
Citation: Li, M.; Zhang, J.; Lin, J.;

Chen, Z.; Zheng, X. FireFace:

Leveraging Internal Function

Features for Configuration of

Functions on Serverless Edge

Platforms. Sensors 2023, 23, 7829.

https://doi.org/10.3390/s23187829

Academic Editors: Stefan Nastic,

Patrizio Dazzi, Konstantinos Tserpes

and Sashko Ristov

Received: 3 August 2023

Revised: 1 September 2023

Accepted: 8 September 2023

Published: 12 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FireFace: Leveraging Internal Function Features for
Configuration of Functions on Serverless Edge Platforms
Ming Li 1,2,3 , Jianshan Zhang 4 , Jingfeng Lin 1,2,3 , Zheyi Chen 1,2,3,* and Xianghan Zheng 1,3

1 College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China;
210310011@fzu.edu.cn (M.L.); 221027069@fzu.edu.cn (J.L.); xianghan.zheng@fzu.edu.cn (X.Z.)

2 Key Laboratory of Spatial Data Mining and Information Sharing, Ministry of Education,
Fuzhou 350002, China

3 Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University,
Fuzhou 350116, China

4 College of Computer and Control Engineering, Minjiang University, Fuzhou 350116, China;
jszhang@mju.edu.cn

* Correspondence: z.chen@fzu.edu.cn

Abstract: The emerging serverless computing has become a captivating paradigm for deploying
cloud applications, alleviating developers’ concerns about infrastructure resource management by
configuring necessary parameters such as latency and memory constraints. Existing resource configu-
ration solutions for cloud-based serverless applications can be broadly classified into modeling based
on historical data or a combination of sparse measurements and interpolation/modeling. In pursuit
of service response and conserving network bandwidth, platforms have progressively expanded
from the traditional cloud to the edge. Compared to cloud platforms, serverless edge platforms
often lead to more running overhead due to their limited resources, resulting in undesirable financial
costs for developers when using the existing solutions. Meanwhile, it is extremely challenging to
handle the heterogeneity of edge platforms, characterized by distinct pricing owing to their varying
resource preferences. To tackle these challenges, we propose an adaptive and efficient approach
called FireFace, consisting of prediction and decision modules. The prediction module extracts the
internal features of all functions within the serverless application and uses this information to predict
the execution time of the functions under specific configuration schemes. Based on the prediction
module, the decision module analyzes the environment information and uses the Adaptive Particle
Swarm Optimization algorithm and Genetic Algorithm Operator (APSO-GA) algorithm to select the
most suitable configuration plan for each function, including CPU, memory, and edge platforms. In
this way, it is possible to effectively minimize the financial overhead while fulfilling the Service Level
Objectives (SLOs). Extensive experimental results show that our prediction model obtains optimal
results under all three metrics, and the prediction error rate for real-world serverless applications is
in the range of 4.25∼9.51%. Our approach can find the optimal resource configuration scheme for
each application, which saves 7.2∼44.8% on average compared to other classic algorithms. Moreover,
FireFace exhibits rapid adaptability, efficiently adjusting resource allocation schemes in response to
dynamic environments.

Keywords: serverless computing; function as a service; configuration optimization; SLO

1. Introduction

With the progression of cloud computing, back-end infrastructure maintenance is
increasingly decoupled from application development. As an emerging application de-
ployment architecture, serverless computing (function-as-a-service, FaaS) has garnered
widespread attention in recent years owing to its nimble and uncluttered management.
Prominent public cloud platforms offer various serverless computing products, such as
AWS Lambda [1], Azure Functions [2], and Google Cloud Functions [3]. Following this

Sensors 2023, 23, 7829. https://doi.org/10.3390/s23187829 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187829
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3456-6160
https://orcid.org/0000-0002-3006-1328
https://orcid.org/0009-0004-0096-8641
https://orcid.org/0000-0002-6349-068X
https://orcid.org/0000-0001-8047-3059
https://doi.org/10.3390/s23187829
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187829?type=check_update&version=2

Sensors 2023, 23, 7829 2 of 26

paradigm, developers are liberated from concerns surrounding infrastructure resource
management, as the platform shields them from such intricacies. Hence, developers can
focus on their cloud functions by employing a high-level programming language (e.g.,
Java or Python), configuring necessary parameters, and uploading these functions onto
the serverless platform [4]. When deployed, these functions can be invoked by APIs or
HTTP requests [5]. Furthermore, developers can establish invocation relationships between
these deployed serverless functions to facilitate seamless collaboration and data exchange,
culminating in a fully-fledged serverless application. As serverless computing continues
its ascent, platform providers have recently redirected their attention from the cloud to the
edge [6], which offers less transmission latency and as such aligns harmoniously with the
lightweight and rapid response ethos underpinning serverless computing.

Although serverless computing alleviates developers’ concerns about the intricate
details of the back-end infrastructure, it requires the configuration of essential parameters
such as latency and memory constraints that directly influence the deployment cost of
functions [7,8]. However, due to the black box nature of the serverless platform, it is
extremely challenging for developers to determine the optimal configuration of each
function within an application. A recent survey indicated that a staggering 47% of serverless
functions in production adopt default memory sizes [9], indicating that developers often
neglect resource sizing, resulting in avoidable extra costs.

The existing solutions for configuring resources in serverless applications can be clas-
sified into two principal categories. The first category entails modeling performance based
on historical datasets of functions, which can be used to predict the execution time of
functions under diverse configurations, thereby facilitating the selection of an appropriate
configuration plan [9–11]. However, this category of solutions is limited due to its reliance
on the availability of extensive historical data, and fails to address data scarcity when new
functions are submitted. The second category involves determining the optimal memory
size for a serverless function through a combination of sparse measurements and interpola-
tion/modeling techniques. This category of solutions first executes functions with the given
sampling point configurations selected through traversal [12], Bayesian optimization [13],
TPE [14], etc. Next, it aggregates execution data and constructs a performance model to
identify an appropriate resource configuration scheme. Nevertheless, its applicability to
serverless edge platforms is hindered by exorbitant pricing compared to cloud platforms
due to limited resource availability. Furthermore, the existing solutions must pay more
attention to the disparity in resource preferences across distinct edge platforms, resulting
in divergent resource pricing.

To address these challenges, in this paper we design and implement a resource config-
uration approach for serverless applications called FireFace. FireFace serves as a guiding
beacon for developers, aiding them in selecting an optimal resource configuration scheme
(including CPU, memory, and edge platform) for each function within the application.
By leveraging this approach, we harmonize the dual objectives of cost minimization and
satisfaction to SLO. Unlike other approaches or platforms that intertwine memory with
CPU and increase CPU by tuning memory, we advocate for a clear separation between
CPU and memory decisions. This pattern can avoid resource wastage, especially when
confronted with computation-intensive functions. FireFace comprises two core modules, a
prediction module and a decision module. For a newly submitted serverless application,
the prediction module extracts the internal features of all functions and then harnesses
this information to predict the execution time under specific configuration schemes using
well-trained models. Based on the prediction module, the decision module analyzes the
environmental information, for which it employs the Adaptive Particle Swarm Optimiza-
tion algorithm using Genetic Algorithm operators (APSO-GA) to generate the optimal
configuration scheme for each function within an application.

In summary, the key contributions of our work are as follows:
(1) We provide a framework for predicting the execution time of newly submitted

serverless functions. By analyzing internal feature information extracted through static

Sensors 2023, 23, 7829 3 of 26

code analysis, our framework exhibits the excellent ability to predict function execution
time for given configurations (Section 3.3).

(2) We propose a cost-effective resource configuration algorithm based on APSO-GA.
This algorithm empowers developers to configure optimal schemes for each function,
including CPU, memory, and platform, thereby minimizing costs while fulfilling SLO.
Moreover, the algorithm demonstrates adaptability when the edge environment changes
(Section 3.4).

(3) We implement the FireFace prototype. Our experimental results show that FireFace
can provide accurate predictions for serverless applications, with a prediction error of
around 5%. Meanwhile, the resource configuration scheme generated by FireFace can save
7.2∼44.8% on overhead compared to other classic algorithms (Section 4).

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 presents the detailed design of FireFace. Section 4 evaluates FireFace. Finally,
Section 5 concludes the paper.

2. Related Work

Configuring appropriate resources for functions is a worthwhile research topic within
the serverless computing domain [15] involving CPU and memory size configuration,
deployment platform selection, etc. Costless [16] analyzes the factors that affect the price
of serverless computing services, proposing a systematic approach to reduce the cost of
serverless workflows. This approach effectively assesses the feasibility of fusing multiple
functions into a larger function, and decides on memory limit assignment for each serverless
function. Haneul et al. [17] formulated a Constrained Markov Decision Process (CMDP)
problem and converted it into a Linear Programming (LP) model to obtain an optimal
stochastic policy. The proposed method strives to minimize memory resource consumption
and ensure timely task completion by strategically managing container instances. AMPS-
Inf [18] leverages a constrained optimization formulation to explore model partitioning
and memory configuration for neural networks deployed on serverless platforms with the
objective of cost reduction while satisfying SLOs. However, these approaches suppose that
function execution time under various configurations are known, a condition that may not
be applicable in real-world conditions.

Several approaches have been explored using historical data to train prediction models
for determining optimal function configurations. AWS Compute Optimizer [19] utilizes
machine learning techniques to analyze historical utilization metrics and recommend
the best resource configuration for applications, thereby enhancing cost efficiency and
performance. It can identify the optimal memory configuration for lambda-based functions
as well. However, a limitation of this approach is that it only applies to functions invoked
on the AWS platform at least 50 times in the past two weeks. Sizeless [9] builds a multi-
objective regression model that captures the runtime information of a serverless function
under a specific memory configuration as input. The model then predicts the execution time
of this function in other memory configurations, aiming to select the optimal configuration
that minimizes cost while satisfying latency constraints. SAAF [20] is a tool designed to
analyze the performance of FaaS workloads, resource utilization, and infrastructure as a
means of facilitating accurate performance predictions. It estimates the execution time of
FaaS functions through Linux CPU time accounting principles and multiple regression. This
tool is further employed by in the same authors’ follow-up work [11] to identify appropriate
memory configurations, leading to a reduction both in execution time and cost. λDNN [21]
is a cost-efficient function resource provisioning framework that selects a suitable resource
configuration (i.e., function number and memory size) for serverless functions by providing
predictable performance for serverless Distributed Deep Neural Network (DDNN) training
workloads. It can save on the budget of provisioned functions while guaranteeing DDNN
training performance with serverless functions. DiSDeL [22] is a runtime framework
tailored for deep learning tasks. It allocates memory based on the DL model, dataset,
runtime, and execution logs stored in the container. StepConf [10] establishes a memory–

Sensors 2023, 23, 7829 4 of 26

execution time relationship,= by considering scenarios with multicore-friendly programs
and those limited to single-threaded performance. By fitting exponential and inverse
functions, appropriate memory and concurrency numbers can be determined to improve
the performance of DL workloads on a serverless platform. However, these methods
necessitate the collection of a stable amount of training data for each serverless function,
and are usually simple models designed for a specific type of function.

To address the aforementioned challenges, various alternative approaches have been
proposed seeking to determine the optimal memory size for serverless functions through
the combination of sparse measurements and interpolation/modeling. COSE [23], as one of
the earliest such methods, employs Bayesian techniques for resource allocation in serverless
applications. It effectively learns a performance model that describes the relationship be-
tween memory size and execution time using limited measurement points. Consequently,
COSE can decide the appropriate configuration and placement for serverless applica-
tions. Ali et al. [13] extended the capabilities of COSE to accommodate applications with
arbitrary acyclic service graphs. The AWS Lambda Power Tuning tool [24] adopts an ex-
haustive search algorithm to ascertain the optimal memory level based on cost or execution
time considerations. However, this process mandates a minimum of 225 requests to the
function by default. Maff [12] is a Python-based framework that automates the process
of searching for the optimal memory configuration of a FaaS function. The framework
employs three optimization algorithms, including linear, binary, and gradient descent,
to find the minimum cost. FaaSDeliver [14] considers the heterogeneity of serverless plat-
forms and makes separate decisions for memory and CPU. It selects the most cost-efficient
function delivery policy for different functions and computing devices based on the Tree-
structured Parzen Estimator (TPE). However, it is essential to note that these approaches
necessitate actual application execution to measure performance at different memory sizes.
Experiments with FaaSDeliver have demonstrated that it typically requires several dozen
iterations at least, with more complex cases requiring 100 to 200 iterations. While this may
be practical for cloud platforms, this many iterations can incur significant overhead on
resource-constrained edge platforms. Moreover, the separation of CPU and memory makes
the original one-dimensional problem into a more challenging two-dimensional problem,
complicating interpolation.

The solution that we propose in this paper has several highlights compared to the
existing methods:

(1) It eliminates the need to use previously collected historical datasets in newly
submitted serverless applications.

(2) The process of generating an optimized configurations avoids significant costs, as
the actual execution of the application is not necessary.

(3) The variability and dynamics of edge platform pricing are taken into consideration.

3. Approach
3.1. Problem Formulation

In this paper, we translate the task of resource configuration for serverless applications
into an optimization problem centered around cost efficiency. There are m edge platforms
provided for developers, symbolized as E = {e1, e2, . . . , em}, with each platform repre-
sented by the tuple ei = (cpu, mem), where ei.cpu and ei.mem denote the pricing of the
platform’s CPU and memory, respectively. The pricing for CPU and memory varies due
to the distinctive resource preferences exhibited by each edge platform. The serverless
application is denoted by the symbol F = { f1, f2, . . . , fn}, where fi denotes the i-th function,
and pi = (cpu, memory, plat) indicates the configuration scheme assigned to function fi.
Referring to the settings of serverless platforms such as AWS and Google, we set the value
range for CPU to be 0.2 to one core in increments of 0.2, while the value range for memory

Sensors 2023, 23, 7829 5 of 26

spans from 128 MB to 1024 MB, progressing in 128 MB increments. For a function fi, the cost
of executing one time is calculated as follows:

ci(pi) = ti(pi) ∗msc(pi) (1)

msc(pi) = pi.cpu ∗ epi .plat.cpu + pi.memory ∗ epi .plat.mem (2)

where ti(pi) denotes the function execution time under the configuration pi and msc(pi)
denotes the cost per millisecond incurred by the configuration, encompassing both CPU and
memory usage. As an example, we consider an edge platform e1 with a CPU pricing of 0.02
per core-millisecond and a memory pricing of 0.0008 per MB-millisecond. Consequently,
when fi is configured as pi = (0.4, 256, 1) and the function executes for one millisecond
under this configuration, it incurs a cost of 1 × (0.4 × 0.02 + 256 × 0.0008) = 0.2848.

Finally, we formulate the problem as follows:

minimize
n

∑
i=1

ci(pi) ∗ callsi (3)

subject
n

∑
i=1

ti(pi) ∗ callsi ≤ SLO (4)

where SLO represents the upper boundary of acceptable latency of applications specified
by the developer and callsi denotes the number of times the function fi has been called.
As shown in Equation (4), the application’s execution time amounts to the summation of
the execution time of its constituent functions, with each multiplied by the corresponding
number of calls. In this study, we neglect the data transfer latency between functions in
light of the rapid data transfer rate between edge platforms. Our objective is to minimize
the overall cost while satisfying the SLO. Although this problem can be solved through
traversal, the reality is that such an approach soon becomes prohibitively expensive. For in-
stance, when a four-function application comprises five, eight, and five choices of CPUs,
memories, and platforms, respectively, the number of feasible configurations amounts
to 1604 = 655, 360, 000. Moreover, executing the application under each configuration
scheme for verification purposes imposes significant overhead. To address this challenge
in a cost-effective way, we propose FireFace, a method that leverages the internal features
of each function within a serviceless application to identify the most optimal resource
configuration scheme.

3.2. FireFace Overview

The overall architecture of FireFace is presented in Figure 1. FireFace is designed to
guide developers to configure functions within serverless applications, which can be de-
ployed on edge platforms to minimize the cost while satisfying the SLO. FireFace consists of
two main components: first, the prediction module is responsible for extracting features of
each function within the serverless application; drawing upon this information to efficiently
predict the function execution time under a specific configuration; second, the decision
module, based on an APSO-GA algorithm, converges iteratively to obtain the “optimal”
configuration scheme. The decisionmaking process draws insights from the application
structure, edge platform pricing table, and prediction model. Furthermore, Steps 4 and 5
are designed to enhance the adaptability of the prediction model and configuration scheme
in response to the dynamic nature of the edge environment. The process is as follows:

Step 0: Prediction model training (offline). Prior to application, the prediction model
requires pretraining. Our generalized model is not tied to specific functions, and can be
trained using historical data from prior execution logs, publicly available datasets, or well-
trained models from external sources. This training process is devoid of any additional cost
for developers. To quickly build the prediction model, we design a function generator and

Sensors 2023, 23, 7829 6 of 26

a set of configurations (step 0.1). Stable data under these configurations are then collected
(step 0.2), forming the dataset used for model training (step 0.3).

Step 1: Extracting feature information. The developer submits a serverless applica-
tion, the corresponding constituent functions and the SLO (step 1.1). Then, the calling
relationships between functions and their feature information are extracted using our pre-
vious work FunOff [25] and DNNOff [26] (step 1.2), serving as an input to the prediction
model for execution time estimation under given configurations (step 1.3).

Step 2: Configuration scheme decision (static). After obtaining the application struc-
ture (step 2.1), edge platform pricing table (step 2.2), and function execution time (step 2.3),
the APSO-GA algorithm efficiently determines the optimal configuration scheme (step 2.4).

Step 3: Function deployment and execution. Based on the configuration scheme
from Step 2, each function is deployed to the corresponding platform with specific CPU
and memory settings (step 3.1). When the serverless application executes, the platform runs
the functions sequentially and returns the application’s execution result to the user (step
3.2). Simultaneously, FireFace captures the execution time of each function for subsequent
prediction model optimization (step 3.3).

Step 4: Prediction model optimization (online). The prediction module amalgamates
the collected function execution time with previously extracted function features to generate
new data (step 4.1). When a substantial volume of stable data has been amassed, these
datasets are added to the database (Step 4.2). Subsequently, an incremental learning
approach is employed (Step 4.3) to enhance and fine-tune the prediction model.

Step 5: Configuration scheme optimization (dynamic). The ebb and flow of edge
platform resource utilization introduces a dynamic facet that encompasses pricing adjust-
ments aligned with resource preferences (step 5.1). To cope with this, our algorithm swiftly
adapts to the new environment, combining insights gleaned from the changed pricing table
and the previous configuration scheme (step 5.2).

Serverless Edge
Platforms

FireFace

Request(Serverless App、Functions and SLO)

Result

f1 Feature Information e1

Serverless Function
Feature Information

Serverless Edge
Platform Pricing Table

Configuration Scheme

P1

Pn

emfn Feature Information

Extraction
Model

f
f

f
f

Offline Phase

DeveloperAPP

APSO-GA

Application Structure

Prediction
Model

Online Phase

Multiple Configurations
Dataset

Collection

Function Generator

Database

Dataset
Select

Time

Features

CPU

Memory

1.e cpu 1.e mem

.me cpu .me mem

……

…

…

Prediction Module Decision Module

Serverless Functions

0.1 0.2

0.3

1.1

1.2

1.3

2.1

2.3

2.2

2.4
3.1

3.2

3.34.1
4.2

4.3

5.1

5.2
f f f…

(cpu, memory, plat)

(cpu, memory, plat)

Platform 1

Platform 2

Platform m

Figure 1. Overview of the FireFace framework.

3.3. Prediction Module

One of the challenge involved in configuring appropriate resources for a newly sub-
mitted application is the absence of historical data. In response to this predicament,
the prediction module acquires the application structure and internal features of each

Sensors 2023, 23, 7829 7 of 26

function through static code analysis. Using the pretrained prediction model, this mod-
ule can estimate the application’s execution time under a specified configuration scheme
without the need for actual execution on the serverless edge platform.

3.3.1. Extraction of Application Structure and Internal Features

This section introduces the extraction of the application structure and the functions
feature, leveraging the methodologies proposed in previous works [25,26]; in this paper,
we mainly focus on Java and DNN-based applications.

Application structure: our prior work obtains the application structure through the
Soot tool [27] or through analysis of configuration files. In Java applications, the structure
manifests as a directed acyclic graph in which each node represents an object method
and the edges signify the invocation relationships and the number of calls between meth-
ods. For DNN applications, the structure assumes the form of a workflow, with nodes
representing submodules comprising multilayer DNN layers and edges indicating the
direction of the data flow. In serverless applications the structure tends to be simpler,
and is often represented as a chain of functions, which is a more streamlined version of
directed graphs or workflows. Thus, the methodologies proposed in our prior works can
be seamlessly extended to address this simpler form. In the present paper, the application
structure is extracted in order to count the number of function invocations required by
Equations (3) and (4).

Function internal features: the internal features of a function encapsulate vital in-
formation about its complexity. In our previous experimental results we were able to
identify certain features that have a substantial impact on function execution time, which
are summarized in Table 1.

Table 1. Information on internal features that affect the execution time of a function.

Application Type Function Type Features

Java Method blockDepth, percentBranchStatements, complexity, statement, calls

DNN Normalization (Norm) input data size, num-features
Convolution (Conv) input data size, in-channels, out-channels, kernel-size, stride, padding
Relu input data size
Pooling (Pool) input data size, output data size
Fully-Connected (Fc) input data size, output data size

The principal parameters that influence the execution time of a Java function (method) en-
compass the following: (1) blockDepth denotes the function’s depth; (2) percentBranchStatements
indicates the percentage of branch statements; (3) complexity signifies the cyclomatic complexity
of the method; (4) statement represents the number of statements in the method; and (5) calls
indicates the number of internal calls within the method.

For the DNN function (submodule), its composition comprises diverse DNN layers.
Because the parameters and execution time of different types of DNN layers are distinct,
we developed the various types of layers using separate models. Table 1 is missing
several types of layers, such as flatten layers and dropout layers. This is because empirical
experimentation has revealed that the time incurred by these layers is typically at the
microsecond level, and as such can be neglected.

Notably, this subsection primarily constitutes an application of preliminary works that
warrant a succinct portrayal herein. Further technical details can be found in [25,26].

3.3.2. Prediction Model Construction (Offline)

(1) Generation of the Training Dataset
To ensure the robust training of our prediction model, we built a comprehensive

dataset encompassing diverse function types and their execution under varied resource con-
figurations. Specifically, for Java functions we implemented sixteen common computation-

Sensors 2023, 23, 7829 8 of 26

intensive functions, including string hashing, floating-point arithmetic, and recursive
calculations. These functions are susceptible to both CPU and memory size. For DNN
models, we crafted a coding program that randomly generates multi-layer DNN modules.
Although the untrained DNN models bear no intrinsic significance, they can provide rich
training data for our prediction model.

We executed these functions twenty times with various memory and CPU combina-
tions, taking the average value as the final execution time. Figure 2 shows the function
execution time recorded for each configuration and integrated with the internal features to
generate a rich historical dataset. Next, we describe the process of training the prediction
model using this dataset.

CPU
Memory

Feature
Information

Execution
Time

Configuration
Information

Running
Container

Serverless
Function

Static Analysis

Dynamic Analysis

X

Y

Figure 2. Generation of the dataset.

(2) Random Forest Regression Algorithm
The Random Forest Regression (RFR) Algorithm [28] is a prominent machine learning

paradigm that has proven to be both effective and flexible in characterizing nonlinear
relationships. Here, we deploy this algorithm to construct the prediction model by leverag-
ing the dataset previously generated in the preceding subsection. We utilized 80% of the
dataset for training the prediction model while reserving the remaining 20% to assess the
accuracy of the trained model.

To improve the performance of the model, we optimized five key parameters of the
Random Forest algorithm:

• n_estimators: denotes the number of decision trees; increasing this value bolsters the
stability and accuracy of the model.

• max_ f eatures: denotes the number of features considered in each decision tree; this
parameter offers control over the degree of overfitting and underfitting.

• max_depth: denotes the maximum depth of each decision tree; setting an appropriate
maximum depth enhances the model’s generalization capability.

• min_split: denotes the minimum number of samples required for internal node split-
ting; raising this value mitigates over-splitting, thereby augmenting the model’s
generalization capacity.

• min_lea f : denotes the minimum number of samples mandated for leaf nodes; appro-
priate tuning of this parameter prevents overfitting and guarantees that each leaf node
possesses a sufficient number of samples for reliable prediction.

Considering these parameters’ effects on accuracy and prediction time, our prediction
models are defined as shown in Table 2. In Section 4, we further discuss the prediction
accuracy of these models under their respective parameter configurations and compare
their performance with other regression methods.

Sensors 2023, 23, 7829 9 of 26

Table 2. Model parameters.

Type max_depth max_ f eatures min_lea f min_split n_estimators

Method None sqrt 2 5 50
Norm 10 log2 1 10 50
Conv None sqrt 4 2 50
Relu None log2 1 5 50
Pool None log2 4 10 50
Fc 10 sqrt 4 10 50

3.3.3. Prediction Model Optimization (Online)

To cope with real-time data streams and dynamic environments, we have embraced
an incremental learning approach [29] to ensure the ability of the prediction model to adapt
to environmental changes. The specific steps are as follows.

Generation of New Data. As FireFace collects the execution time of a function from
the serverless platform, it combines this information with the pertinent function features
to generate a new piece of data. To reduce the impact of execution time jitter on model
training, this new data item is not directly incorporated into the training dataset. Instead, it
is temporarily stored in an alternate dataset. Upon amassing a sufficient volume of data, we
curate the dataset by excluding extreme values and calculating the average of the remaining
data, thereby obtaining the final data entry for the function.

Model Optimization. When the processed new data reach a predetermined threshold,
they are added to the database and incremental learning of the Random Forest model is
performed. Incremental learning is a localized update mechanism that adapts the model
to new data without retraining the whole model. The optimization process is as follows:
first, the entire dataset is divided into small batches of data blocks to expedite the model
optimization process; second, each data block is employed as an input to each decision tree
within the random forest for training and updating of the model parameters. The decision
tree model calculates the gradient based on the loss function and updates the model
parameters based on the learning rate setting. In this way, the model gradually refines itself
to suit the evolving environment. Considering the independent nature of each decision
tree’s training process, we leverage parallel processing to handle each data block, thereby
improving the overall training efficiency. Finally, the incremental learning process for the
entire dataset concludes when all data blocks have been traversed, and the updated model
is able to serve the decision module more accurately.

3.4. Decision Module

The decision module is designed to generate a configuration scheme for each function.
The decision module determines the optimal configuration scheme by leveraging the appli-
cation structure, the edge platform pricing table, and the function execution times, seeking
to minimise the cost while satisfying the SLO. Moreover, the algorithm can adaptively
update the configuration scheme in response to changes in the edge environment, resulting
in improved accuracy.

3.4.1. Configuration Scheme Based on APSO-GA

The search for the optimal configuration scheme for functions has been proven to be an
NP-hard problem [14]. Although traditional Particle Swarm Optimization (PSO) methods
have been extensively applied to tackle continuous optimization problems [30], the decision
variables are discrete in the problem studied in this paper. A novel coding method is
needed to make PSO applicable to this problem. Furthermore, a well-suited particle update
strategy must be introduced in order to circumvent the premature convergence issue of the
traditional PSO. To address the above inadequacies of the traditional PSO, we propose the
APSO-GA algorithm to explore the optimal resource configuration scheme for applications
in the edge serverless environment, described as follows.

(1) Problem Encoding

Sensors 2023, 23, 7829 10 of 26

We employ particle Z to denote the candidate configuration schemes for functions
within in serverless application in the edge environment; the i-th particle at the t-th iteration
Zt

i is described by Equation (5), where n is the total number of functions in the application.

Zt
i = (zt

i,1, zt
i,2, . . . , zt

i,n) (5)

zt
i,k = (cpu, mem, plat) (6)

In Equation (6), zt
i,k(k = 1, 2, . . . , n) represents the k-th gene in the i-th particle at the

t-th iteration containing the CPU, memory, and platform configurations for the function
fk. Figure 3 illustrates an example of particle zt

i,k, where zt
i,1 represents the resource con-

figuration of function f1 under this scheme. Specifically, function f1 is deployed on e1
and configured with a resource size of 0.1 × 2 = 0.2 cores of CPU and 6 × 43 = 192 MB
of memory.

1 nIndex

Particle

,1

t

iz

…

platmemcpu …

2 3 1 4 2 3…t

iZ

,n

t

iz

platcpu mem

Figure 3. Example of the particle used for the resource configuration scheme.

It is worth noting here that certain resource configuration schemes corresponding to
particles may not satisfy the SLO, leading to the execution time of the application exceeding
the latency limit. For clarity, in this paper, those particles with applications that comply
with the delay limit under the corresponding policy are deemed feasible particles, while
those that exceed the delay limit are referred to as infeasible particles.

(2) Fitness Function
To facilitate a comparative assessment of different particles, it is imperative to evaluate

them using a fitness function. Typically, particles with smaller fitness function values
indicate more favourable candidate schemes. In this paper, we aim to obtain a configuration
scheme for a serverless application that satisfies the SLO while minimizing the overall cost.
Consequently, a particle boasting a lower deployment cost is regarded as a more favourable
scheme. Considering the presence of infeasible particles, we categorize the comparison of
particles into the following three cases.

Case 1: one particle represents a feasible solution and the other is infeasible. In this
scenario, the feasible particle is selected; the fitness function is defined below.

F(Zt
i) =

 0, i f
n

∑
k=1

tk(zt
i,k) ∗ callsk ≤ SLO

1, else
(7)

Case 2: both particles are deemed infeasible. Here, the particle closer to the latency
limit is preferred, as it is more likely to evolve into a feasible scheme in subsequent iterations.
The fitness function is defined as follows:

F(Zt
i) =

n

∑
k=1

tk(zt
i,k) ∗ callsk − SLO. (8)

Sensors 2023, 23, 7829 11 of 26

Case 3: both particles are feasible. In this case, the particle with the lower monetary
cost is chosen, and the fitness function is as follows:

F(Zt
i) =

n

∑
k=1

ck(zt
i,k) ∗ callsk. (9)

(3) Update Strategy
Traditional PSO comprises three essential components: inertia, individual cognition,

and social cognition [31]. The iterative updating of each particle is influenced by its personal
best particle and the global best particle of the current generation. However, a significant
limitation of PSO lies in its early convergence to local optima. To enhance the algorithm’s
search capability, we introduce a Genetic Algorithm (GA) mutation operator and crossover
operator for particle updating. The iterative update of the i-th particle in the (t + 1)-th
iteration is provided by

Zt+1
i = Fgc(Fpc(Fmu(Zt

i , δt+1, iNummu), pBestt
i , ηt+1

pc , iNumpc), gBestt, ηt+1
gc , iNumgc), (10)

where Fmu represents the mutation operation, Fgc and Fpc denote the crossover operation,
δt+1 signifies the inertia weight, and ηt+1

pc and ηt+1
gc are the acceleration coefficients.

A. Mutation
The GA mutation operator is introduced into the inertia update operation of PSO.

The outcome of this operation is defined as follows:

X t+1
i = Fmu(Zt

i , δt+1, iNummu) =

{
Mu(Zt

i , iNummu), φmu 6 δt+1

Zt
i , else

(11)

where X t+1
i denotes the new particle achieved after the mutation operation, Mu() denotes

the mutation operator, δt+1 denotes the threshold that triggers mutation, iNummu denotes
the number of positions subject to mutation, and φu is a random number from 0 to 1. If the
φmu is less than δt+1, the mutation operation is activated. Initially, iNummu positions are
randomly selected, including the index of the particle and the position within the particle.
Subsequently, depending on whether it pertains to CPU, memory, or platform, a corre-
sponding random operation is performed to replace the original decision. Figure 4 shows
an example of the mutation operator; in the example, iNummu is 3 and the three positions
selected are 1_3, n_1, and n_2. The mutation operation leads to the following changes in
the resource configuration scheme: the deployment platform of function f1 shifts from 1
to 4; the CPU size of function fn changes from 0.1 × 4 = 0.4 cores to 0.1 × 5 = 0.5 cores;
and the memory size changes from 64 × 2 = 128 MB to 64 × 3 = 192 MB.

1 n…

2 3 1 4 2 3…

1 1_ 3ind = 2 _1ind n= 3 _ 2ind n=

1 n…

2 3 4 5 3 3…

Index

Index

t

iZ

1t

i

+
X

Mutation

Figure 4. Example mutation operation. The shaded portions of Figures 4 and 5 are used to differenti-
ate from unshaded particles. The presence or absence of a shadow indicates two different particles.

Sensors 2023, 23, 7829 12 of 26

B. Crossover
The GA crossover operator is introduced into the personal cognitive update and the

social cognitive update, which are represented as follows:

Y t+1
i = Fpc(X t+1

i , pBestt
i , ηt+1

pc , iNumpc) =

{
Cr(X t+1

i , pBestt
i , iNumpc), φpc 6 ηt+1

pc
X t+1

i , else
(12)

Zt+1
i = Fgc(Y t+1

i , gBestt, ηt+1
gc , iNumgc) =

{
Cr(Y t+1

i , gBestt, iNumgc), φgc 6 ηt+1
gc

Y t+1
i , else

(13)

where Y t+1
i and Zt+1

i respectively signify the new particles after the personal and social
cognitive update; it is important to note that the new particle Y t+1

i is evolved from X t+1
i ,

while the new particle Zt+1
i is evolved from Y t+1

i , which is the final result of the (t+1)-th
iteration. Furthermore, Cr() denotes the crossover operation, pBestt

i denotes the optimal
historical particle of the i-th individual in the t-th iteration, gBestt denotes the overall
optimal among all particles, ηt+1

pc (ηt+1
gc) represents the threshold for individual (social)

crossover, and iNumpc (iNumgc) represents the number of genes involved in an individual
(social) crossover. Unlike the mutation operation, the crossover operation pertains to the
entire genes, as there is linkage between CPU, memory, and platform. Superior particles
indicate reasonable matching among these three aspects; thus, we consider their overall
alteration. The crossover operation is executed when the random value φpc (φgc) is smaller
than the threshold ηt+1

pc (ηt+1
gc). Figure 5 illustrates an example of the crossover operation in

which the number of genes subject to crossover is 1 and the gene index is 1, signifying that
the configuration scheme for the function f1 in the old particle is replaced by the one in
pBestt

i (gBestt).

()

Index

Index

1 1ind =

Crossover

t

igBest

1t

i

+
X

1t

i

+
Y

()t
pBest

()

1t

i

+
Y

1t

i

+
Z

Index

1 n…

2 3 4 5 3 3…

1 n…

1 4 3 3 2 2…

1 n…

1 4 3 5 3 3…

Figure 5. Example crossover operation.

(4) Mapping from a Particle to a Resource Configuration Scheme
The mapping of a particle to a specific resource configuration scheme is detailed in

Algorithm 1. For a given particle Zt
i as input, the corresponding scheme P is obtained as

output. For each gene zt
i,k in the particle, the following operations are performed: in line

2, the CPU information zt
i,k.cpu recorded in the gene is multiplied by 0.1 to represent the

number of cores pk.cpu allocated to the function fk; in line 3, the memory information
zt

i,k.mem recorded in the gene is multiplied by 64 to represent the memory size pk.memory
assigned to the function fk; in line 4, the deployment platform information zt

i,k.plat recorded
in the gene is directly assigned to the deployment platform pk.plat of function fk; and

Sensors 2023, 23, 7829 13 of 26

upon completion of these operations for all genes, the specific resource configuration
scheme P is obtained.

Algorithm 1 Mapping of a particle to a resource configuration scheme.

Input: Paticle Zt
i = {z

t
i,1, zt

i,2, . . . , zt
i,n}.

Output: Resource configuration scheme P = {p1, p2, . . . , pn}.
1: for each zt

i,k ∈ Zt
i do

2: pk.cpu← zt
i,k.cpu ∗ 0.1

3: pk.memory← zt
i,k.mem ∗ 64

4: pk.palt← zt
i,k.palt

5: end for

(5) Parameter Setting
The inertia weight δ significantly impacts the searchability and convergence of the

PSO algorithm [32]. A larger value enhances global search ability, while a smaller value
strengthens local search ability. The classical inertia weight adjustment method is as follows:

δ = δmax − iterscur
δmax − εmin

itersmax
(14)

where δmax and δmin denote the maximum and minimum values of the initial setting
of δ, respectively, and iterscur and itersmax denote the current and maximum number of
iterations, respectively.

The conventional update strategy for δ is solely related to the number of iterations,
which is not optimally adapted to the nonlinear nature of minimum cost among functions.
Therefore, we propose a discrete adjustment method based on the merits of the current
population particles and adaptive adjustment, as follows:

δt+1 = δmax − (δmax − δmin)exp(
d(Zt

i)

d(Zt
i)− 1.01

) (15)

d(Zt
i) =

div(Zt
i , gBestt)

n
=

∑n
j=1 τj

n
(16)

where d(Zt
i) denotes the difference between the current i-th particle Zt

i of the t-th iteration
and the global optimal solution gBestt of the t-th iteration and τj is a statistical factor; a
value of 1 for τj indicates that Zt

i has the same resource configuration strategy as gBestt

mapped on the j-th gene, while the converse is the case when τj has a value of 0. In this way,
the search capability of the algorithm can be adaptively adjusted based on the difference
between the current particle and the global optimal particle.

In addition, the cognitive factors of the algorithm ηt+1
pc and ηt+1

gc are set using a linear
increase and decrease strategy [33], as ib Equation (14); here, ηstar

pc and ηstar
gc denote the initial

iteration values of the parameters ηpc and ηgc, while ηend
pc and ηend

gc denote the final values.
(6) Algorithm Flow
The detailed process of the APSO-GA is described below.
Step 1. Initialize the parameters of the APSO-GA, including the initial population

size γ, maximum number of iterations itersmax, maximum inertia weight δmax, minimum
inertia weight δmin, starting and ending values of the acceleration coefficients ηstar

pc , ηstar
gc ,

ηend
pc , and ηend

gc , and number of positions for the update operation iNummu, iNumpc, and
iNumgc, then randomly generate the initial population.

Step 2. Calculate the fitness values of each particle according to Equations (7)–(9),
select the optimal one value each particle, and designate the particle with the best fitness
values as the global optimal solution in the current generation.

Step 3. Update each particle according to Equation (10) and recalculate the fitness of
each new particle.

Sensors 2023, 23, 7829 14 of 26

Step 4. Update the personal best for each particle; if there exists a better solution than
the original global optimal particle, update it.

Step 5. If the stopping condition is satisfied, end the algorithm; otherwise, return to
Step 3 and continue.

3.4.2. Adaptability of APSO-GA

To ensure adaptability in light of potential changes in edge platform resources and
their pricing, direct execution of APSO-GA based on the new pricing table would result
in unnecessary overhead. Considering the three plausible scenarios of changes in plat-
form pricing and the correlation between the previous and new configurations, we have
designed Algorithm 2 with the aim of obtaining a more appropriate initial population
when the pricing table changes in order to facilitate the algorithm’s swift convergence to an
optimal scheme for the new environment. The algorithm is as follows, with new(ei.cpu)
(new(ei.mem)) and old(ei.cpu) (old(ei.mem)) representing the previous and updated prices
of the platform CPU (memory), respectively.

Algorithm 2 takes two sets of platform prices (before and after the change) as in-
put, along with the configuration scheme of the application before the price adjustment.
The output of Algorithm 2 is an initial population suitable for the updated platform prices.

Lines 1 to 2 of the algorithm record whether the prices have increased or decreased.
For example, inCpu is set to True in the event of an increase in CPU price. Line 3 maps the
original scheme P to the first particle in the initial population Z1

1, the inverse of Algorithm 1,
and sets the number of particles added to the initial population to start from 2. Lines 4 to 17
of the algorithm deal with the first case of price change, in which the CPU(memory) price
rises while the memory(CPU) price falls. Line 5 iterates through each gene in the particle
and performs the subsequent steps. Line 6 determines whether the current gene prefers
memory(CPU) and is deployed on platform ei; if it is, then lines 7 to 11 iterate through each
edge platform ej and replace the original platform (ei) of this gene with other platforms
that offer a cheaper CPU(memory) price while keeping the rest of the genes unchanged
and incrementing the index by 1. If the conditions in line 6 are not met, line 12 confirms
that the current gene does not prefer memory(CPU) and that its deployed platform is not ei.
If it is, then line 13 replaces it with ei when the platform’s price is higher. Lines 18 to 27
deal with the second case, which occurs when at least one of the prices is elevated. Line
18 iterates through each gene in the particle, and performs the subsequent steps. If the
current gene chooses the platform ei and a cheaper platform exists, line 23 replaces ei with
the new platform. Lines 28 to 34 deal with the third case, which arises when at least one of
the prices is reduced. Line 29 traverses each gene in the particle, and line 31 replaces the
platform of the gene with ei if the platform chosen for the current gene is not ei and has
a higher price. Lines 35 to 38 determine whether the current population size has reached
the threshold. If it has not, the existing particles are used to generate new particles using
the APSO-GA crossover operation until the threshold is met. Line 39 returns the generated
initial population Z1. Then, APSO-GA is executed from Step 2 with this initial population
to converge more efficiently towards the new optimal configuration scheme.

Sensors 2023, 23, 7829 15 of 26

Algorithm 2 Generation of the initial population with adaptive properties.

Input: new(ei.cpu), new(ei.mem), old(ei.cpu), old(ei.mem), P = {p1, p2, . . . , pn}.
Output: Z1 = {Z1

1, Z1
2, . . . , Z1

γ}.
1: inCpu← new(ei.cpu) > old(ei.cpu), inMem← new(ei.mem) > old(ei.mem)
2: deCpu← new(ei.cpu) 6 old(ei.cpu), deMem← new(ei.mem) 6 old(ei.mem)
3: Map scheme P to particles Z1

1, and set index to 2
4: if inCpu(deCpu) and deMem(inMem) then
5: for each z1

1,k ∈ Z1
1 do

6: if z1
1,k.cpu(mem) is more important than z1

1,k.mem(cpu) and z1
1,k.plat == i then

7: for each ej ∈ E do
8: if new(ej.cpu(mem)) < new(ei.cpu(mem)) then
9: Z1

index ← Z1
1, z1

index,k.plat← j, index += 1
10: end if
11: end for
12: else if z1

1,k.mem(cpu) is more important than z1
1,k.cpu(mem) and z1

1,k.plat 6= i then
13: if new(ez1

1,k .plat.mem(cpu)) > new(ei.mem(cpu)) then

14: Z1
index ← Z1

1, z1
index,k.plat← i, index += 1

15: end if
16: end if
17: end for
18: else if inCpu or inMem then
19: for each z1

1,k ∈ Z1
1 do

20: if z1
1,k.plat == i then

21: for each ej ∈ E do
22: if new(ej) cheaper than new(ei) then
23: Z1

index ← Z1
1, z1

index,k.plat← j, index += 1
24: end if
25: end for
26: end if
27: end for
28: else if deCpu or deMem then
29: for each z1

1,k ∈ Z1
1 do

30: if z1
1,k.plat 6= i and new(ez1

1,k .plat) more expensive than new(ei) then

31: Z1
index ← Z1

1, z1
index,k.plat← i, index += 1

32: end if
33: end for
34: end if
35: while index 6 γ do
36: Z1

index = Cr(Z1
i , Z1

j , 1), i, j ∈ (1, index− 1)
37: index = index + 1
38: end while
39: return Z1

4. Experimenal Evaluation

In this section, we evaluate the following questions:
RQ1: How accurate is our method in predicting the execution time of functions in

serverless applications?
RQ2: How efficient is our method in finding the optimal configuration scheme?
RQ3: How adaptable is our method in the face of environmental changes?

4.1. Experimental Setup

Platforms. We built OpenFaas on local servers comprising one master node and
five slave nodes. The master node simulates the developers hosting the application to be
deployed. This node installs the FireFace, which guides the developers in selecting the
optimal configuration settings. The five slave nodes emulate edge platforms providing
the services. To account for resource heterogeneity, we assign distinct tendencies of CPU
and memory to these nodes. The available sizes of CPU and memory along with their

Sensors 2023, 23, 7829 16 of 26

corresponding prices are shown in Table 3. We set the CPU value range to 0.2 for one core
in increments of 0.2, while the value range for memory spans from 128 MB to 1024 MB,
progressing in 128 MB increments.

Table 3. Resource sizes and prices for edge platforms.

Resource
Platform

1 2 3 4 5

Cpu
available size 8 cores 6 cores 4 cores 3 cores 2 cores
price (core/ms) 0.02 0.04 0.08 0.2 0.4

Memory
available size 4 GB 6 GB 8 GB 12 GB 16 GB
price (MB/ms) 0.012 0.001 0.0007 0.0004 0.0002

Applications. The applications used in our evaluation encompass two types, namely,
Java applications and DNN-based applications. The Java applications include face detec-
tion, license plate recognition, and speech-to-text. The DNN-based applications involve
image recognition and utilize three commonly used DNN models: Alexnet, GoogLeNet,
and Vgg16. Table 4 presents the serverless functions and SLOs of the applications. In this
study, we set reasonable SLOs by considering the execution times of the applications under
various configurations.

Table 4. Serverless functions and SLOs of the applications.

Types Application Function SLO
(ms)

Face detection Grey(), Blur(), Detect(), GetSimilarity() 30,000
Java License plate recognition ColorKmeans(), Oritenation(), Math() 5000

Speech-to-text PreProcess(), Recognize(),Compute(), AcceptWave() 20,000

Alexnet Module 1 (1∼5 layers), Module 2 (6∼10 layers), Module 3
(11∼15 layers), Module 4 (15∼21 layers) 100

DNN GoogLeNet Module 1 (1∼35 layers), Module 2 (36∼87 layers), Module
3 (88∼114 layers), Module 4 (115∼131 layers) 300

VGG16 Module 1 (1∼20 layers), Module 2 (21∼30 layers), Module
3 (31∼44 layers), Module 4 (45∼51 layers) 600

4.2. Accuracy Analysis (RQ1)

In this section, we analyze the accuracy of our prediction model from two aspects.
First, we conduct a comparative assessment against other commonly employed regression
algorithms to establish the superiority of our method. Second, we evaluate the practi-
cal applicability of our trained model by predicting the execution time of functions in
serverless applications.

4.2.1. Validation of Superiority

To ascertain the superiority of our prediction model, we employ three widely rec-
ognized metrics for evaluating regression algorithms [34]: the Root Mean Square Error
(RMSE), coefficient of determination (R2), and explained variance score (ExpVar).

RMSE, the average of the differences between predicted and actual values, quantifies
the proximity of the model’s predictions to the ground truth. Smaller RMSE values indicate
more accurate predictions.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (17)

Sensors 2023, 23, 7829 17 of 26

R2 quantifies the goodness of fit. R2 yields values within the range of 0 to 1, with values
closer to 1 signifying a stronger fit of the model to the data.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (18)

ExpVar is used to evaluate the model’s ability to account for fluctuations in the dataset.
A value close to 1 for ExpVar indicates that the model possesses high predictive capability,
as it can effectively capture and explain the variations present in the data.

ExpVar = 1− Var(yi − ŷi)
2

Var(y)
(19)

In Equations (17)–(19), n denotes the number of samples, y represents the actual value,
ŷ denotes the predicted value, and ȳ represents the mean of the actual value.

We compared our model’s performance against several well-established regression
algorithms to validate its superiority:

• Decision Tree (DT): a nonlinear supervised learning algorithm that recursively parti-
tions the data based on features, creating a tree-like structure with decision nodes and
assigning labels to samples at the leaf nodes.

• K-Nearest Neighbors (KNN): a nonparametric algorithm that predicts new data points
by considering the majority category or means of the k nearest datapoints in the
feature space.

• AdaBoost (AD): an ensemble learning method that iteratively combines multiple weak
classifiers while assigning higher weights to misclassified samples to progressively
build a robust classifier.

• Support Vector Machine with Radial Basis Function Kernel (RBF_SVM): a powerful
supervised learning algorithm for regression tasks that employs kernel functions to
map data into higher-dimensional spaces and identify an optimal hyperplane for
continuous value prediction.

For each algorithm, we employed the dataset constructed in Section 3.3.2 for training,
with an 80% split for training and the remaining 20% for evaluation. The experimental
results are presented in Table 5.

Table 5 presents the performance evaluation of the regression algorithms across var-
ious types of functions. Remarkably, our proposed model (RFR) outperforms all other
approaches, as evidenced by the values of R2 and ExpVar, which exceed 0.98. This indicates
that our model possesses exceptional predictive and explanatory capabilities. The RMSE is
contingent on the execution time of different function types. For instance, functions such
as Norm, Relu, and Pool exhibit relatively short execution times, typically a few hundred
milliseconds, resulting in small RMSE values in the single digits for their correspond-
ing prediction models. However, other function types typically involve longer execution
times on the order of a few seconds, leading to relatively larger RMSE values. DT and
KNN exhibit commendable prediction performance for certain function types. Conversely,
the AD and RBF models are unsuitable for the problem in this paper due to their high
prediction errors.

In addition, we present error plots depicting the comparisons between our model’s
predictions and the actual values. Figure 6 shows that the prediction errors are consistently
small, particularly in the prediction of Java methods. This can be attributed to our model’s
ability to extract five internal features that effectively represent the complexity of the
function. It can be noticed from the figure that data are scarce in the middle segment. This
occurrence is linked to instances in which the memory configured to the serverless function
is relatively small, for instance, 128 MB, rendering it inadequate to fulfill the function’s
basic usage requirements. Consequently, the function is compelled to frequently read and
write from the Swap, incurring considerable latency. This observation underscores the

Sensors 2023, 23, 7829 18 of 26

critical importance of appropriately allocating resources for serverless functions. In this
way, functions can attain short execution time at minimal cost. In contrast, inadequate
resource allocation for functions results in inability to meet the SLO, while excessive
resource allocation leads to unnecessary overhead.

Table 5. Metrics for regression algorithms with different types of functions.

Type Metrics RFR DT KNN AD RBF

Method RMSE 105.522 1435.09 1112.48 3768.57 2417.49
R2 0.99987 0.97557 0.97984 0.83155 0.91685
ExpVar 0.99987 0.97557 0.97980 0.83187 0.91703

Norm RMSE 4.98718 5.23281 5.44878 10.3307 8.92581
R2 0.98014 0.97813 0.97620 0.91478 0.93638
ExpVar 0.98039 0.97837 0.97660 0.91479 0.93755

Conv RMSE 63.1270 146.443 97.9260 387.001 318.399
R2 0.99735 0.96568 0.98261 0.79494 0.83778
ExpVar 0.99735 0.96568 0.98262 0.80520 0.84020

Relu RMSE 1.88800 8.59310 6.45987 13.6680 10.9591
R2 0.99459 0.85680 0.91183 0.66631 0.81775
ExpVar 0.99485 0.86694 0.91205 0.67189 0.81940

Pool RMSE 2.61473 8.07451 5.95543 23.0586 20.2687
R2 0.99620 0.80422 0.98029 0.63808 0.77178
ExpVar 0.99720 0.80562 0.98092 0.63886 0.77530

Fc RMSE 382.516 856.530 1060.27 1973.21 3153.00
R2 0.99735 0.98671 0.96709 0.92947 0.71903
ExpVar 0.99735 0.98671 0.96710 0.92974 0.73916

100, 000

12, 000

80, 000

60, 000

40, 000

20, 000

80, 000

60, 000

40, 000

20, 000

100, 00080, 00060, 00040, 00020, 000 12, 000

80, 00060, 00040, 00020, 000

Figure 6. FireFace’s prediction of execution time for different types of functions (Blue circle is the
sample, and the green line is the standard line).

4.2.2. Validation of Utility

We further validated the utility of our approach by employing a well-trained predic-
tion model to estimate the execution time of each function within the applications used
in our experiments. We employed the Absolute Percentage Error (APE) as a metric to
measure the accuracy of these predictions. Because the results for all applications would
be overly redundant, we present the results for the face detection application here as an
illustrative example.

Sensors 2023, 23, 7829 19 of 26

Each grid in Figure 7 indicates the difference between the predicted time and actual
time under the corresponding CPU and memory, with the darker colors indicating the larger
differences. The calculated APE values for these functions are 4.359%, 9.513%, 2.22%,
and 7.4974%, respectively. Typically, this level of prediction error results in deviations
of only a few tens of milliseconds, which can be considered negligible when compared
to overall execution times in the range of thousands of milliseconds. Notably, when the
configuration is suboptimal the corresponding APE tends to be lower, typically around
1%. This phenomenon occurs because the scale of the execution time values influences the
calculation of APE. In cases where the execution time is higher, the APE tends to be smaller
for the same magnitude of prediction error.

(a) Grey() (b) Blur()

(c) Detect() (d) GetSimilarity()

Figure 7. FireFace’s prediction of the execution time of functions in the face recognition application.

4.3. Efficiency Analysis (RQ2)

In the preceding section, we focused on analyzing the prediction accuracy of our
model. Now, we shift our focus to evaluating the effectiveness of the resource configuration
scheme generated by the APSO-GA algorithm. Specifically, we aim to assess whether the
scheme can minimize cost while meeting the SLO.

To facilitate the evaluation, we introduce three comparison algorithms for performance
comparison:

• Traditional Differential Evolution (DE) [35]: as the discrete problem solved in this paper
cannot be directly solved using DE, we convert it into a continuous problem by employ-
ing a remainder-based transformation and an adaptive parameter tuning strategy.

• Genetic Algorithm (GA) [36]: this algorithm adopts a binary problem encoding approach,
with the number of dimensions corresponding to the available configuration types.

• Particle Swarm Optimization (PSO) [37]: Similar to DE, PSO faces challenges in
solving discrete problems; to address this, we apply PSO to the problem by taking the
residuals.

All the algorithms share a common fitness function with APSO-GA. The initial popu-
lation and number of iterations for each algorithm are the same as those of APSO-GA, set
at 50 and 300, respectively. The parameters of APSO-GA were initialized with the follow-
ing values based on previous research [38]: γ = 100, itersmax = 300, δmax = 0.8, δmin = 0.2,

Sensors 2023, 23, 7829 20 of 26

ηstar
pc =0.9, ηstar

gc =0.4, ηend
pc =0.2, ηend

gc =0.9, iNummu = 6, iNumpc = 2, and iNumgc = 1. Each
algorithm is executed twenty times and the iterations and final schemes are recorded.
To make the comparison fair, we normalize the results of these algorithms. Due to the vast
number of feasible solutions, in this study we consider the optimal scheme from a random
set of 100,000,000 configurations as the optimal solution for normalization purposes.

Under the same number of iterations, APSO-GA demonstrates its superiority in dis-
covering better and more stable resource configuration schemes compared to the other
algorithms. Figure 8 illustrates the normalized optimal cost of applications for the schemes
proposed by each algorithm. Remarkably, our method achieves a reduction 0.008473% to
2.58635% in cost compared to the optimal solution. This could indicate that the scheme
found by our algorithm is the truly optimal one. In the case of the License application,
the randomized algorithm and our method converge to the same configuration scheme.
This can be attributed to this application containing the fewest serverless functions com-
pared to the others, suggesting that in scenarios with fewer serverless functions it may
be feasible to find the optimal solution through extensive randomization. These results
demonstrate that our method’s performance excels in scenarios which involve additional
functions that need to be configured.

Figure 8. Costs of the resource configuration schemes found by different approaches after 300 itera-
tions; the results are normalized by the cost of the scheme randomly generated 100,000,000 times.

Compared to DE, GA, and PSO, APSO-GA reduces the cost of functions by an average
of 7.2%, 15.6%, and 44.8%, respectively. While DE and GA can find resource configuration
schemes close to the optimal solution for certain applications, they suffer from instability.
In contrast, APSO-GA consistently converges to the optimum thanks to its adaptive ad-
justment of search preferences, which facilitates global evolution during iterations. This
underscores the importance of adaptive tuning for heuristic algorithms in achieving better
performance. Furthermore, we compared the feasibility rate of the algorithms to determine
whether the proposed schemes can satisfy the SLO. PSO exhibits the poorest results, with a
feasible solution rate of only 15% on VGG16, indicating that it has difficulty finding feasible
solutions under strict SLO conditions. In contrast, our method finds the optimal scheme
for every application, illustrating the significant performance improvement achieved by
incorporating GA into PSO.

To compare the convergence speed across different algorithms, the convergence pro-
cess of each algorithm is displayed when obtaining the best solution in twenty runs.
As shown in Figure 9, APSO-GA demonstrates a rapid convergence rate; it usually achieves
a feasible scheme after ten iterations, converges to a favorable solution within 90 iterations,
and obtains the optimal scheme in approximately 180 iterations. In comparison, DE and
GA exhibit a similar convergence rate, typically requiring around 150 iterations to find a
better solution. For applications with stringent SLO requirements, such as VGG16, they
may require close to 300 iterations to converge. Conversely, PSO exhibits the slowest con-
vergence owing to its inherent difficulties with finding an improved resource configuration

Sensors 2023, 23, 7829 21 of 26

scheme. Moreover, it takes approximately sixty iterations for PSO to identify a feasible
scheme with tight delay constraints.

Figure 9. The convergence process of each algorithm when obtaining the best solution in twenty runs.

We further investigated the influence of SLOs on function execution cost. The vari-
ations of SLOs for each application are shown in Table 6, where the tightness of SLOs
follows the order SLOs1 > SLOs2 > SLOs3 > SLOs4, where SLOs3 corresponds to our
original SLOs (matching the SLOs outlined in Table 4). We used APSO-GA to generate
configuration schemes for each application across different SLOs. As in the preceding
experiments, the algorithms were all executed twenty times. To facilitate a more intuitive
depiction of the effects of SLO adjustments on cost, we normalized the results using the
cost of the configuration scheme under SLOs3, i.e., the original SLOs.

Table 6. SLOs of the serverless applications at different levels of tightness.

SLOs (ms)
App Face License Speech Alexnet GoogLeNet VGG16

1 (tightest) 25,000 3600 14,000 10 80 480
ine 2 (tight) 26,000 3700 15,000 80 100 500
ine 3 (original) 30,000 5000 20,000 100 300 600
ine 4 (loose) 40,000 8000 30,000 200 500 1000

The experimental results are shown in Figure 10; it can be seen that tightening the SLOs
leads to cost increases ranging from 3.4% to 95%. This phenomenon arises due to the more
stringent SLOs compelling developers to opt for pricier configuration schemes. Contrary
to intuition, when SLOs are loose developers tend to favour the original configuration
schemes. This tendency is due to the cost being influenced by two key factors: the pricing
of the configuration scheme, and the execution time of functions. Opting for a lower-cost
configuration could result in insufficient resources, leading to a significant increase in
execution time due to substantial read/write operations to and from the swap during
serverless function execution. Consequently, even though the per-millisecond price of
the chosen configuration scheme may decrease, the cumulative cost is higher due to the
substantial increase in execution time.

Sensors 2023, 23, 7829 22 of 26

Figure 10. The cost of resource configuration schemes found by APSO-GA for each application across
varying SLOs. The results are normalized by the cost of the scheme under SLOs3.

4.4. Adaptive Analysis (RQ3)

In the previous section, we established that APSO-GA can effectively find the optimal
configuration scheme for each application with a reasonable number of iterations. In this
section, we assess the adaptability of our method by varying the resource prices, as shown
in Table 7. Specifically, we consider three scenarios:

• Increasing and Decreasing Prices: we observe how our algorithm adapts to changing
prices by increasing and decreasing the price of Platform 5; as indicated in the experi-
mental results in Section 4.3, many functions tend to be deployed on this platform.

• Only Increasing Prices: we solely increase the price of Platform 5 in order to examine
whether our algorithm updates the configuration scheme based on the modified platform.

• Only Decreasing Prices: we solely reduce the price of Platform 2, which is the platform
with the least number of function deployments.

Table 7. The three scenarios used to investigate edge serverless platform price changes.

Scenario Platform
Price

CPU Memory
1 (Increases and decreases) 5 0.4→ 0.05 ↓ 0.0002→ 0.0009 ↑
2 (Only increases) 5 0.002→ 0.009 ↑
3 (Only decreases) 2 0.001→ 0.0005 ↓

To demonstrate the enhanced adaptivity of our algorithm through the introduction of
Algorithm 2, we compared APSO-GA with and without the use of Algorithm 2; for differ-
entiation, we designate the version of APSO-GA without Algorithm 2 as WAPSO-GA. Both
algorithms were configured in the same manner described in the previous section and used
the same optimal scheme obtained from the randomized set of 100,000,000 configurations
as the benchmark.

Figure 11 shows the normalized optimal costs corresponding to the schemes generated
by our algorithm and the WPSO-GA algorithm for different applications in the three
scenarios. It can be seen from the figure that WAPSO-GA is able to converge to the optimal
solution stably in every scenario. APSO-GA achieves the same effect as WAPSO-GA in half
of the scenarios (marked with a star), and has a high chance of finding the optimal solution
in the remaining scenarios; however, the stability of the solution cannot be guaranteed.
This is because our method is essentially a heuristic algorithm, and as such cannot entirely
eliminate the problem of local optimality. However, our algorithm can break through
localization through mutation operations, meaning that it has a chance to find the optimal
solution, especially with are sufficient iterations. Moreover, the performance difference of
APSO-GA compared to WPSO-GA is only 0.086∼10.252% in the scenario when the optimal
solution cannot be found. As the purpose of introducing Algorithm 2 was to obtain the
most suitable configuration scheme faster, we compared the convergence times.

Sensors 2023, 23, 7829 23 of 26

(a) Scenario 1 (increase and decrease)

(b) Scenario 2 (only increase)

(c) Scenario 3 (only decrease)

Figure 11. The cost of resource configuration schemes found by APSO-GA and WAPSO-GA under
three scenarios after 300 iterations. (Star indicates APSO-GA can achieve the same effect as WAPSO-
GA in this scenario.).

As shown in Figure 12, our method can promptly find feasible solutions at the begin-
ning. This can be attributed to the fact that a change in the resource price of the platform
does not directly affect the execution time, ensuring that the SLO is satisfied under the orig-
inal resource configuration scheme. In six out of eighteen scenarios (marked with a flame),
the optimal scheme can be directly obtained from the initial population generated by our
Algorithm 2. Similar to the findings in the Section 4.3, WAPSO-GA requires 90 iterations
to approach a closer-to-optimal scheme, while it takes 180 generations to find the optimal
solution. In contrast, our method converges to a scheme close to the optimal solution in
approximately 30 iterations.

Overall, the introduction of Algorithm 2 effectively reduces the number of iterations,
enabling APSO-GA to quickly adapt to changes in the environment. Moreover, the optimal
scheme can be found in most scenarios. Depending on the specific requirements of the
scenario, users can decide whether to utilize the initial population generated by Algorithm 2
for faster iterations or opt for random generation to ensure discovery of the optimal solution.
This flexibility allows users to tailor the approach based on their needs and constraints.

Sensors 2023, 23, 7829 24 of 26

(a) Scenario 1 (increase and decrease)

(b) Scenario 2 (only increase)

(c) Scenario 3 (only decrease)

Figure 12. The convergence process of APSO-GA and WAPSO-GA in three scenarios, showing
iterations 1 to 180.

5. Conclusions

The heterogeneity and resource constraints of edge serverless platforms present signif-
icant challenges in rationalizing resource configuration for deployment of applications on
these platforms. To address this issue, in this paper we have designed and implemented
FireFace, a novel framework comprising a prediction module and a decision module.
The prediction module utilizes the internal feature information of different function types
to predict their execution time under specific configurations. Based on a well-trained
prediction model, the decision module then offers optimal resource configuration schemes
without requiring real-time execution, thereby minimizing unnecessary overhead. In our
experimental evaluations, FireFace consistently outperformed other regression algorithms
across all performance metrics, delivering accurate predictions for real-world serverless
applications. FireFace generated superior schemes and exhibited the fastest convergence
speed compared to other classical algorithms while demonstrating adaptability by quickly
responding to changes in the edge environment.

Sensors 2023, 23, 7829 25 of 26

Author Contributions: M.L. and J.Z. drafted the original manuscript and designed the experiments.
J.L. helped to improve the experiments. Z.C. provided ideas and suggestions. X.Z. provided critical
review and helped to draft the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
under Grant No. 62202103 and by the Key Area Research and Development Program of Guangdong
Province under Grant No. 2020B0101090005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data in this paper are available from the corresponding authors upon
request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lambda, A. Aws Lambda. 2023. Available online: https://aws.amazon.com/cn/lambda/ (accessed on 14 May 2023).
2. Azure. Azure Functions. 2023. Available online: https://azure.microsoft.com/zh-cn/products/functions/ (accessed on

16 May 2023).
3. Google. Google Cloud Functions. 2023. Available online: https://cloud.google.com/functions (accessed on 20 May 2023).
4. Li, Y.; Lin, Y.; Wang, Y.; Ye, K.; Xu, C. Serverless computing: State-of-the-art, challenges and opportunities. IEEE Trans. Serv.

Comput. 2022, 16, 1522–1539. [CrossRef]
5. Chen, X.; Liu, H.; Zhang, D.; Meng, Z.; Huang, Q.; Zhou, H.; Wu, C.; Liu, X.; Yang, Q. Automatic performance-optimal offloading

of network functions on programmable switches. IEEE Trans. Cloud Comput. 2022, 11, 1591–1607. [CrossRef]
6. Pelle, I.; Paolucci, F.; Sonkoly, B.; Cugini, F. Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based

packet-optical network. IEEE J. Sel. Areas Commun. 2021, 39, 2849–2863. [CrossRef]
7. Wang, L.; Li, M.; Zhang, Y.; Ristenpart, T.; Swift, M. Peeking behind the curtains of serverless platforms. In Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA, USA, 11–13 July 2018; pp. 133–146.
8. Chen, X.; Huang, Q.; Wang, P.; Meng, Z.; Liu, H.; Chen, Y.; Zhang, D.; Zhou, H.; Zhou, B.; Wu, C. Lightnf: Simplifying network

function offloading in programmable networks. In Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), Tokyo, Japan, 25–28 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10.

9. Eismann, S.; Bui, L.; Grohmann, J.; Abad, C.; Herbst, N.; Kounev, S. Sizeless: Predicting the optimal size of serverless functions.
In Proceedings of the 22nd International Middleware Conference, Online, 6–10 December 2021; pp. 248–259.

10. Wen, Z.; Wang, Y.; Liu, F. StepConf: Slo-aware dynamic resource configuration for serverless function workflows. In
Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, Online, 2–5 May 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1868–1877.

11. Cordingly, R.; Xu, S.; Lloyd, W. Function Memory Optimization for Heterogeneous Serverless Platforms with CPU Time
Accounting. In Proceedings of the 2022 IEEE International Conference on Cloud Engineering (IC2E), Pacific Grove, CA, USA,
26–30 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 104–115.

12. Zubko, T.; Jindal, A.; Chadha, M.; Gerndt, M. Maff: Self-adaptive memory optimization for serverless functions. In Proceedings
of the European Conference on Service-Oriented and Cloud Computing, Wittenberg, Germany, 22–24 March 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 137–154.

13. Raza, A.; Akhtar, N.; Isahagian, V.; Matta, I.; Huang, L. Configuration and Placement of Serverless Applications using Statistical
Learning. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1065–1077. [CrossRef]

14. Yu, G.; Chen, P.; Zheng, Z.; Zhang, J.; Li, X.; He, Z. FaaSDeliver: Cost-Efficient and QoS-Aware Function Delivery in Computing
Continuum. IEEE Trans. Serv. Comput. 2023, early access.

15. Benedetti, P.; Femminella, M.; Reali, G.; Steenhaut, K. Experimental analysis of the application of serverless computing to IoT
platforms. Sensors 2021, 21, 928. [CrossRef] [PubMed]

16. Elgamal, T. Costless: Optimizing cost of serverless computing through function fusion and placement. In Proceedings of the 2018
IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 300–312.

17. Ko, H.; Pack, S. Function-Aware Resource Management Framework for Serverless Edge Computing. IEEE Internet Things J. 2022,
10, 1310–1319. [CrossRef]

18. Jarachanthan, J.; Chen, L.; Xu, F.; Li, B. Amps-inf: Automatic model partitioning for serverless inference with cost efficiency. In
Proceedings of the 50th International Conference on Parallel Processing, Lemont, IL, USA, 9–12 August 2021; pp. 1–12.

19. AWS. AWS Compute Optimizer; AWS: Seattle, WA, USA, 2023.

https://aws.amazon.com/cn/lambda/
https://azure.microsoft.com/zh-cn/products/functions/
https://cloud.google.com/functions
http://doi.org/10.1109/TSC.2022.3166553
http://dx.doi.org/10.1109/TCC.2022.3149817
http://dx.doi.org/10.1109/JSAC.2021.3064655
http://dx.doi.org/10.1109/TNSM.2023.3254437
http://dx.doi.org/10.3390/s21030928
http://www.ncbi.nlm.nih.gov/pubmed/33573209
http://dx.doi.org/10.1109/JIOT.2022.3205166

Sensors 2023, 23, 7829 26 of 26

20. Cordingly, R.; Shu, W.; Lloyd, W.J. Predicting performance and cost of serverless computing functions with SAAF. In Proceedings
of the 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on
Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on
Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–20 August 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 640–649.

21. Xu, F.; Qin, Y.; Chen, L.; Zhou, Z.; Liu, F. λdnn: Achieving predictable distributed DNN training with serverless architectures.
IEEE Trans. Comput. 2021, 71, 450–463. [CrossRef]

22. Assogba, K.; Arif, M.; Rafique, M.M.; Nikolopoulos, D.S. On realizing efficient deep learning using serverless computing. In
Proceedings of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina,
Italy, 16–19 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 220–229.

23. Akhtar, N.; Raza, A.; Ishakian, V.; Matta, I. Cose: Configuring serverless functions using statistical learning. In Proceedings of the
IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 129–138.

24. Casalboni, A. AWS Lambda Power Tuning. 2020. Available online: https://github.com/alexcasalboni/aws-lambda-power-
tuning (accessed on 23 May 2023).

25. Chen, X.; Li, M.; Zhong, H.; Chen, X.; Ma, Y.; Hsu, C.H. FUNOff: Offloading Applications At Function Granularity for Mobile
Edge Computing. IEEE Trans. Mob. Comput. 2023, early access.

26. Chen, X.; Li, M.; Zhong, H.; Ma, Y.; Hsu, C.H. DNNOff: Offloading DNN-based intelligent IoT applications in mobile edge
computing. IEEE Trans. Ind. Inform. 2021, 18, 2820–2829. [CrossRef]

27. Soot—A Java Optimization Framewor. Available online: https://github.com/soot-oss/soot (accessed on 26 May 2023).
28. Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [CrossRef] [PubMed]
29. Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; Fu, Y. Large scale incremental learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 374–382.
30. Hu, Y.; Gong, W. An On-Orbit Task-Offloading Strategy Based on Satellite Edge Computing. Sensors 2023, 23, 4271. [CrossRef]

[PubMed]
31. Li, H.; Yang, D.; Su, W.; Lü, J.; Yu, X. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic

system under partial shading. IEEE Trans. Ind. Electron. 2018, 66, 265–275. [CrossRef]
32. O’Neill, D.; Lensen, A.; Xue, B.; Zhang, M. Particle swarm optimisation for feature selection and weighting in high-dimensional

clustering. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–8.

33. Masdari, M.; Salehi, F.; Jalali, M.; Bidaki, M. A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst.
Manag. 2017, 25, 122–158. [CrossRef]

34. Ge, D.; Zeng, X.J. Functional Fuzzy System: A Nonlinear Regression Model and Its Learning Algorithm for Function-on-Function
Regression. IEEE Trans. Fuzzy Syst. 2021, 30, 956–967. [CrossRef]

35. Li, Y.; Han, T.; Zhou, H.; Tang, S.; Zhao, H. A novel adaptive L-SHADE algorithm and its application in UAV swarm resource
configuration problem. Inf. Sci. 2022, 606, 350–367. [CrossRef]

36. He, Z.; Li, K.; Li, K. Cost-efficient server configuration and placement for mobile edge computing. IEEE Trans. Parallel Distrib.
Syst. 2021, 33, 2198–2212.

37. Wang, H.; Ding, Y.; Xu, H. Particle swarm optimization service composition algorithm based on prior knowledge. J. Intell. Manuf.
2022, 1–19 . [CrossRef]

38. Chen, X.; Zhang, J.; Lin, B.; Chen, Z.; Wolter, K.; Min, G. Energy-efficient offloading for DNN-based smart IoT systems in
cloud-edge environments. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 683–697. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TC.2021.3054656
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
http://dx.doi.org/10.1109/TII.2021.3075464
https://github.com/soot-oss/soot
http://dx.doi.org/10.17849/insm-47-01-31-39.1
http://www.ncbi.nlm.nih.gov/pubmed/28836909
http://dx.doi.org/10.3390/s23094271
http://www.ncbi.nlm.nih.gov/pubmed/37177476
http://dx.doi.org/10.1109/TIE.2018.2829668
http://dx.doi.org/10.1007/s10922-016-9385-9
http://dx.doi.org/10.1109/TFUZZ.2021.3050857
http://dx.doi.org/10.1016/j.ins.2022.05.058
http://dx.doi.org/10.1007/s10845-022-02032-w
http://dx.doi.org/10.1109/TPDS.2021.3100298

	Introduction
	Related Work
	Approach
	Problem Formulation
	FireFace Overview
	Prediction Module
	Extraction of Application Structure and Internal Features
	Prediction Model Construction (Offline)
	Prediction Model Optimization (Online)

	Decision Module
	Configuration Scheme Based on APSO-GA
	Adaptability of APSO-GA

	Experimenal Evaluation
	Experimental Setup
	Accuracy Analysis (RQ1)
	Validation of Superiority
	Validation of Utility

	Efficiency Analysis (RQ2)
	Adaptive Analysis (RQ3)

	Conclusions
	References

