comput. 2021, 20, 343–359. [CrossRef]

13. Pei, K.; Xuan, Z.; Yang, J.; Jana, S.; Ray, B. Trex: Learning execution semantics from micro-traces for binary similarity. arXiv 2020,
arXiv:2012.08680.

14. Ding, S.H.; Fung, B.C.; Charland, P. Asm2Vec: Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA,
19–23 May 2019; pp. 472–489. [CrossRef]

15. David, Y.; Partush, N.; Yahav, E. Statistical similarity of binaries. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Santa Barbara, CA, USA, 13–17 June 2016; pp. 266–280.

16. Yang, S.; Cheng, L.; Zeng, Y.; Lang, Z.; Zhu, H.; Shi, Z. Asteria: Deep Learning-based AST-Encoding for Cross-platform Binary
Code Similarity Detection. In Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Taipei, Taiwan, 21–24 June 2021; pp. 224–236.

17. David, Y.; Partush, N.; Yahav, E. Firmup: Precise Static Detection of Common Vulnerabilities in Firmware. In Proceedings of the
ACM SIGPLAN Notices, Mumbai, India, 15–17 January 2018; ACM: New York, NY, USA, 2018; Volume 53, pp. 392–404.

18. Shirani, P.; Collard, L.; Agba, B.L.; Lebel, B.; Debbabi, M.; Wang, L.; Hanna, A. Binarm: Scalable and efficient detection of
vulnerabilities in firmware images of intelligent electronic devices. In Proceedings of the International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Hamburg, Germany, 12–14 July 2018; Springer: Cham, Switzerland,
2018; pp. 114–138.

https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
http://doi.org/10.1109/TDSC.2020.3037908
http://dx.doi.org/10.3390/app9163283
http://dx.doi.org/10.1002/spe.2420
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1145/3052973.3052995
http://dx.doi.org/10.1145/3238147.3240480
http://dx.doi.org/10.1109/TDSC.2021.3133500
http://dx.doi.org/10.1109/SP.2019.00003

Sensors 2023, 23, 7789 21 of 22

19. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H. Scalable Graph-based Bug Search for Firmware Images. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security—CCS’16, Vienna, Austria, 24–28 October 2016;
ACM: New York, NY, USA, 2016; pp. 480–491. [CrossRef]

20. Pewny, J.; Schuster, F.; Bernhard, L.; Holz, T.; Rossow, C. Leveraging semantic signatures for bug search in binary programs.
In Proceedings of the 30th Annual Computer Security Applications Conference, New Orleans, LA, USA, 8–12 December 2014;
pp. 406–415.

21. Chandramohan, M.; Xue, Y.; Xu, Z.; Liu, Y.; Cho, C.Y.; Kuan, T.H.B. BinGo: Cross-Architecture cross-os binary search. In Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016;
pp. 678–689. [CrossRef]

22. Ahn, S.; Ahn, S.; Koo, H.; Paek, Y. Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning.
In Proceedings of the 38th Annual Computer Security Applications Conference, Austin TX USA, 5–9 December 2022; pp. 361–374.

23. Ming, J.; Xu, D.; Jiang, Y.; Wu, D. Binsim: Trace-based semantic binary diffing via system call sliced segment equivalence check-
ing. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017;
pp. 253–270.

24. Cesare, S.; Xiang, Y.; Zhou, W. Control flow-based malware variantdetection. IEEE Trans. Dependable Secur. Comput. 2013,
11, 307–317. [CrossRef]

25. Hu, X.; Chiueh, T.C.; Shin, K.G. Large-scale malware indexing using function-call graphs. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009; pp. 611–620.

26. Bayer, U.; Comparetti, P.M.; Hlauschek, C.; Kruegel, C.; Kirda, E. Scalable, behavior-based malware clustering. In Proceedings of
the NDSS, Citeseer, San Diego, CA, USA, 8–11 February 2009; Volume 9, pp. 8–11.

27. Farhadi, M.R.; Fung, B.C.; Charland, P.; Debbabi, M. Binclone: Detecting code clones in malware. In Proceedings of the 2014 Eighth
International Conference on Software Security and Reliability (SERE), San Francisco, CA, USA, 30 June–2 July 2014; pp. 78–87.

28. Jang, J.; Woo, M.; Brumley, D. Towards automatic software lineage inference. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 13), Washington, DC, USA, 14–16 August 2013; pp. 81–96.

29. Xu, Z.; Chen, B.; Chandramohan, M.; Liu, Y.; Song, F. SPAIN: Security patch analysis for binaries towards understanding
the pain and pills. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
Buenos Aires, Argentina, 20–28 May 2017; pp. 462–472.

30. Huang, H.; Youssef, A.M.; Debbabi, M. Binsequence: Fast, accurate and scalable binary code reuse detection. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017;
pp. 155–166.

31. Kargén, U.; Shahmehri, N. Towards robust instruction-level trace alignment of binary code. In Proceedings of the 2017
32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), Urbana-Champaign IL, USA,
30 October–3 November 2017; pp. 342–352.

32. Zynamics. BinDiff. 2021. Available online: https://www.zynamics.com/bindiff.html (accessed on 20 February 2023).
33. Gao, D.; Reiter, M.K.; Song, D. Binhunt: Automatically finding semantic differences in binary programs. In Proceedings of the

International Conference on Information and Communications Security, Chongqing, China, 19–21 November 2021; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 238–255.

34. Li, X.; Yu, Q.; Yin, H. PalmTree: Learning an Assembly Language Model for Instruction Embedding. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual, 15–19 December 2021; pp. 3236–3251.

35. Massarelli, L.; Di Luna, G.A.; Petroni, F.; Baldoni, R.; Querzoni, L. Safe: Self-attentive function embeddings for binary similarity.
In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Hamburg,
Germany, 12–14 July 2019; Springer: Cham, Switzerland, 2019; pp. 309–329.

36. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural Network-based Graph Embedding for Cross-Platform Binary Code
Similarity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security—CCS’17,
Dallas, TX, USA, 30 October–3 November 2017; pp. 363–376. [CrossRef]

37. Zuo, F.; Li, X.; Young, P.; Luo, L.; Zeng, Q.; Zhang, Z. Neural Machine Translation Inspired Binary Code Similarity Comparison
beyond Function Pairs. In Proceedings of the 2019 Network and Distributed System Security Symposium, San Diego, CA, USA,
24–27 February 2019. [CrossRef]

38. He, P.; Liu, X.; Gao, J.; Chen, W. Deberta: Decoding-enhanced bert with disentangled attention. arXiv 2020, arXiv:2006.03654.
39. Khoo, W.M.; Mycroft, A.; Anderson, R. Rendezvous: A search engine for binary code. In Proceedings of the 2013 10th Working

Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 329–338. [CrossRef]
40. Myles, G.; Collberg, C. K-gram based software birthmarks. In Proceedings of the 2005 ACM Symposium on Applied Computing,

Santa Fe, NM, USA, 13–17 March 2005; pp. 314–318.
41. David, Y.; Yahav, E. Tracelet-based code search in executables. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Edinburgh, UK, 9–11 June 2014; pp. 349–360. [CrossRef]
42. Egele, M.; Woo, M.; Chapman, P.; Brumley, D. Blanket execution: Dynamic similarity testing for program binaries and components.

In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014;
pp. 303–317.

http://dx.doi.org/10.1145/2976749.2978370
http://dx.doi.org/10.1145/2950290.2950350
http://dx.doi.org/10.1109/TDSC.2013.40
https://www.zynamics.com/bindiff.html
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.14722/ndss.2019.23492
http://dx.doi.org/10.1109/MSR.2013.6624046
http://dx.doi.org/10.1145/2594291.2594343

Sensors 2023, 23, 7789 22 of 22

43. Luo, L.; Ming, J.; Wu, D.; Liu, P.; Zhu, S. Semantics-based obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection. IEEE Trans. Softw. Eng. 2017, 43, 1157–1177. [CrossRef]

44. Duan, Y.; Li, X.; Wang, J.; Yin, H. DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing. In Proceedings of
the 27rd Symposium on Network and Distributed System Security (NDSS), San Diego, CA, USA, 24–27 February 2020. [CrossRef]

45. Yu, Z.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Wu, S. Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity
Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 1145–1152. [CrossRef]

46. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on
Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.

47. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the NAACL HLT 2019—2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

48. Eschweiler, S.; Yakdan, K.; Gerhards-Padilla, E. discovRE: Efficient Cross-Architecture Identification of Bugs in Binary Code.
In Proceedings of the 2016 Network and Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016;
pp. 21–24. [CrossRef]

49. David, Y.; Partush, N.; Yahav, E. Similarity of binaries through re-optimization. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Barcelona Spain, 18–23 June 2017; pp. 79–94.

50. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X.; Liu, D.; Lu, K. VulHawk: Cross-architecture Vulnerability Detection
with Entropy-based Binary Code Search. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium,
27 February–3 March 2023; Volume 2023.

51. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-
tionality. arXiv 2013, arXiv:1310.4546.

52. Ding, S.H.; Fung, B.C.; Charland, P. Kam1n0: MapReduce-based Assembly Clone Search for Reverse Engineering. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’16, San Francisco, CA,
USA, 13–17 August 2016; pp. 461–470. [CrossRef]

53. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations
by mutual information estimation and maximization. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

54. Rays, H. IDA Pro. 2021. Available online: https://www.hex-rays.com/products/ida/ (accessed on 20 February 2023).
55. Song, Q.; Zhang, Y.; Wang, B.; Chen, Y. Inter-BIN: Interaction-based Cross-architecture IoT Binary Similarity Comparison. IEEE

Internet Things J. 2022, 9, 20018–20033. [CrossRef]
56. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-xl: Attentive language models beyond

a fixed-length context. arXiv 2019, arXiv:1901.02860.
57. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155.
58. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

59. Ming Chen, Z.W.; Zengfeng Huang, B.D.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th
International Conference on Machine Learning, Virtual, 13–18 July 2020.

60. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Annual Conference on Neural Information
Processing Systems 2019, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019.

61. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Association for Computational Linguistics, Virtual, 16–20 November 2020; pp. 38–45.

62. Fey, M.; Lenssen, J.E. Fast Graph Representation Learning with PyTorch Geometric. In Proceedings of the ICLR Workshop on
Representation Learning on Graphs and Manifolds, New Orleans, LA, USA, 6–9 May 2019.

63. Marcelli, A.; Graziano, M.; Ugarte-Pedrero, X.; Fratantonio, Y.; Mansouri, M.; Balzarotti, D. How Machine Learning Is Solving
the Binary Function Similarity Problem. In Proceedings of the Usenix Security 2022, San Diego, CA, USA, 20–22 August 2022;
pp. 83–101.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2017.2655046
http://dx.doi.org/10.14722/ndss.2020.24311
http://dx.doi.org/10.1609/aaai.v34i01.5466
http://dx.doi.org/10.14722/ndss.2016.23185
http://dx.doi.org/10.1145/2939672.2939719
https://www.hex-rays.com/products/ida/
http://dx.doi.org/10.1109/JIOT.2022.3170927

	Introduction
	Related Work
	Problem Definition
	Design
	Preprocessor
	Block Semantic Model
	Language Model
	Pre-Training Tasks

	Function Embedding Model
	Block Relation Matrix
	Function Embedding Generation
	Model Training

	Evaluation
	Implementation and Setup
	Baselines
	Benchmarks
	Metrics

	Evaluation on Multiple Scenarios
	Ablation Study
	Applications
	Vulnerability Detection
	Component Analysis

	Conclusions
	References

