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Abstract: The aim of this systematic review was to identify the correlations between spectrum sensing,
clustering algorithms, and energy-harvesting technology for cognitive-radio-based internet of things
(IoT) networks in terms of deep-learning-based, nonorthogonal, multiple-access techniques. The
search results and screening procedures were configured with the use of a web-based Shiny app
in the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow design.
AMSTAR, DistillerSR, Eppi-Reviewer, PICO Portal, Rayyan, and ROBIS were the review software
systems harnessed for screening and quality assessment, while bibliometric mapping (dimensions)
and layout algorithms (VOSviewer) configured data visualization and analysis. Cognitive radio is
pivotal in the utilization of an adequate radio spectrum source, with spectrum sensing optimizing
cognitive radio network operations, opportunistic spectrum access and sensing able to boost the
efficiency of cognitive radio networks, and cooperative spectrum sharing together with simultaneous
wireless information and power transfer able increase spectrum and energy efficiency in 6G wireless
communication networks and across IoT devices for efficient data exchange.

Keywords: cognitive radio; internet-of-things networks; spectrum sensing; clustering; energy
harvesting

1. Introduction

Cognitive radio has been developed due to spectrum scarcity and diminished ex-
ploitation [1] of allocated spectral resources by registered users, and should have more
extensive spectral awareness that can be attained by taking advantage of more spectral
options available for selection over a wideband spectrum. Cognitive radio technology
can enhance spectrum use and mitigate spectrum scarcity across wireless networks [2]:
spectrum sensing assists secondary users in identifying spectrum holes and accessing the
unoccupied spectrum. Intelligent cognitive approaches can improve 5G network spectrum
deployment to find a solution to spectrum congestion and thoroughly optimize radio effi-
ciency. In cognitive radio networks, opportunistic spectrum access is typically harnessed
for secondary users to identify primary user spectrum usage and detect spectrum holes for
transiently sharing spectrum resources in data distribution across unoccupied channels.
Access to an ample series of spectrum resources constitutes a main growth determinant for
leveraging large-scale internet of Things (IoT) networks and first-rate mobile broadband
services, while the spectrum may be a hindering element in 5G communication expansion.

Cognitive radio technology can dynamically distribute the unlicensed spectrum [3] for
IoT-connected devices. Diverse wireless devices can access the primary user licensed spec-
trum. Cognitive-radio-based IoT networks assist interconnected devices [4] in efficiently
leveraging spectrum resources. Cognitive radio technology can facilitate streamlined and
opportunistic spectrum band utilization by use of vacant licensed channels [5], articulating
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a massive spectrum that can further coherent extensive implementation for IoT networks.
Spectrum sharing across cognitive radio networks develops dynamic spectrum access,
where cognitive radio users can opportunistically use any area of the spectrum, resulting
in coherent IoT deployment and enabling massive IoT device interactions by a media
access control procedure that harnesses the available spectrum resources across cognitive
radio-IoT networks.

IoT-based large-scale wireless connections can bring about a serious spectrum scarcity
issue [6], and thus, cognitive IoT, by integrating short-packet transmissions, can solve
the issue efficiently. The research problem of this uniquely designed systematic review
was whether there are robust enough correlations between spectrum sensing, clustering,
and energy harvesting so as to optimize cognitive-radio-based IoT networks in terms
of deep-learning-based nonorthogonal multiple-access techniques. The manuscript was
organized as follows: methodology (Section 2), spectrum sensing for cognitive-radio-
based IoT networks (Section 3), clustering algorithms for cognitive-radio-based IoT net-
works (Section 4), energy-harvesting technology for cognitive-radio-based IoT networks
(Section 5), discussion (Section 6), conclusions (Section 7), specific contributions to the
literature (Section 8), limitations and further directions of research (Section 9), and practical
implications (Section 10).

2. Methodology

The search results and screening procedures were configured by use of a web-based
Shiny app in the Preferred Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) flow design. In July 2023, a quantitative literature review of major scholarly
databases (ProQuest, Scopus, and the Web of Science) was carried out, and the search terms
were: “cognitive radio-based IoT networks” + “spectrum sensing”, “clustering algorithms”,
and “energy harvesting technology”, with the analyzed research being published between
2019 and 2023; only 347 sources qualified for initial inclusion (Table 1). A total of 75 final,
mainly empirical, papers were selected for analysis. AMSTAR, DistillerSR, Eppi-Reviewer,
PICO Portal, Rayyan, and ROBIS were the review software systems harnessed for screening
and quality assessment, while bibliometric mapping (dimensions) and layout algorithms
(VOSviewer) configured data visualization and analysis (Figures 1–5).

Table 1. Topics and types of scientific products identified and selected.

Topic Identified Selected

cognitive-radio-based Internet of Things networks + spectrum sensing 119 26

cognitive-radio-based Internet of Things networks + clustering algorithms 116 25

cognitive-radio-based Internet of Things networks + energy-harvesting technology 112 24

Type of paper

Original research 297 71

Review 16 4

Conference proceedings 26 0

Book 2 0

Editorial 6 0

Source: processed by the authors. Some topics overlap.

As increasing demands for significant data rates overload standard radio frequency
technologies [7], millimeter waves and cognitive radios can surmount the spectrum scarcity
and capacity constraints of the standard radio frequency systems. Flexible and effective
smart cognitive networks can adjust to the surrounding environment and use the available
resources exemplarily, optimizing user performance and preserving streamlined resource
utilization. A low-battery reconfigurable multimode low-noise amplifier can be designed
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for heterogeneous narrowband and wideband operations [8] while enabling coextensive
input matching and output load arrangement. Reconfigurable intelligent surfaces assist
network operators in monitoring radio waves to remove the detrimental consequences of
natural wireless propagation [9], and through the use of nonorthogonal multiple access,
adequate transmissions can be provided. Radio resources’ limited availability together with
interference elevated levels reduces dense network spectrum reuse [10], but cognitive radio
technology can improve spectral efficiency through enabling low-priority unlicensed users
to have the same spectrum as high-priority licensed users (the transmission parameters
are adjusted according to the application requests, resulting in streamlined spectrum
management and interference reduction across 5G cellular networks). Cognitive-radio-
based spectrum sharing approaches can enable 5G cellular network services. In addition,
5G cognitive-radio-enabled spectrum access technology can optimize the spectrum and
energy efficiency, together with the secrecy of networks, by progressively adjusting its
transmission parameters. An actor–critic reinforcement learning strategy can enhance the
cognitive network prolonged throughput [11]: by interacting and assimilating knowledge
from the environment across various time slots, the cognitive base station can exemplarily
assign the volume of transmission energy for each secondary user in conformity with the
residual energy and primary channel availability.
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Cognitive radio networks can articulate multipurpose spectrum management [12] by
enabling secondary users to provisionally use the licensed spectrum lacking a primary
user. Each secondary user carries out spectrum sensing and transmits the collected data to
the centralized controller in a backward induction approach. Complex and heterogeneous
industrial IoT devices and networks [13] have various quality-of-service demands (e.g.,
ultra-reliable low-latency communications and elevated sharing data rates), while spectrum
and energy resources are in low volumes. A heterogeneous radio frequency can provide
wide-area coverage. Ambient backscatter communication enables secondary transmitters
to share information [14] by modulating and displaying ambient radio frequency signals.
IoT sensor devices in relation to data transferring and sorting [15] can be harnessed as
a wireless sensor network across a mesh topology. Sensor network capabilities can be
optimized by amplifying power use, bandwidth, and soundness in the mesh topology. IoT
data place a massive load on the network components attempting to share input among end
users. Data mining algorithms, together with multiagent and self-organizing technologies,
shape sensory systems. Data fusion can curtail the volume of data sharing and energy
use across wireless sensor networks [16], but data fusion schemes typically bring about
further delay overhead and power use. In order to enhance wireless sensor network
performance, a hybrid delay-aware clustering-based intelligent data fusion algorithm
merges single-layer and multilayer cluster structure upsides, to harmonize the tradeoff
between intermission and energy use in wireless sensor networks and the performance
oscillation under heterogeneous fusion rates.
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Cognitive radio can optimize wireless communication spectral efficiency [17] by en-
abling spectrum sharing among primary and secondary users. Intelligent reflecting sur-
faces/reconfigurable intelligent surfaces can improve wireless communication spectral
efficiency through channel environment reconfiguration. Cognitive radio networks and
multiple-access schemes assist in high-speed connectivity and in optimal dynamic spec-
trum distribution across 5G networks [18] as regards spectrum and energy efficiency,
scalability, and delay. Users can share data streams at the same time under maximum
capacity limitations through multiple-access schemes, while inactive spectrum holes can
be leveraged in an opportunistic way through the use of cognitive and software-defined
radios. While nonorthogonal multiple and space division multiple access are instrumental
in multiplexing, handling the counterproductive spectrum use generated by orthogonal
multiple-access schemes, rate splitting multiple access can improve spectrum efficiency
considerably. Through cutting-edge spectrum management approaches, increased spec-
tral performance can be attained while fulfilling the large-scale connectivity requirement.
The quality of service demands of nonorthogonal multiple-access-enabled multifarious
networks can enable power distribution and user scheduling schemes. Spectrum sensing
techniques should be deployed in nonorthogonal multiple-access-enabled cognitive radio
networks to identify exploitable frequency bands. When nonorthogonal multiple-access
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techniques are not used across a primary network, the established spectrum sensing algo-
rithm can be leveraged, as under other conditions, nonorthogonal multiple access supplies
services for heterogeneous primary users. Space division multiple access harnesses a linear
precoding scheme to differentiate spatial domain users and involves considering surplus
multiuser fading as noise. With nonorthogonal multiple access, users should decode in-
terference while receiving the information, which furthers the computational intricacy of
correlative signal processing. Cognitive ambient backscatter communication can assist
the green IoT as regards serious energy and spectrum limitations [19]: a backscatter de-
vice can articulate communications from the concomitant spectrum and radio-frequency
source sharing.

The traffic behavior modeling of impermanent spectrum use for IoT applications
across collective bands [20] can shape current interference by leveraging a software-defined
radio to continuously inspect the transitory episodes of IoT transmissions, and collecting
the time-series data transferred to power spectral density so as to take out the identified
occupancy. An unsupervised machine learning technique can improve standard energy
detection strategies. Lean data sensing together with wireless power transfer can articulate
sustainable and sound performance [21] across industrial IoT networks. The thoroughness
of on-demand data gathering and wireless power transfer can be heightened by streamlined
time management of IoT nodes and customized energy transmitters. An energy-aware
mode switching approach can assist IoT nodes in carrying out either lean data sensing or
customized wireless power transfer. An IoT node time management scheme can increase
the effectiveness of the IoT nodes by including unused energy and energy demanded for
sensing operation and taking into account sensing task reliability. An energy transmitter
time management scheme for IoT nodes can reduce charging expenses while keeping IoT
nodes adequately charged. Deep-learning-method-based passive signal detection [22]
can optimize cognitive-radio-based detection across low-signal-to-noise environments.
Convolution neural networks and long short-term memory algorithms can be leveraged in
signal frequency and time domain feature extraction.

3. Spectrum Sensing for Cognitive-Radio-Based IoT Networks

Cognitive radio networks reach a compromise [23] between energy and spectrum
sensing efficiency. Spectrum sensing is pivotal in cognitive radio technology [24] whose
sensing performance is typically assessed as false-alarm and detection probabilities. Spec-
trum sensing can optimize spectrum use [25] across cognitive radio networks. Spectrum-
prediction-based sensing schemes reduce the energy use of the sensing module across
cognitive radio networks [26] by inferring the status of spectrum before carrying out
effective physical sensing. The joint mode of spectrum prediction can surmount local
prediction model issues. Spectrum sensing, the energy-consuming procedure that should
be decreased because of resource limitations [27], enables cognitive users to distinctively
detect unexploited radio spectrum segments and keep interference to primary users from
happening. Cognitive-radio-enabled IoT cellular networks, incorporating heterogeneous
primary user base stations and secondary user devices as IoT smart objects [28], carry out
collective spectrum sensing and the appropriate spectrum distribution to the soliciting
secondary user-IoT devices by use of an intelligent fusion center. Short-time Fourier trans-
form and convolutional neural network algorithms can assist spectrum sensing in finding
a solution to the spectrum resource scarcity [29] through signal sample time–frequency
domain information.

A cognitive radio network comprises primary and secondary users [30]: the latter sense
the spectrum band to swiftly use the white space, resulting in spectrum efficiency improve-
ment. Long short-term memory networks are satisfactorily applicable for time-series data.
Reliable spectrum sensing assists cognitive radio networks [31] in identifying and deploy-
ing unused and underused frequency bands. By employing historical detection data, online
learning algorithms integrating the optimum decision threshold clarify the occurrence
or nonappearance of the primary user [32], boosting the spectrum sensing performance
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and reducing the total error probability. Cognitive radio networks detect band vacant
spots [33] by adequately sensing and distributing the spectrum to the demanding users.
Multiobjective brainstorm optimization algorithms can manage the energy–throughput
trade-off in cognitive radio networks and reduce the packet error rate [34], as throughput
maximization can lead to high energy consumption. The spectrum sensing performance is
improved with the increased probability of detection. Spectrum sensing and insufficient
battery capacity can minimize system performance across cognitive radio networks [35],
and thus, wireless-powered communication requires energy efficiency optimization.

Cognitive-radio-based IoT systems [36] develop on coherent spectrum sensing and
sharing. Software-configurable radio having dynamic spectrum assistance constitutes
the intrinsic feature of cognitive radio [37] whose coaction with wireless sensor networks
makes it possible for the sensor nodes to use and share application data throughout li-
censed primary user free channels. Improved operations can be attained with opportunistic
spectrum access by reducing the channel access incompatibilities and control message
overhead postponement. The cognitive radio spectrum sensing performance [38] neces-
sitates detection accuracy as regards whether primary users are active or not. Secondary
user teamwork can optimize spectrum detection operations throughout cognitive radio
networks. As incessant spectrum sensing significantly decreases the duration of a net-
work encompassing energy-restricted cognitive radio nodes [39], precise approaches as
regards predicting spectrum occupancy optimize energy efficiency. Intelligent reflecting
surface-optimized energy detection [40] is pivotal in spectrum sensing performance across
cognitive radio networks.

Spectrum sensing is decisive [41] in cognitive radio system operations. Matched
filtering is typically harnessed for signal detection across a particular band of spectrum
for an identifiable primary user signal. Spectrum sensing aims to increase the detection
operations [42] of secondary users across cognitive radio networks. All secondary users
provide sensing assessment to the fusion center for the eventual decision in relation to
the operations of primary users in cooperative spectrum sensing. The teamwork among
massive volumes of secondary users can generate overhead for the fusion center. Coop-
erative spectrum sensing schemes can find a solution to the hidden terminal issue and
reduce multipath fading and shadowing effects [43], optimizing the sensing performance
and throughput across cognitive radio networks. Increasing the volume of cooperative
secondary users results in intensified communication overhead and thus in energy con-
sumption elevation of cognitive radio networks. Cognitive radio and multiple-access
techniques can enhance spectral efficiency and enable massive connectivity [44]: spec-
trum sensing accuracy determines spectrum utilization efficiently through multiple-user
cooperative spectrum sensing.

Deep-learning-based cognitive radio technology can be harnessed throughout wireless
communication systems [45], increasing energy efficiency for shared spectrum sensing
by incorporating reinforcement learning algorithms and graph neural networks. Energy
detection is decisive in terms of time and resource efficiency [46], but its performance
is unsatisfactory in low-signal-to-noise ratio channel circumstances, due to its marginal
hardware complexity and the nonexistence of inferable licensed user information. Cooper-
ative sensing can mitigate the energy detection sensing performance issue in IoT networks,
but relevant detection cannot be attained in detrimental channel environments by deploy-
ing incompatible IoT applications. Stochastic resonance can elevate spectrum sensing
performance in weak signal detection in cognitive radios. Artificial-intelligence-enabled
intelligent radio [47] can be optimized to smoothly leverage the insufficient spectrum re-
sources and to exemplarily connect and configure large-scale wireless devices in spectrum
sensing and sharing-based communication systems. Deep- and machine-learning-based
automatic modulation recognition [48] can carry out spectrum sensing and efficiency across
cognitive radio networks and can articulate a lean network resource management.
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4. Clustering Algorithms for Cognitive-Radio-Based IoT Networks

The design and advancement of energy- and spectrum-efficient proposals, such as
cognitive radio sensor networks [49], articulate IoT, with clustering optimizing the energy
consumption. IoT enabling sensor-based network device connectivity is subjected to critical
data exchange interference [50] due to unlicensed spectrum overcrowding. Cognitive radio
IoT networks can solve the spectrum scarcity issue, but the sensor nodes use considerable
energy throughout dynamic spectrum sensing and switching. Channel spectrum sensing
can optimize energy efficiency across clustered cognitive radio IoT networks. A cognitive
radio sensor network senses event signals and conjointly interconnects in a multihop
mode [51] across variably operational spectrum bands. Nodes playing a part in cognitive
radio sensor networks grasp the network environment and have autonomous decision
making in relation to throughput intensification, discontinuity, and energy reduction, while
clustering algorithms extend the network lifetime.

Clustering and data aggregation are decisive in IoT-based wireless communication [52],
while energy efficiency can be attained by cognitive networks. Sensor node insufficient
energy and data sharing channel-related operations [53] affect energy performance across
cognitive radio sensor networks. Unequal clustering can level the energy use among
the clusterheads to extend the network lifetime. Energy- and spectrum-aware unequal
clustering surmounts energy and spectrum for prolonging cognitive radio sensor network
lifetime, while enhancing equity by establishing residual energy stability among the sensor
nodes and optimizing the network lifetime by decreasing the energy use. The spectrum
holes can be predicted through the use of deep belief network algorithms. A shared sensing
network comprises heterogeneous nodes intercommunicating [54] in relation to the specific
spectrum sensing output. The secondary user nodes of each cluster identify the spectrum,
leading to incessant power consumption in cognitive radio sensor networks.

Spectrum dynamics and energy use can be assimilated in network-stability-aware
clustering [55] that coherently handles interactions across cognitive radio sensor networks.
Cognitive radio chiefly addresses the streamlined harnessing [56] of available spectrum
bands. Cognitive radio networks should integrate spectrum management approaches
to allocate the unutilized spectrum band to the cognitive radio users by conforming to
a series of sensing-related operations. A cooperative spectrum sensing strategy with a
feature-based cluster classifier can reduce the time to accomplish optimal cognitive radio
communications. Such a classifier assimilates states and transitions across radio frequency
settings, in addition to primary user operations at constant periods to assist the spectrum
decision approach. A hybrid strategy integrating clustering and expected maximization
and reinforcement learning algorithms improves system operations with precise sensing
outcomes, and by detecting the optimum spectrum band by use of the hierarchical access
model deploying the interweaving technique, energy use is reduced.

Clustering arranges nodes into groups [57] so as to improve cognitive radio sensor
network connectivity and soundness. Contingent upon the channel availability, spectrum-
aware clustering algorithms cannot generally attain optimal clustering. Considering diverse
relevant factors, to set up the optimal clustering constitutes a difficult task in network opera-
tion enhancement. Weighted clustering metric-based spectrum-aware clustering algorithms
can lead to optimal clustering, concomitantly assessing temporal–spatial correspondence
and the confidence level, and unused energy is deployed to decide on clusterheads and
ally member nodes. The clusterhead sensing spectrum significantly diminishes spectrum
sensing energy use and increases data sharing opportunity after clustering. A cluster-based
cognitive industrial IoT can enhance spectrum use by sensing and accessing the inactive
spectrum [58]: the clusterheads carry out cooperative spectrum sensing to obtain conve-
nient spectrum, while the nodes use the nonorthogonal multiple access. Transmission
performance can be optimized by clustering algorithms, while energy balance is deter-
mined by clusterhead alternation. The nonorthogonal multiple access configured for the
cluster-based cognitive industrial IoT can efficiently enable the transmission operation of
each node.
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A coherent and green machine-learning-based dynamic clustering mechanism inte-
grating power demand and data volume can assist cognitive IoT networks in terms of
intelligent processing, secure delivery, and far-reaching awareness [59], leading to energy-
efficiency-based real-time implementations and information loss avoidance. Machine
learning techniques and clustering algorithms improve cognitive radio network perfor-
mance [60], solving the radio spectrum underutilization issue efficiently through the use of
learning and reasoning capabilities. Bayesian-learning-based intelligent clustering coopera-
tive spectrum sensing can optimize the performance of cognitive radio networks lacking a
primary user, in serious fading and shadowing circumstances of the sensing channel [61],
while also minimizing the rate loss and shared overhead. Cognitive radio technology
and the reaction–diffusion biological mechanism can configure streamlined cognitive IoT
spectrum allocation and adequate bioinspired algorithm-based clustering performance [62],
enhancing clustered throughput and decreasing convergence time, communication delay,
and computation complexity through intelligent service provisioning, reliable wireless
communication, and automatic network operation.

Cognitive wireless sensor networks can harness the inactive authorized frequency
band to find a solution to the spectrum resource scarcity issue [63]: by leveraging the
spectrum hole, spectrum sensing technology can deteriorate the synchronic interference
and improve the entire sensor network performance. As a result of the insufficient battery
energy and low sensor node processing capacity features, the energy efficiency and the
spectrum sensing performance have to be optimized. Particle swarm optimization algo-
rithms can assist cognitive wireless sensor networks by integrating a cooperative spectrum
sensing approach in relation to false alarm and detection probability, enhancing the system
throughput and energy efficiency. Cognitive radio and radar systems leverage dynamic
spectrum access techniques to solve spectrum congestion issues due to increased data
traffic [64]: dynamic spectrum access approaches share the radar and communication sys-
tem spectrum. Machine-learning-based efficient resource allocation can improve dynamic
clustered IoT network power management and machine-to-machine communication [65]
in terms of spectrum management.

Cognitive-radio-network-based real-time high-speed communication systems [66]
require effective resource distribution, spectrum sensing, ubiquitous computing services,
and power use issues. Backtracking search algorithms and cooperative node selection can
decrease computation complexity and energy consumption. Genetic algorithms and dy-
namic clustering techniques [67] are pivotal in conserving energy throughout IoT network
planning and designing procedures. High-energy clusterheads enable optimal data sharing
in wireless sensor networks. Cognitive radio technology develops user communication
reliability and the medium by coherent dynamic spectrum exploitation [68] in terms of spec-
trum distribution and channel access, optimizing radio resource use rate. The internet of
spectrum devices, through spectrum data analytics and accurate collective time–frequency
spectrum predictions, articulates spectrum-monitoring and spectrum-utilizing device net-
works [69] to facilitate a coherent spectrum distribution and management pattern for 5G
wireless networks, improving the inference performance.

Metaheuristic algorithms and deep-neural-network-based clustering techniques [70]
can improve IoT-related data clustering reliability and computation times. Intelligent
edge computing and deep learning convolutional neural networks [71] can assist resource-
constrained IoT devices, enhancing communication volume and inference latency through
data analytics. Deep-neural-network-based clustering techniques can maximize wireless
sensor network functioning period in IoT applications [72]: by modifying individual sensor
node roles, energy consumption is reduced and the network lifetime is extended (relevantly,
computation and message overheads also decrease). A hybrid delay-aware clustering-based
intelligent data fusion algorithm [16] can optimize wireless sensor network performance by
integrating the single-layer and multilayer cluster structure upsides. The energy-efficient
clustering and the dynamic clusterhead reselection algorithms can cut down the network
delay, energy use, and load balancing while increasing the network lifetime.
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5. Energy-Harvesting Technology for Cognitive-Radio-Based IoT Networks

Energy harvesting and cognitive radio technologies can assist wireless sensor net-
works [73], extending the operational activity of the sensor node and mitigating the unli-
censed spectrum congestion issue. Carefully distributing and organizing limited network
resources are decisive because of energy-harvesting process unpredictability and primary
user behavior randomness. Cognitive radio and energy-harvesting strategies [74] are in-
strumental in spectrum reutilization and lifetime extension for standard wireless networks.
Energy-harvesting cognitive radio networks comprising multiple primary and secondary
users integrate energy and joint cooperation modes. Sensing energy and data manageabil-
ity [75] shape the secondary performance of energy-harvesting cognitive radio networks.

As IoT sensor and devices use a massive volume of power in data transmission [76],
radio frequency energy harvesting can assist self-sustainable wireless systems whose
system rate loss is caused by external interference factors. The cognitive industrial IoT
can increase convenient spectrum resources [77] by harnessing the spectrum authorized
to primary users with the aim of not discontinuing primary user communications, but
increased spectrum sensing and prolonged operations may use much energy. Wireless
energy harvesting can acquire the radio frequency energy of a primary user signal, and
energy-efficient resource distribution in heterogeneous spectrum access modes can optimize
the standard transmission rate of the cognitive industrial IoT and meet energy-saving
demands. Cognitive radio techniques can be harnessed for wireless power transfer, power
consumption reduction, and energy harvesting [78] throughout the sensing, interaction,
and computation elements of IoT nodes. Backscatter communication can facilitate green
IoT operations through collective wireless communication and sensing.

Availability and ultrareliability demands, together with energy-harvesting technology
and dynamic spectrum access, impose specific performance compromises [79], typifying
sustainable and self-sufficient IoT networks, integrating sensing time, energy availability,
transmission diversity, volume of data frame packets, and spectrum accessibility. Energy
and spectrum resource scarcity, energy harvesting and cognitive radio technologies, and
wireless devices and system expansion [80] shape deep-learning-based IoT network perfor-
mance. Energy harvesting and cognitive radio technologies design deep-learning-based
IoT networks [81]: spectrally and energy-efficient transmission schemes should be artic-
ulated in large-scale connection and device support. Spectrum reutilization and lifetime
extension assist energy-harvesting cognitive radio networks [82]: the energy provision of a
primary transmitter can be reduced while meeting the requirements of minimal-throughput
networks and users.

A deep-Q-learning based algorithm can be deployed across energy-harvested cognitive
radio networks with the aim of optimal resource distribution [83]: primary users’ network
channel resources also allocated to secondary users and energy harvesting enable cognitive
radio network nodes to acquire environment energy to achieve operation sustainability. The
amount of environmental energy necessitates dynamic resource distribution to straighten
out network and throughput capacity. A deep-Q-learning-based algorithm can enhance
energy-harvested cognitive radio network resource distribution so it surpasses low quality
of service, massive state–space systems, energy and interference limitations, and slow
convergence. Nonorthogonal multiple access, energy-harvesting technology, and cognitive
radio systems can [84] optimize the energy and spectral efficiency of the 5G network for IoT
wireless sensor communication support. Deep-reinforcement-learning-based distributed
multidimensional resource management algorithms can be decisive in intelligent frequency,
the joint spectrum, and energy and time resource management, and thus decrease secondary
sensing user data packet losses while meeting the limitations on the maximum buffer
capacity, transmitting power, charging battery capacity, and primary and secondary sensing
user minimum data rate.

The spectral and energy efficiency of device-to-device communication can be en-
hanced by employing cognitive radio systems and radio frequency energy-harvesting
technologies [85] while stabilizing increased data rates and reducing power use in 5G
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communication networks. The primary and secondary transmitters interact with receivers
across energy-harvesting amplify-and-forward relays for nonorthogonal multiple-access-
based multicast cognitive radio networks [86], attempting to synchronously optimize the
network sum-rate, decrease energy use, and fulfill quality-of-service limitations. A low-
complexity solution approach can appropriately find a solution to the power distribution
issue over each relay, and subsequently decide on the relay optimizing the network goal
function, while adjusting spectrum and energy efficiencies and configuring the optimal
network sum-rate and lower computational complexity. Cognitive-radio-based nonorthog-
onal multiple-access systems can satisfy IoT-driven 5G network requirements [87]: power
domain nonorthogonal multiple access enables multiple users to share orthogonal resource
blocks, while cognitive radio technology facilitates opportunistic bandwidth use, and thus,
secondary users can access the licensed spectrum frequency while the operations performed
by primary users are not interrupted.

The massive increase in smart devices articulating content-centric data traffic amplifies
cellular-network-based group communication services [10]: multicasting can handle re-
sources adequately and enable simultaneous common data sharing to a significant volume
of users. The bandwidth large-scale communication demands of multimedia multicast
applications necessitate exemplary spectral resource use, while the connectivity, immense
capacity, and ultra-low-latency demands of the content-centric applications have led to
closer content to the users and short-range communication deployment, resulting in cellular
network compaction. Hybrid overlay–underlay cognitive radio networks can enable both
secondary user constancy and satisfactory total throughput [88]: in cooperative cognitive
radio IoT networks, secondary users can serve as a relay to assist in the primary trans-
mission and can access the spectrum for data sharing in overlay mode. The secondary
nonrelay nodes share data simultaneously with the active primary user in underlay mode.
Cognitive radio networks can solve the spectrum scarcity issue in wireless communication
systems [89], enabling dynamic opportunistic use by secondary users when primary users
do not use the spectrum. Spectrum sensing facilitates the presence detection of primary
users, while routing assists in coherent device communication, with both of them being
pivotal in cognitive radio network IoT-based systems.

Nonorthogonal multiple access can enhance 5G cellular network throughput and
spectrum efficiency and facilitate ultrareliable and low-latency communications [90], artic-
ulating spectrum- and energy-efficient transmission schemes across clustered IoT smart
devices and massive system connectivity, while energy-harvesting algorithms and random
access techniques can decrease signaling overhead, energy use, and packet latency. A
game-based fair resource allocation algorithm can enable stable cooperation between pri-
mary users and secondary users [91] across wireless powered cooperative cognitive radio
networks through streamlined resource allocation. Nonorthogonal multiple access can
bring about spectrum efficiency [11] across wireless networks. In an uplink nonorthogonal
multiple-access cognitive system, secondary users can collectively transfer data, throughout
the same spectrum resources, to the cognitive base station, and uninterrupted interference
discontinuation is applied to retrieve secondary-user-transmitted signals. A wireless energy
harvester can extend secondary users’ operations.

Energy-harvesting-powered cognitive machine-to-machine networks can mitigate the
intensifying deficient spectrum, as a result of large-scale smart devices and simultaneous
access demand that bring about operational deterioration and massive energy use [92],
by ensuring the quality of service and leading to green communication through deep-
reinforcement-learning-based algorithms in terms of energy efficiency optimization. The
end-to-end throughput can be assessed and enhanced in wireless-powered cognitive IoT
networks through the use of a well-organized deep-neural-network-based relay selection
scheme [93]: multiple energy-harvesting relays are harnessed unselectively to enable data
sharing to multiple users from a source node across energy-harvesting circuit practical non-
linearity, decreasing computational complexity significantly. Cognitive radio technology
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and nonorthogonal multiple-access techniques [94] can assist energy harvesting in spectral
and energy efficiency optimization across IoT networks.

6. Discussion

Cognitive radio technology and nonorthogonal multiple-access techniques [95] can
solve the spectrum scarcity issue and enable relevant enhancement in terms of spectral
efficiency, particularly in combination. Nonorthogonal multiple access constitutes a feasible
wireless access scheme [25] in 5G wireless communication systems. A distributed cognitive
cellular network can incorporate machine learning and cognitive radio technology in a
multiagent system [96] for efficient dynamic spectrum resource transfer. As heterogeneous
radio access networks with distinct features may operate together, cognitive radio networks
have to opt for the optimal network [97] through intelligent spectrum management and ma-
chine learning techniques. Green cognitive radios can generate high energy efficiency [27]
in wireless communications.

Data-driven and wireless communication technologies, by integrating a large vol-
ume of end users, have led to a crowded radio spectrum [48], while groundbreaking
electromagnetic environments have generated unstable and unsound services. The insuffi-
cient copresence capabilities of IoT wireless standards [98] bring about counterproductive
spectrum use and collective performance deterioration. Industrial IoT applications have
strict quality-of-service demands and low error tolerance. Dynamic spectrum access tech-
niques can relevantly take advantage of interference mapping across various radio space
dimensions. Low-power wide-area networks constitute the main communication platform
harnessed in IoT applications [99]: spectral congestion issues can be straightened out by
cognitive radio technologies. By exploiting spectrum holes [100], cognitive radio improves
radio resource use. Pivotal in cognitive radio networks, dynamic spectrum allocation algo-
rithms grant cognitive users access to convenient frequencies and bandwidths to interact
opportunistically and to reduce primary and secondary user interference. Reinforcement
learning techniques, swiftly inspecting the volume of data in a model-free way, significantly
ensure dynamic spectrum allocation operations.

Wireless sensor networks assist IoT devices [101] in physical condition observing and
recording. The sensor nodes are self-governing and articulate an intercommunication topol-
ogy in an improvised way, but have limited resources for energy administration, processing
power, and data storage and sharing. Radio-frequency-based far-field wireless power trans-
fer can optimize extensive IoT network power [102], but as radio frequency communication
signals integrate both information and energy, simultaneous wireless information and
power transfer can wirelessly charge IoT devices. Cognitive and software-defined radio
enhance spectrum use and optimize the leverage of frequency bands between users [103], as
there is an incessant request for wireless devices that can adjust to various channel features,
while functioning on high distribution data-rates deploying heterogeneous communica-
tion bands. Deep-learning-based cognitive radio networks are pivotal in spectrum hole
grasping and location [2], and thus, primary and secondary users can smoothly distribute
network spectrum resources among them, enabling ubiquitous connectivity across the
internet-of-things-driven communication infrastructure through 5G wireless technologies.

7. Conclusions

Multiple-access schemes that can increase the volume of users transmitting over a
medium, together with cognitive radio networks that enable harnessing vacant frequency
bands of a spectrum in a dynamic or opportunistic manner [104], can harmonize increas-
ing wireless network demands, optimizing spectrum sensing, clustering algorithms, and
energy-harvesting technology for cognitive-radio-based IoT networks in terms of deep-
learning-based nonorthogonal multiple-access techniques. The nonorthogonal multiple-
access scheme has high spectral efficiency and operates on the concept of signal superposi-
tion coding at the transmitter and sequential interference discontinuation at the receiver.
Spectrum requests as a result of the mounting intensification in mobile data traffic are
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straightened out through exemplary multiple-access schemes for cognitive radio networks.
Cognitive radio can diminish the consequences of spectrum under exploitation and scarce-
ness resulting from the vast progression of wireless applications [41], optimizing both
spectral and energy governance adequately. The adoption of internet of things devices,
typically in huge volumes, across cutting-edge intelligent systems [105] has resulted in
a massive wireless bandwidth and cognitive radio demand. Spectrum sensing can en-
sure a copresence between licensed users and unlicensed IoT devices [44] with the aim of
streamlined spectrum utilization across cognitive-radio-based IoT communications.

8. Specific Contributions to the Literature

Our systematic review clarifies that cognitive radio is pivotal in the utilization of an
adequate radio spectrum source [32], with spectrum sensing optimizing cognitive radio
network operations; that opportunistic spectrum access and sensing [34] can boost the
efficiency of cognitive radio networks; and that cooperative spectrum sharing together with
simultaneous wireless information and power transfer [106] can increase spectrum and
energy efficiency in 6G wireless communication networks and across IoT devices [107–110]
for efficient data exchange. In addition, the 5G-enabled IoT articulates fast and low-
latency data sharing and elevated communication coverage [111], attaining streamlined
and sound massive node connections. Communication operations and persistence in
cognitive radio networks [32] are significantly determined by accurate spectrum sensing
function performance. Spectrum sensing is pivotal in cognitive radio technology due to
the shadowing, fading, disturbance, and time-varying characteristics of wireless channels.
Energy and matched filter detections are the most extensively deployed spectrum sensing
strategies. The energy detector performance involves precise threshold expression selection
in cognitive radio systems, where spectrum sensing performance is typified by leveraging
the receiver operating characteristic curve.

Cognitive radio and nonorthogonal multiple access [18] are pivotal in 5G wireless
networks. Harnessing nonorthogonal multiple-access techniques into cognitive radio net-
works can optimize spectrum efficiency and system capacity. Cognitive radio networks can
assist in spectrum scarcity through spectral resource distribution between heterogeneous
systems and users. Spectrum sharing across dense cognitive radio multicast networks
is elaborate as a result of the strict interference limitations demanded by the primary
users [10]: cognitive-radio-enabled multicasting ensures variability to service providers for
enabling multicast group large-scale deployment in a spectrum-coherent fashion. As spec-
trum resource shortage limits 5G-enabled IoT advancement, cognitive radio together and
nonorthogonal multiple access are suitable spectrum sharing technologies in spectrum use
enhancement. Nonorthogonal multiple access configures increased deep-neural-network-
based throughput and spectral efficiency [112] for 5G systems. A heterogeneous radio
frequency configuration for wireless industrial networks [13] can enable various quality-
of-service requirements of industrial IoT devices. A wireless sensor network across a
sizable industrial facility integrates self-contained sensor devices deployed for analysis [15]:
integrated computing, sensing, reliable communication, and distributed data processing
technologies are pivotal in configuring sensor record supervision and transfer over a wire-
less network, correlating data perception, gathering, and handling in relation to perceived
objects across the network coverage region.

9. Limitations and Further Directions of Research

As we performed research based only on ProQuest, Scopus, and Web of Science
sources and in the past few years, when we identified the most robust correlations, we
possibly ignored some valuable research on optimizing spectrum sensing, clustering al-
gorithms, and energy-harvesting technology for cognitive-radio-based IoT networks in
terms of deep-learning-based nonorthogonal multiple-access techniques. Distinct review
software systems and bibliometric network construction and visualization tools would
also generate different outcomes. Future research should investigate the use of extended
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reality technologies and artificial-intelligence-based spectrum sensing, clustering, and en-
ergy harvesting in digital-twin-based virtual factories supported by cognitive-radio-based
IoT networks.

10. Practical Implications

Long-range wide-area networks can assist IoT applications [113] by integrating large
volumes of actively connected devices in process and environment monitoring and in
process controlling. The received signal strength indicator-based localization can provide
IoT device area data. Due to high bandwidth demands, cognitive radio technology [114] can
assist unutilized communication spectrum bands for 5G wireless networks. In addition, the
6G-enabled IoT requires adequate spectrum resources [115] to offer large-scale IoT terminal
spectrum access. Traditional orthogonal multiple access confines the entire utilization
of limited spectrum resources: a nonorthogonal multiple-access-based hybrid spectrum
access scheme can assist 6G-enabled cognitive IoT that can access both the inactive and
active spectrum, notwithstanding the primary user state in relation to spectrum sensing,
clustering algorithms, and energy-harvesting technology for cognitive-radio-based IoT
networks in terms of deep-learning-based nonorthogonal multiple-access techniques.
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