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Abstract: Hand gesture recognition is a vital means of communication to convey information between
humans and machines. We propose a novel model for hand gesture recognition based on computer
vision methods and compare results based on images with complex scenes. While extracting skin
color information is an efficient method to determine hand regions, complicated image backgrounds
adversely affect recognizing the exact area of the hand shape. Some valuable features like saliency
maps, histogram of oriented gradients (HOG), Canny edge detection, and skin color help us maximize
the accuracy of hand shape recognition. Considering these features, we proposed an efficient hand
posture detection model that improves the test accuracy results to over 99% on the NUS Hand Posture
Dataset II and more than 97% on the hand gesture dataset with different challenging backgrounds. In
addition, we added noise to around 60% of our datasets. Replicating our experiment, we achieved
more than 98% and nearly 97% accuracy on NUS and hand gesture datasets, respectively. Experiments
illustrate that the saliency method with HOG has stable performance for a wide range of images with
complex backgrounds having varied hand colors and sizes.

Keywords: Canny edge detection; convolutional neural network (CNN); hand gesture detection;
histogram of oriented gradients (HOG); saliency map; skin color

1. Introduction

Gestures are used for human interaction to express feelings, communicate non-verbal
information, and increase the value of messages. A gesture can be an intuitive human–
computer interface that helps machines understand body language for various purposes.
Both online and offline applications, such as interacting with a computer, recognizing
pedestrians and police hand signs in automated cars, gesture-based game control, and
medical operations that use this technology are still in their infancy.

Two main approaches to detecting hand gestures are glove-based analysis and vision-
based analysis. Glove-based techniques take advantage of sensors attached directly to
the glove and accurately analyze hand movements. Vision-based methods can help users
feel more comfortable without annoying physical limitations. They utilize a camera(s)
to capture human hand signs and provide a more natural posture. The most essential
ability of vision-based techniques is filtering out irrelevant and complex information and
considering the most useful information during detection.

In this paper, we propose a general method of hand gesture recognition based on
computer vision methods and compare the empirical results of input images with complex
backgrounds. Recognizing different hand signs using an integrated structure based on
saliency maps and histogram of oriented gradients (HOG) creates a filter for selecting target
regions by ignoring irrelevant information. This leads to an increase in the performance of
gesture recognition algorithms. These methods detect the exact regions of hand gestures
and ignore complex backgrounds from input images. Lastly, we improve a convolutional
neural network (CNN) with two blocks to identify hand postures for increasing accuracy
and stability. We use the NUS Hand Posture Dataset II and the hand gesture dataset to
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demonstrate the performance of our model. In our experiments, we applied six diverse
aggressive types of noise such as Gaussian, impulse, Laplacian, multiplicative-Gaussian,
Poisson, and uniform to around 60% of our datasets to evaluate our model’s performance
while encountering low-quality images.

The remainder of this paper is organized as follows. Section 2 presents some related
work on hand gesture detection. Section 3 describes the framework of the proposed model
for image saliency with the HOG model. Section 4 describes the performance evaluation.
Section 5 provides a brief conclusion.

2. Related Work

Ajallooeian et al. [1] used a saliency-based model of visual attention to find potential
hand regions in video frames. The saliency maps of the differences between consecutive
video frames are overlaid to obtain the overall movement of the hand. A Loci feature
extraction method is used to obtain hand movement. Then, the extracted feature vector is
used for training an SVM to classify the postures. Chuang et al. [2] proposed a model that
integrated image saliency and skin color information to improve the performance of the
hand gesture detection model, with SVM utilized to classify hand gestures. Zhang et al. [3]
built up a method based on saliency and skin color detection algorithms, including a pixel-
level hand detection method, region-level hand detection method, and a multiple saliency
map fusion framework that achieves the deep integration of the bottom-up saliency and
top-down skin color information. This method has excellent performance and is reliable
against complex backgrounds. A saliency detection method using a top-down dark channel
prior is developed to determine the hand location and contour of the gesture. Then, it is
integrated with a graph-based segmentation approach to make a final confidence map for
segmentation [4].

Zamani and Rashidy [5] after extracting the saliency map used principal component
analysis (PCA) and linear discriminant analysis (LDA) in order to reduce dimension,
minimize class external similarity, and maximize class internal similarity, which led to the
accuracy reaching 99.88% using a 4-fold cross-validation. Yin and Davis [6] developed a
gesture salience method and a gesture spotting and recognition method based on hand
tracking and concatenated hidden Markov models. Schauerte and Stiefelhagen [7] trained a
conditional random field to combine relevant features to multi-scale spectral saliency, salient
object detection, probabilistic pointing cone, and probabilistic target maps to highlight
image regions highly similar to the target object. Reducing the false positive rate in skin
segmentation using saliency detection is a method that was proposed by Santos et al. [8].
The weighted image is considered as input for the saliency detector, and the probability
map is used to prevent discarding skin pixel adjustment to the boundary list. When it
comes to using superpixel in the implementation of the saliency map, it can easily be
replaced with a superpixel structure.

Vishwakarma et al. [9] detected hand gestures in static hand posture images by follow-
ing these steps: (a) segmentation of hand region, (b) applying the saliency method, and (c)
extracting Gabor and pyramid histogram of oriented gradients (PHOG). The Gabor filter
extracts the texture features at different orientations, and PHOG extracts the shape of the
hand by calculating the spatial distribution of the skin saliency image. Finally, extracted
features are classified by a support vector machine (SVM). The method based on RGB-D
data is proposed to deal with large-scale videos to achieve gesture shape recognition. The
inputs are expanded into 32-frame videos to learn details better, and the RGB and depth
videos are sent to the C3D model to extract spatiotemporal features, which combine to-
gether to boost the performance of the model and avoid unreasonable synthetic data to the
uniform dimension of C3D features [10].

Yang et al. [11] proposed saliency-based features and sparse representations for hand
posture recognition utilizing sparsity term parameters and sparse coefficient computation.
The histogram intersection kernel function was employed to deal with non-linear feature
maps by mapping the original features into the kernel feature space and using sparse
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representation classification in the kernel of the feature space. The fast saliency model
with a 5× 5 kernel convolution was proposed to obtain the saliency map of the input
images. Candidate regions are extracted from the saliency map using adaptive thresholding,
connected domain filtering, and the HOG descriptor for each area [12].

A two-stage hand gesture recognition is proposed to support a patient assistant system.
The first step utilizes a saliency map to simplify hand gesture detection, and the second
step classifies the patient’s postures. A novel combined loss function and a kernel-based
channel attention layer are used to optimize the saliency detection model and emphasize
salient features, respectively [13]. Guo et al. [14] proposed a motion saliency model based
on a hierarchical attention network for action detection. They also defined combination
schemes to link the attention and base branches to explore their impacts on the model.
Regarding the characteristics of visual and thermal images, Xu et al. [15] integrate CNN
feature and saliency map fusion methods to achieve RGB-T salient object recognition. In
this method, the salient object is separated from the background with a fine boundary, and
the noise inside a salient object is effectively suppressed.

Ma et al. [16] designed hand joint-based recognition based on a neural network and
noisy datasets. To promote the availability of this model with noisy datasets, a nested
interval unscented Kalman filter (UKF) with long-term and short-term memory (NIUKF-
LSTM) network is proposed to improve the performance of the proposed model when
dealing with noisy images. Evaluating the perceptual quality assessment owing to the
quality degradation plays a vital role in visual communication systems. The quality as-
sessment in such systems can be performed subjectively and objectively, and the objective
quality assessment is taken into account thanks to its high efficiency and easy implemen-
tation [17]. Since computer-generated screen content has many characteristics different
from camera-captured scene content, estimating the quality of experiment (QoE) in various
screen content is a piece of essential information for improving communication systems [18].
The full-reference image quality assessment (IQA) metrics evaluate the distortion of an
image generally by measuring its deviation from a reference or high-quality image. The
reduced-reference and no-reference IQA metrics are used when the reference image is not
fully available. In this case, some characteristics are driven by a perfect-quality image, and
the distorted image’s deviation can be measured from these characteristics [19–21].

3. Proposed Method

We introduce a method that eliminates the complexity of image backgrounds using
features extracted from original images and binary operators. Detecting objects in compli-
cated scenes is one of the challenging tasks in hand gesture recognition since it is difficult to
recognize the intent object among many others. The proposed model provides an efficient
system based on deep learning for recognizing the structure of hand postures in complex
backgrounds by developing the architecture shown in Figure 1.

In this architecture, the size of the input image is equal to 64× 64, which is given to the
feature extraction and integration block as an input. Once the features have been extracted
from the original images, the bitwise operators can mix these features to distinguish more
details from hand-shaped textures. Figure 2 shows the process of the proposed feature
extraction and integration model (see Appendix A). First, skin color [22], saliency [23],
Canny [24], and HOG [25,26] features are extracted from the original image. The bitwise
AND operator combines skin color and saliency feature maps, which gives us a new feature
map. Using the bitwise OR operator, we perform a similar action for Canny edge detection
and HOG features. Then, the two mixed feature maps produced by the previous steps are
combined by the bitwise AND operator to make an exact region of hand shape, and the
final result is mixed with skin color by the bitwise XOR operator to add hand region to the
skin color information. Eventually, the output feature maps (F1, F2, F3, and F4) are given to
the next block for concatenation. The F1–F4 features are represented by Equations (1)–(4):

F1 = Oi (1)
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F2 = FSC ∧ FS (2)

F3 = FC ∨ FHOG (3)

F4 = ((FSC ∧ FS)) ∧ (FC ∨ FHOG))⊕ FSC (4)

where Oi is an original image; FSC, FS, FC, and FHOG are skin color, saliency, Canny, and
histogram of oriented gradient features, respectively; and F1, F2, F3, and F4 represent
output features of the feature extraction and integration block. In the next step, all extracted
features are concatenated and used as input for the classification section.

Figure 1. Architecture of the proposed method.

Figure 2. The proposed feature extraction and integration block. Extracting and integrating saliency
map, skin color, HOG, and Canny features from the NUS Hand Posture Dataset II images using
bitwise operators for static hand gesture recognition.

Table 1 demonstrates the improved CNN model summary used for classification. The
total number of trainable parameters in this architecture is 9,026,502. As indicated in this
table, there are two convolutional blocks, each with four layers. We utilized ConvTrans-
pose2d with batch normalization and rectified linear unit (ReLU) activation in the first
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block in each layer. The padding and stride value is one, and the kernel size is three. The
ConvTranspose2d layers are considered as the gradient of Conv2d and are used for creating
features. In the second block, we used Conv2d instead of ConvTranspose2d layer with the
same parameters to shrink our output to detect features. After each block, 2D MaxPooling
reduces computational complexity in order to detect features in the feature maps. The fully
connected layer with Flog-softmax is used to classify hand shapes.

Table 1. Summary of the improved CNN architecture with an input size of 64 × 64.

Stage Layer (Type:Depth-Index) Output Size Param

Input - [−1, 3, 32, 32] -

Block 1

ConvTranspose2d:1–1 [−1, 64, 32, 32] 1792
BatchNorm2d:1–2 [−1, 64, 32, 32] 128

ReLU:1–3 [−1, 64, 32, 32] -
ConvTranspose2d:1–4 [−1, 64, 32, 32] 36,928

BatchNorm2d:1–5 [−1, 64, 32, 32] 128
ReLU:1–6 [−1, 64, 32, 32] -

ConvTranspose2d:1–7 [−1, 64, 32, 32] 36,928
BatchNorm2d:1–8 [−1, 64, 32, 32] 128

ReLU:1–9 [−1, 64, 32, 32] -
ConvTranspose2d:1–10 [−1, 64, 32, 32] 36,928

BatchNorm2d:1–11 [−1, 64, 32, 32] 128
ReLU:1–12 [−1, 64, 32, 32] -

MaxPool2d(2, 2):1–13 [−1, 64, 16, 16] -

Block 2

Conv2d:1–14 [−1, 128, 16, 16] 73,856
BatchNorm2d:1–15 [−1, 128, 16, 16] 256

ReLU:1–16 [−1, 128, 16, 16] -
Conv2d:1–17 [−1, 128, 16, 16] 147,584

BatchNorm2d:1–18 [−1, 128, 16, 16] 256
ReLU:1–19 [−1, 128, 16, 16] -

Conv2d:1–20 [−1, 128, 16, 16] 147,584
BatchNorm2d:1–21 [−1, 128, 16, 16] 256

ReLU:1–22 [−1, 128, 16, 16] -
Conv2d:1–23 [−1, 128, 16, 16] 147,584

BatchNorm2d:1–24 [−1, 128, 16, 16] 256
ReLU:1–25 [−1, 128, 16, 16] -

AdaptiveAvgPool2d:1–26 [−1, 128, 8, 8] -

Fully connected layer

flatten [−1, 8192] -
Linear(8192, 1024):1–27 [−1, 1024] 8,389,632

ReLU:1–28 [−1, 1024] -
Linear(1024, class_number):1–29 [−1, 10] 6150

F.log_softmax [−1, 10] -

Total params: 9,026,502
Trainable params: 9,026,502
Non-trainable params: 0
Total mult-adds (M): 255.53

Input size (MB): 0.01
Forward/backward
pass size (MB): 6.01
Params size (MB): 34.43
Estimated Total Size (MB): 40.45

4. Experiments

In this section, experiments are designed to evaluate the performance of the saliency
map incorporating the HOG features.
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4.1. Datasets

As can be seen in Figures 3 and 4, two different types of datasets like the NUS Hand
Posture Dataset II [27] and the hand gesture dataset (real samples) [28] have been used. The
NUS and hand gesture datasets contain 2000 and 12,064 images of diverse hand gestures
with different backgrounds, respectively. The NUS dataset contains A to J alphabets
(10 classes) captured by different hand sizes and scenes. The hand gesture dataset contains
six diverse groups: drag, loupe, none, other, point, and scale are captured under different
and complex backgrounds, making the dataset more challenging.

Figure 3. Sample images from the NUS dataset with complex backgrounds.

Figure 4. Sample images from the hand gesture dataset with complex backgrounds.

4.2. Implementation Details

This study uses Python 3.7.12 with CUDA version 11.8.89 for all our experiments.
The experiments have been carried out using PyTorch, an open-source and optimized
tensor library for deep learning [29]. The model is trained at each stage with batch size 32,
a learning rate of 0.0002, and a dropout of 0.5. We use a cross-entropy loss function,
Stochastic Gradient Descent (SGD) optimizer, and train with NVIDIA GeForce RTX 2080
SUPER (NVIDIA, Santa Clara, CA, USA) [30]. Given the GPU limitation, we resize images
to 64 × 64. In this experiment, we considered 80% of total data for training, 10% for
validation, and 10% for testing, which is randomly selected from the whole dataset.

4.3. Analysis

In the experiments, four main features, namely saliency map, skin color, histogram of
oriented gradients (HOG), and Canny edge detection, are extracted from the main input



Sensors 2023, 23, 7790 7 of 15

image. Figure 5 shows different extracted features from the original image. The proposed
features (F1, F2, F3, and F4) shown in Figure 6 are extracted from the main image in the
extraction and integration block, and an improved CNN model recognizes different hand
shapes with complex scenes. It can be seen from Table 2 that the performance of the
obtained features with 99.78% in the NUS dataset and 97.21% in the hand gesture dataset is
higher than other single features that have been used in classification.

Figure 5. Different extracted features from the hand gesture dataset.

Figure 6. Proposed feature map of the hand gesture dataset. F1, F2, F3, and F4 are obtained from the
extraction and integration block.

Table 2. Test accuracy results of the proposed model using the improved CNN model and different
input features on NUS Hand Posture Dataset II and hand gesture dataset after 30 epochs.

Features NUS Hand Posture Dataset II Hand Gesture Dataset

Original images 97.27 94.50
Canny 94.92 92.96

Saliency 95.31 90.14
Skin color 96.88 95.42

HOG 97.66 92.07
Our proposed features 99.78 97.21

The bold shows the highest accuracy in each dataset.

We apply some aggressive image noises randomly in 60% of our datasets to alleviate
the problem of insufficient training and testing data. The six types of image noises applied
to our datasets are namely Gaussian, impulse, Laplacian, multiplicative-Gaussian, Poisson,
and uniform. The real rate of noise distribution in all functions is 0.9 except for impulse,
which is equal to 0.1 [31] Figure 7 shows six image noises of the aforementioned applied on
an original image.
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Figure 7. Original image and six others with various types of noise on the hand gesture dataset.

Some of the referenced-based image quality estimation metrics such as mean square
error (MSE), global relative error (ERGAS), multi-scale structural similarity index (MSSSIM),
peak signal-to-noise ratio (PSNR), root mean squared error (RMSE), spectral angle mapper
(SAM), structural similarity index (SSIM), universal quality image index (UQI), and visual
information fidelity (VIF) are estimated for six different image noises mentioned above
(Gaussian, impulse, Laplacian, multiplicative-Gaussian, Poisson, and uniform) which are
applied on both the NUS Hand Posture Dataset II (Table 3) and the hand gesture dataset
(Table 4). From a representation perspective, MSSSIM, SAM, SSIM, UQI, and VIFP are
normalized, but MSE, EGRAS, PSNR, and RMSE are not. Therefore, the normalized IQA
metrics can be treated as more understandable than other assessments. Applying these
noises to our datasets can obviously show the performance of our proposed model against
input noisy visual data. Table 5 shows that the accuracy of the NUS Hand Posture Dataset
II with 98.83% and the hand gesture dataset with 96.63% is only reduced by around 1%
than using datasets with perfect-quality images.

Table 3. Reference-based image quality metrics to quantify the NUS Hand Posture Dataset II image
quality after applying six diverse noises.

IQA Metrics Gaussian Impulse Laplacian Multiplicative-Gaussian Poisson Uniform

MSE [32] 62.22945 487.12366 37.50542 88.54241 1494.11719 10.68307

EGRAS [33] 53.44101 150.39209 41.77666 61.73005 242.83121 22.80766

MSSSIM [34] 0.97518 0.87680 0.98504 0.97033 0.77359 0.99655

PSNR [35] 30.19085 21.25441 32.38986 28.65929 16.38696 37.84384

RMSE [32] 7.88856 22.07088 6.12417 9.4097 38.65381 3.2685

SAM [36] 0.10161 0.26996 0.079261 0.11953 0.44247 0.042524

SSIM [37] 0.86747 0.56597 0.91653 0.84555 0.33831 0.98446

UQI [38] 0.97966 0.90523 0.98762 0.98508 0.83638 0.99668

VIFP [39] 0.45636 0.21459 0.53019 0.41593 0.11206 0.74939
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Table 4. Reference-based image quality metrics to quantify the hand gesture dataset image quality
after applying six diverse noises.

IQA Metrics Gaussian Impulse Laplacian Multiplicative-Gaussian Poisson Uniform

MSE [32] 58.9221 103.29271 31.5976 171.96166 1241.64085 3.43042

EGRAS [33] 23.54171 31.22135 17.26357 40.09161 107.35299 5.73945

MSSSIM [34] 0.9227 0.89105 0.9567 0.83608 0.54435 0.99596

PSNR [35] 30.42802 27.99011 33.13426 25.77649 17.19084 42.77733

RMSE [32] 7.67607 10.1633 5.62117 13.11341 35.23692 1.85214

SAM [36] 0.053382 0.07099 0.038891 0.09115 0.24572 0.01163

SSIM [37] 0.61551 0.55536 0.74782 0.424 0.12197 0.98187

UQI [38] 0.99473 0.99087 0.99711 0.9927 0.9396 0.99954

VIFP [39] 0.34229 0.31202 0.41475 0.28056 0.10697 0.73754

Table 5. Test accuracy results of the proposed model using the improved CNN model and different
input features on NUS Hand Posture Dataset II and hand gesture dataset with 60% noise after
30 epochs.

Features NUS Hand Posture Dataset II Hand Gesture Dataset

Original images 94.53 94.76
Canny 80.47 88.00

Saliency 92.97 91.07
Skin color 94.14 93.82

HOG 94.14 89.27
Our proposed features 98.83 96.63

The bold shows the highest accuracy in each dataset.

4.4. Discussion

We compared the proposed method with three state-of-the-art pyramid pooling and
saliency detection methods, which include CNN-SPP [40] and saliency with skin color
information [2]. The dataset used in all the above-mentioned methods is the NUS Hand
Posture Dataset II, and it contains human hand gestures with different sizes and skin color
information. The CNN-SPP [40] has two convolutional blocks with four layers in each.
The spatial pyramid pooling (SPP) is extracted from the last layer of each block. The fully
connected network contains two layers with 8192 neurons fully connected to 1024 neurons
in the first layer and 1024 neurons fully connected to the number of classes of neurons in
the next layer, and includes a softmax classifier.

Chuang [2] proposed another method to detect hand gestures in complex backgrounds.
In this method, some features like a saliency map and skin color features are extracted
from the image. These features help in identifying the hand gesture and adopt a visual
cortex-based feature extraction method. Then, a linear SVM is used to recognize the hand
posture according to the results of hand area detection, improving the result to around 95%.
In this method, an isophote-based operator is used to capture the potential structure and
global saliency information of each pixel. The potential structure is used to calculate the
center-surround contrast and combined with the global saliency map to compute the final
saliency map.

A hand-gesture-controlled PAS proposed in [13] uses a two-stage hand recognition
architecture to integrate the convolution and transformer architectures. This method
designed a saliency detection method to overcome some challenges that exist in vision-
based approaches like occlusion, varying illumination, background diversity, and the
detection of skin regions. The saliency map obtains the exact hand region of hand shape to
be fed into the classification network. The AKCAL network in this architecture emphasizes
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the features relevant to classification. The recognition accuracy for the NUS dataset in this
method is equal to 98.0%.

The NUS hand posture images with varying backgrounds, hand sizes, and skin colors
are very challenging hand postures to identify. As can be seen in Table 6, our proposed
method performs much better than Tan’s [40] and Chuang’s [2] approaches to detecting
hand postures with complex backgrounds in the NUS Hand Posture Dataset II. Figure 8
shows the validation loss and validation accuracy of the proposed model on the NUS
dataset without noise. Based on the learning curves, it is obvious that the validation
accuracy keeps increasing and validation loss keeps decreasing.

Figure 8. The performance of the proposed model for the NUS Dataset II.

Table 6. Comparison of state-of-the-art methods with our proposed method using the NUS Hand
Posture Dataset II.

Models Test Accuracy (%)

CNN-SPP model [40] 95.95
Saliency with skin color information [2] 95.27

Saliency with combined loss function [13] 98.00
Saliency with skin color information and HOG * 99.78

* Our proposed method. The bold shows the highest accuracy.

5. Conclusions and Future Work

We introduced a novel method integrating the histogram of oriented gradients (HOG),
skin color, Canny edge detection, and saliency maps using bitwise operators to detect
hand postures with complex scenes by an improved CNN model. Using integrated feature
maps identified the exact regions of the gestures in each input image and increased the
accuracy. Apart from this, the proposed method enabled distinguishing postures better
given complex backgrounds. The NUS hand posture II and the hand gesture datasets were
used in the experiment, and the results showed that the proposed method improved the
performance of hand gesture recognition in these datasets with and without image noises.

In our future work, we will address issues with the quality evaluation of image de-
hazing methods in vision-based hand gesture recognition systems. The image quality of
experiments (QoE) is an essential aspect of various intelligent systems like those detecting
hand postures since low-quality images or videos can have an adverse effect on identifica-
tion performance. Evaluating gesture detection by incorporating audio-visual saliency will
be considered in the next step of recognizing hand gestures.
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Appendix A

Appendix A.1. Opencv Static Saliency Detection

OpenCV is an open-source library [41] used in computer vision applications. OpenCV
provides a useful tool for extracting static saliency maps from input images. The saliency
feature map is extracted from the standout part of an image so that neural networks and
machine learning methods can easily focus on these points. One approach to detecting
the saliency map is static saliency detection, in which algorithms detect salient objects in
a static image using image features and statistics. Static saliency detection helps localize
more interesting regions in an image. Some algorithms have already been implemented in
OpenCV, but we only use the fine-grained method in our research.

The fine-grained algorithm is similar to human eyes with ganglion cells. On-center
and off-center are two different types of ganglion cells. On-center focuses on more bright
areas that are surrounded by a dark background. Off-center works in the opposite way:
it concentrates on dark areas surrounded by a brighter background. The fine-grained
algorithm computes the saliency map by considering on-center and off-center [23].

Appendix A.2. Histogram of Oriented Gradients (HOG)

HOG is used in machine vision to detect objects by counting the occurrences of
gradient orientation related to local picture parts. HOG concentrates on an object’s structure
or shape. It uses the magnitude and considers the angle of the gradient to calculate the
features for better performance. The image gradient is calculated by combining image
magnitude and angle. First, Gx and Gy are calculated for each pixel using Equations (A1)
and (A2):

Gx(r, c) = I(r, c + 1)− I(r, c− 1), (A1)

Gy(r, c) = I(r− 1, c)− I(r + 1, c), (A2)

where r and c refer to rows and columns of an input image. The magnitude and angle are
calculated by Equations (A3) and (A4):

Magnitude(µ) =
√

G2
x + G2

y , (A3)

Angle(θ) = |tan−1(
Gy

Gx
)|, (A4)

The magnitude and angle matrices are segmented into 8 × 8 metrics. A nine-point
histogram and nine-point bin (each bin has an angle range of 20 degrees) are calculated for
each segment. As a block/segment includes 64 different values of magnitude and gradient,
Equations (A5) and (A6) are used:

Numbero f bins = 9(ranging f rom0◦to180◦), (A5)

https://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet
https://www.dlsi.ua.es/~jgallego/datasets/gestures/
https://www.dlsi.ua.es/~jgallego/datasets/gestures/
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Stepsize(∆θ) =
180◦

Numbero f bins = 20◦
, (A6)

The boundaries of the Jth bin is obtained by Equation (A7):

[∆θ.j, ∆θ.(j + 1)], (A7)

The center of each bin is calculated by Equation (A8):

Cj = ∆θ(j + 0, 5), (A8)

For calculating the Jth bin and (J + 1)th bin, we use Equations (A9)–(A11):

j = b( θ

∆θ
− 1

2
)c, (A9)

Vj = µ.
[
(

θ

∆θ
− 1

2
)

]
, (A10)

Vj+1 = µ.
[
(

θ − Cj

∆θ)

]
, (A11)

For each block, an array is considered to be a bin. Then, Vj and Vj+1 values are
appended to it. After calculating the histogram for all blocks, four blocks from the nine-
point histogram matrix are mixed with each other to create a new 2 × 2 block, resulting in
a vector with 36 features (Equation (A12)).

fbi = [b1, b2, b3, ..., b36], (A12)

The L2 norm is used to normalize all the values in the fb vector (Equation (A13)):

fbi =
fbi√

|| fbi||2 + ε
. (A13)

This normalization leads to reducing the contrast changes between images of the
same object. This vector is calculated for each block and HOG features for each image are
obtained [25,26].

Appendix A.3. Canny Edge Detection

The Canny edge detector can find the edges of images, similar to the way that human
eyes can analyze image details and determine them in milliseconds. This algorithm can
detect the edges following the steps of noise reduction, gradient calculation, non-maximum
suppression, double threshold, and edge tracking by hysteresis. First, a grayscale filter
is applied to the original image, and a Gaussian blur is used to reduce background noise
by smoothing it. The image convolution technique is applied with a Gaussian kernel. A
Gaussian filter kernel of (2k + 1)(2k + 1) is obtained by Equation (A14):

Hij =
1

2πσ2 exp(− (i− (k + 1)2 + (j− (k + 1))2

2σ2 ), (A14)

1 ≤ i, j ≤ (2k + 1),

The edge intensity and direction are calculated by the image gradient. Edges are
affected by a change in pixel intensity. By applying filters the intensity is highlighted in
both horizontal and vertical directions. Then, the derivatives of x and y are calculated
by Sobel kernels Kx and Ky. The magnitude and angle of the gradient are calculated by
Equations (4) and (A1). The goal of the non-maximal suppression algorithm is to create
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thinner edges. It works when we consider all points of the gradient intensity matrix and
try to identify pixels with maximum values in the edge directions. The double threshold
step tries to detect three kinds of pixels: strong, weak, and irrelevant. The pixels with high
intensity are classified as strong pixels. The weak pixels are those with an intensity that
is not as high as that of strong pixels, but weak pixels are also not too small. Other pixels
are considered irrelevant for the edge. Strong pixels and weak pixels are considered high
thresholds and low thresholds, respectively. The weak pixels are all pixels between the low
and high thresholds. The hysteresis mechanism helps us find irrelevant and strong pixels
and transform weak pixels into strong pixels if and only if one of the neighbor pixels is
strong [24].

Appendix A.4. Color Space for Skin Color Detection

The color space method for skin color is a mathematical model that considers the
information from about three or four colors for skin detection. There are different models
to detect skin color. Transforming RGB to a normalized RGB color space is achieved by the
normalization process (Equations (A15)–(A18)):

r =
R

R + G + B
, (A15)

g =
G

R + G + B
, (A16)

b =
B

R + G + B
, (A17)

r + g + b = 1. (A18)

The HSV (which stands for hue, saturation, value) color space is an alternative version
of the RGB model. The conversion from RGB to HSV takes time and is expensive. If there
are large fluctuations in the color information, like hue and saturation, pixels that have
small and large intensities are not considered. Transforming color images in the RGB color
space to the HSV color space is achieved by the formulae (Equations (A19)–(A21)):

H = arccos(
1
2 (2R− G− B)√

(R− G)2 − (R− B)(G− B)
), (A19)

S =
(max(R, B, G)−min(R, B, G))

max(R, B, G)
, (A20)

V = max(R, G, B). (A21)

This method is convenient for detecting human faces and hands in color images [22].
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