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Abstract: Roll-to-roll manufacturing systems have been widely adopted for their cost-effectiveness,
eco-friendliness, and mass-production capabilities, utilizing thin and flexible substrates. However,
in these systems, defects in the rotating components such as the rollers and bearings can result in
severe defects in the functional layers. Therefore, the development of an intelligent diagnostic model
is crucial for effectively identifying these rotating component defects. In this study, a quantitative
feature-selection method, feature partial density, to develop high-efficiency diagnostic models was
proposed. The feature combinations extracted from the measured signals were evaluated based
on the partial density, which is the density of the remaining data excluding the highest class in
overlapping regions and the Mahalanobis distance by class to assess the classification performance of
the models. The validity of the proposed algorithm was verified through the construction of ranked
model groups and comparison with existing feature-selection methods. The high-ranking group
selected by the algorithm outperformed the other groups in terms of training time, accuracy, and
positive predictive value. Moreover, the top feature combination demonstrated superior performance
across all indicators compared to existing methods.

Keywords: feature selection; functional film; roll-to-roll manufacturing system; rotating element
diagnosis; machine learning

1. Introduction

Roll-to-roll (R2R) manufacturing is an efficient production system that utilizes thin and
flexible substrates, referred to as webs, to transport and process materials at high speeds
using rolls and rollers [1,2]. This approach offers cost-effectiveness and environmental
benefits [3]. Polymer-based webs, such as PET and PI, or metal-based webs, such as
copper and aluminum, have gained widespread adoption in various fields, including
flexible and wearable electronic products, perovskite-based solar cells, nanotechnology,
and secondary batteries [4–10]. The performance of crucial rotating components for web
transport, such as roll eccentricity and bearing defects, significantly affects the quality of the
final products in R2R systems [11,12]. Malfunctions in these rotating components during
web transport or winding can cause changes in web transfer speed and tension disturbances
during processes such as printing and deposition, resulting in web deformations such as
thickness and elongation variations [13]. In particular, the thin, flexible nature of polymer-
based web and the increasingly thin metal film used for improved battery energy density
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make the web susceptible to deformation when tension disturbances occur [14]. This
susceptibility to tension disturbances can lead to poor coating uniformity and significant
defects within the functional layers, which can significantly impact the overall performance
of the final product [15,16]. To enhance the coating quality of R2R systems, developing
intelligent methodologies capable of monitoring, detecting, and diagnosing defects in
rotating components that cause tension disturbances is crucial [17,18].

Prognostics and Health Management (PHM) is a technical research area that aims
to minimize maintenance time by monitoring systems and detecting anomalies and fail-
ures [19,20]. Quality maintenance and fault diagnosis in R2R systems typically rely on
sensors and inspection of the end product due to the behavior of the continuous web. Since
it is difficult to inspect the workpiece in the field, developing an intelligent fault diagnosis
system based on sensor data can reduce maintenance time [21].

Recent advances in technology have made it easier to collect massive amounts of
sensor data, leading to an increase in sensor data-driven research [22–25]. As a result,
researchers have accelerated the development of data-driven intelligent health-diagnostic
models using machine learning and deep learning [26–28]. Machine learning methods and
techniques generally follow a sequence of sensor-data collection, data-quality assessment,
feature extraction, feature selection, and model training [29,30]. Data are collected from
sensors attached to the machine, and vibration sensors have proven to be effective in
diagnosing faults in rotating components in several studies [31–34]. The collected data
are quantitatively evaluated for suitability in fault classification, and fault characteristics
are quantified while selecting the optimal sensor [29,34]. As the measured signal contains
noise, feature extraction is performed to extract only the information that reflects the state
of the diagnosis target, excluding noise [35,36]. The extracted-feature set typically has a
high dimensionality, and using all features as training data can reduce the classification
accuracy and increase training time [37,38]. Therefore, performing feature selection is
essential for choosing the most appropriate training data and quantitatively evaluating
feature combinations that are relevant to faults [39,40]. Feature-selection engineering is
an active research area, aiming to achieve benefits such as data reduction, training-time
reduction, and enhanced accuracy [41–44].

Feature-selection methods can be divided into filter methods, wrapper methods,
and embedded methods [45]. This study focuses on the filter methods that are fast to
compute, can be combined with all kinds of prediction algorithms, and can be used for any
high-dimensional datasets, as wrapper methods are not computationally able to deal with
high-dimensional datasets and embedded methods are only used for certain algorithms [46].
However, the existing filter-based feature-selection method has a problem of lower accuracy
at the expense of faster processing speed than other methods.

Therefore, we propose the feature partial density (FPD) algorithm, along with an
accurate and quantitative evaluation method based on density- and distance-based classifi-
cation effects using duplicate area data. We aim to achieve effective feature selection for
fault classification and ensure accurate diagnostic performance. The core idea behind the
FPD algorithm is to filter out the most valuable data by extracting the most relevant feature
variable combinations from the sensor data. The FPD establishes a multidimensional-
coordinate system by extracting feature combinations and calculates the partial density of
areas based on feature variable sets. It then derives the FPD number (FPDn) by dividing
the MD. Theoretically, the lowest FPDn indicates the lowest error data for the duplicate
area. The diagnostic model constructed based on these data achieves the highest accuracy
within the shortest training time.

To validate the effectiveness of our proposed algorithm, we conducted experiments
using three-axis acceleration data collected from an R2R system for the diagnosis of roll
eccentricity. We constructed an SVM [47] diagnostic model based on six high-rank cases,
six low-rank cases, and six random extraction cases, using FPDn. We evaluated the per-
formance of the model to validate the FPDn. Additionally, to diagnose bearings, which
are an important element of rotation in roll-to-roll production systems, we constructed a
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fault diagnosis model using FPD and five existing filter-based feature selection algorithms
based on Kaist rotor vibration data [48]. We compared the FPD with five existing methods
for bearing diagnosis by building diagnostic models. We selected three commonly used
filtering methods, mRMR, chi-square, and ReliefF, as well as MD evaluation and FDM
methods that are highly relevant to the parameters used in this study. The superiority and
generality of our proposed algorithm was confirmed through comparative evaluations.

2. Related Works

Feature selection reduces the large feature sets to the most significant features by
minimizing the data’s dimensions. This step is critical for optimizing diagnostic efficiency
with respect to predictive accuracy, learning time and storage needs [49]. Therefore, feature-
selection research is considered one of the most productive and active fields of machine
learning applications [50] with many feature-selection methods proposed in the last few
decades [41,42].

Feature-selection methods can be divided into three main categories: filter methods,
wrapper methods, and embedded methods, depending on whether or not they use a classifi-
cation algorithm [45,51]. Filter methods rank features by calculating a score for each feature
without using a classification model. In most filter methods, the score calculation is faster
and more computationally efficient because it does not consume additional processing time
by calling on a classification algorithm [52]. Wrapper methods, on the other hand, use a
classification model to create all subsets and corresponding classification models for all
features, and score each subset using the classification model’s performance measure. These
methods can use optimization approaches such as metaheuristic algorithms [53,54]. Em-
bedded methods combine the advantages of both methods including the feature selection
for the model-fitting step [37,40].

In this paper, we focus on filter methods that are fast to compute, can be combined
with all kinds of prediction algorithms, and can be used for any high-dimensional datasets,
as wrapper methods are not computationally able to deal with high-dimensional datasets
and embedded methods are only used for certain algorithms [46,53].

Li, Liang, Lin, Chen, and Liu [55] proposed a feature-selection method that uses multiple-
scale form filters through the minimum redundancy maximum relevance (mRMR) [56] princi-
ple. To characterize and reduce data dimensionality, Dai, Xu, Wei, Ding, Xu, Zhang, and
Zhang [57] developed an algorithm that considers the topology of data, thereby improving
prediction performance. Uzun and Ballı [58] presented an algorithm that enhances classi-
fication performance by incorporating multivariate outliers and ReliefF feature selection.
Koklu, Unlersen, Ozkan, Aslan and Sabanci [59] used the chi-squared test for feature
selection and evaluated classifier performance using kernel support vector machine (SVM).
Patel and Upadhyay [60] devised an algorithm for feature ranking in fault diagnosis by
calculating the Euclidean distances between features. Suresh and Naidu [61] proposed a
feature-selection method based on the analysis of variance (ANOVA) and Mahalanobis dis-
tance (MD) for SVM model-based multiple-class fault diagnosis. Lee et al. [29] introduced
a quantitative feature-selection method that uses the feature-matrix volume and MD for
diagnosing rotating machinery systems. Oh et al. [62] developed a feature selection method
based on MD distance and a feature density matrix (FDM) for constructing a diagnostic
model for the drive roll of an R2R slot-die coating system.

These filter-based feature-selection methods have demonstrated improvement, but
there remains an opportunity to enhance accuracy. Therefore, we propose a new algorithm
for feature selection which is determined by two parameters that are closely associated
with model performance.

3. Theoretical Background
3.1. DNF Number-Based Data Evaluation

Directional nature of fault (DNF) is a technique to evaluate the quality of a dataset to
quantify the condition or fault characteristics of measured data [36]. After collecting the
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sensor data through the experiments, the most effective dataset for fault diagnosis can be
selected by evaluating the directionality of the faults for various sensor and axis data [31].
This method relies on the utilization of kurtosis and standard deviation as crucial measures.
Kurtosis, being highly sensitive to impulses, is commonly employed for detecting faults in
rotating elements [63]. Standard deviation, on the other hand, is utilized to evaluate the
degree of imbalance in each signal [64]. The DNF number (DNFn) is defined in Equation (1),
where α and β are weights between the kurtosis ratio and standard deviation ratio, kn and
k f are the kurtosis derived from the normal and fault data, respectively, and stdn and std f
are the standard deviations of the normal and fault data, respectively. The highest DNFn
value indicates the dataset that reflects faults most sensitively [31].

DNFn =
1

α + β

(
α

k f

kn
+ β

std f

stdn

)
. (1)

3.2. Feature Extraction

Feature extraction is the pre-process of extracting relevant and informative features
from a given dataset, with the aim of capturing the inherent characteristics that reflect
the underlying state of the diagnostic target [27]. By focusing on these pertinent features,
feature extraction effectively eliminates noise and irrelevant information, enabling more
precise and reliable data analysis [37]. Additionally, since feature extraction is a preliminary
step to feature selection, improving the effectiveness can be achieved by extracting pertinent
and important features in advance [65]. Following the filtration of the selected data using
the DNF number, a compilation of significant industrial statistical features and time-domain
statistical variables [66,67] were extracted, where X is the vector of vibration data, and N is
a window size as listed in Table 1.

Table 1. Statistical feature variables used for feature extraction.

Statistical Feature

Mean Peak to peak
Median Absolute mean
Mode Crest factor

Trimmed mean Skewness
RMS Inverse of coefficient of variation

Standard deviation K factor
Interquartile range Kurtosis factor

Kurtosis Fifth moment
Maximum Sixth moment
Minimum Clearance factor

The combinations of feature variables were constructed from this extracted list of
statistical feature variables. Each feature combination represents distinct cases that can
be generated by employing different feature variables. Quantitative evaluation using
the proposed algorithm enables the identification of optimal feature combinations from
the constructed set, facilitating the development of optimal learning model data that
excel in key metrics such as classification accuracy, positive predictive value (PPV), and
learning time.

3.3. Mahalanobis Distance

MD is a statistical metric that measures the distance between information. It incor-
porates information from the covariance matrix, enabling a comprehensive assessment
of distance. In classification, as the distance between classes increases, classification be-
comes easier, resulting in a reduction in misclassified data. In a multivariate space, MD is
utilized to measure the distance between information. Unlike the more commonly used
Euclidean distance, which solely considers the physical distance, MD considers the correla-
tions between variables and provides a more accurate assessment of data distances [68].
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Equation (2) can be used to calculate the MD between the class j data and sample data,
where x represents the vector of class j data, m the vector of the mean values of the sample
data, and C the covariance of the sample data.

MDj =

√
(x − m)TC−1(x − m). (2)

4. Material and Methods
4.1. Experimental Setup and Data Collection

Figure 1 illustrates the experimental setup employed to validate the proposed algo-
rithm. In this study, we assessed the effectiveness of the FPD algorithm using an industrial
R2R system (Konkuk University), as depicted in Figure 1a. To evaluate the performance of
the eccentricity diagnosis model, we introduced an eccentricity Figure 1c on an in-feeder
roller Figure 1b of the R2R system. Three acceleration sensors Figure 1d–f were affixed to
the roller to capture vibration data, which were acquired using a data acquisition (DAQ)
board Figure 1g. To create the eccentricity, we cut a steel plate with a density of 7.5 kg/cm3

to dimensions of 20 mm × 30 mm × 0.5 mm and bent it to match the curvature of the roller.
Subsequently, we applied eccentricity to the in-feeder roller and conducted an experiment
using a PET film (CD901, Kolon Inc., Seoul, Republic of Korea). We collected all sensor
outputs at a sampling rate of 12.8 kHz using data acquisition modules (DAQ NI-9230 and
DAQ NI-9234) and LabVIEW 2018 version software (National Instruments, Austin, TX,
USA). This experiment was repeated 3 times for 60 s. The specifications of the acceleration
sensors are outlined in Table 2.
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Instruments board.
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Table 2. Specifications of the R2R system and accelerometer.

Item Parameter Value

R2R System
Web speed [mpm] 5

Tension [kgf] 2.7
Substrate PET film (CD901, Kolon Inc., Seoul, Republic of Korea)

Sensor

Sensor type Accelerometer
Sensor model 356A01 and 356A15 (PCB Piezotronics, Depew, NY, USA)

Sampling rate [kHz] 12.8
Sampling duration [s] 60

DAQ NI-9230 and NI-9234 (National Instruments, Austin, TX, USA)
DAQ module NI-CDAQ-9174 (National Instruments, Austin, TX, USA)

As shown in Table 2, the operating conditions of the R2R system and specifications
of the acceleration sensors are indicated, including web speed, operating tension, and
substrate of the R2R system and types, model of sensors and the sampling rate and duration
of acquisition and types of DAQ and DAQ module.

4.2. KAIST Rotating Element Vibration Data

The generality of the proposed algorithm was verified using data collected by the
Center for Noise and Vibration Control Plus in the Korea Advanced Institute of Science
and Technology (KAIST) (Jung, et al.) [48]. In this study, the vibration data were collected
under 4 Nm load with rated rotational speed of 3010 RPM. The vibration signals were
measured using a total of four accelerometers (PCB352C34 PCB Piezotronics, Depew, NY,
USA), which were attached to two bearing housings denoted A and B in the x and y
directions. The data were sampled at a rate of 25.6 kHz. The state of the bearing condition
was classified into five classes: normal, inner race fault, outer race fault, misalignment fault,
and unbalance fault.

4.3. Design of FPD-Based Classifier

Figure 2 presents a flowchart outlining the process of designing a fault classifier using
the proposed algorithm. The construction of the FPD-based classifier involved five distinct
stages, which can be described as follows, when applying them to the experimental data
for diagnosis of in-feeder roller eccentricity. Stage 1 encompassed the measurement of
vibration data, acquired from an accelerometer sensor in the R2R system. Further details
regarding this process can be found in Section 3.1. In Stage 2, the sensors and axes were
selected based on the DNF number [28,33]. Specifically, the optimal dataset was determined
by evaluating the DNF number for the nine datasets obtained from three sensors and three
axes. Section 3.1 provides a detailed explanation of the methodology. In Stage 3, the
feature combinations from the selected dataset were extracted. In this study, the chosen
dataset was transformed into 20 statistical feature variables, and combinations of two
different statistical feature variables were extracted. The list of the extracted statistical
feature variables is presented in Section 3.2. Stage 4 involved the calculation and ranking
of FPDn for the feature combinations. The efficiency of these combinations was evaluated
using FPDn, enabling the selection of the most effective feature combination. Finally, in
Stage 5, a machine learning model was constructed using the feature combination provided
by the FPDn as the training data. For this study, diagnostic models were constructed using
the top six, bottom six, and six random feature combinations identified by the FPDn. The
performance of these models was then evaluated in terms of accuracy, training time, and
PPV. Although this process was described for data collected for in-feeder roller diagnosis,
it can also be applied to bearing diagnosis.
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Figure 2. Flow chart of the fault diagnosis process with FPD methodology.

All diagnostic models were developed using MATLAB R2022a (MathWorks. Inc.,
Natick, MA, USA) and trained using the same computing power. The hardware used in
the simulations is an Intel® Core™ i9-11900F system (Intel Corporation, Santa Clara, CA,
USA) with 16 GB of RAM, running on the Microsoft Windows 10 operating system.

4.4. Evaluation Method for Feature Combination Based on FPD Algorithm

The flowcharts shown in Figure 3 provide a detailed and clear illustration of the FPD
methodology, presenting the process of the FPD approach for quantitative feature selection.
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First, as the method utilizes the distance between feature data, it is necessary to
normalize the features beforehand for accurate evaluation and the building of a high-
quality training dataset. Next, the boundaries constructed for each class of data and then
the intersection data defined according to the class and location of the data. For example,
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if the data belong to class 1 and are within the boundary of class 2, they are deemed as
intersection data. Likewise, if the data belong to class 2 and are within the boundary of class
1, they are also considered intersection data. Then, a boundary is constructed around the
intersection data, and the PD and MD are calculated within the boundary. Subsequently, the
FPDn is computed by dividing the MD by the PD. This process is repeated for other feature
combinations, and once the FPDn is determined for all feature combinations, the optimal
feature combination can be determined by ranking them according to FPDn magnitude.

When creating a feature-variable combination using two different types of feature
variables, a two-dimensional plot can be generated, with each feature variable represented
on an axis. In Figure 4, the blue data points represent healthy data, whereas the red data
points represent defective data. Figure 4a illustrates the boundaries formed by connecting
the outermost data points of each class, and the overlapping regions between the classes are
defined as intersection areas, as depicted in Figure 4b. The overall intersection density is
calculated by dividing the amount of data inside the intersection area by the total amount of
data. Similarly, as shown in Figure 4c,d, the class-specific intersection density is determined
by the ratio of the data within the intersection area to the total area of each class.
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Figure 4. Comparison of distribution and distance in the intersection area of kurtosis–peak to peak:
(a) data distribution over the entire area; (b) data distribution in the intersection area by class;
(c) fault-data distribution in the intersection area (red); (d) normal-data distribution in the intersection
area (blue).

Data within the intersection area pose challenges in classification owing to the mixture
of class data. Therefore, the classification accuracy tends to improve when the amount
of data in the intersection area decreases compared to the total area, making intersection
density a consideration for feature selection. However, because not all data within the
intersection area are misclassified, the relationship between the overall intersection density
and classification accuracy is non-linear. To enhance classification accuracy, it is necessary
to consider the misclassified classes within the intersection area and adjust the density
accordingly. The data belonging to the class with the highest density in the intersection
region are classified correctly, whereas the remaining data, excluding these maximum
density classes, represent classes that are likely to be misclassified within the intersection
region. We define these remaining data as partial data. The sum of the intersection densities
of the classes constituting the partial data is defined as the partial density (PD). As shown
in Figure 4c,d, when the intersection density of the healthy class is lower than that of the
defective class, PD is equal to the intersection density of the healthy class, as indicated in
Figure 4b. If the total number of classes is n, and the class with the maximum intersection
density is k, the PD can be expressed as shown in Equation (3).

PDN = ∑n
i=1

Number o f intersection datai
Number o f data

− Number o f intersection datak
Number o f data

. (3)
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There is an inverse relationship between the MD and classification difficulty for classes.
Therefore, FPDn can be calculated by dividing the MD for other class data by the intersection
density for each class, as shown in Equation (4).

FPDn = ∑n
i=1

Number o f intersection datai
Number o f data × MDi

− Number o f intersection datak
Number o f data × MDk

. (4)

The FPD algorithm extracts intersection boundaries for each feature combination
and evaluates the classification performance by considering the density of potentially
misclassified class data and the MD within the intersection area. The feature combination
with the lowest FPDn indicates minimal potential for misclassification and maximum MD
for each class. Consequently, FPDn is calculated for each feature combination and they are
sorted in ascending order to determine their ranking. A classification model built using
high-ranking feature combinations may achieve superior classification performance, which
encompasses accuracy, processing time, prediction speed, and PPV.

Figure 5 illustrates the distributions of three feature combinations used to observe
the effects of the PD and MD on FPDn. The model construction results for each feature
combination are presented in Table 3. The kurtosis–peak to peak and median K factors
exhibit similar PDs of 0.206 and 0.199, respectively. However, a significant difference exists
in their MD values, with 3.464 for kurtosis–peak to peak and 0.683 for median K. The larger
distance between the normal and defective data within the intersection for kurtosis–peak
to peak suggests a better separation of the two classes, indicating easier classification.
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Table 3. Classification result of feature combinations: kurtosis–peak to peak, median K factor,
kurtosis-factor skewness.

FPD
Kurtosis–Peak to Peak Median K Factor Kurtosis-Factor Skewness

Parameter

PD 0.206 0.199 0.365
MD 3.463 0.683 0.802

FPDn 0.059 0.292 0.455
Learning time [s] 1.705 1.975 2.243

Accuracy [%] 91.33 84.83 76.67
PPV [%] 93.06 91.47 82.52

However, the median K factor and kurtosis-factor skewness have similar MD values of
0.683 and 0.802, respectively, but notable differences in their PDs, which are 0.199 and 0.365,
respectively. As the PD increases, the potential for data misclassification also increases,
implying lower classification performance for kurtosis-factor skewness. In practice, model
construction and diagnosis were conducted using each feature combination, and the results
presented in Table 3 indicate that kurtosis–peak outperformed the median K factor in terms
of training time, accuracy, and PPV. Furthermore, the kurtosis-factor skewness exhibited a
decreased classification performance across all metrics compared to the median K factor.

4.5. Construction and Evaluation of Diagnostic Models Based on Selected Data

FPDn was calculated for all feature combinations, and a diagnostic model based on
5-fold cross-validation Gaussian kernel SVM was constructed using the top six high-ranked
feature combinations, bottom six low-ranked feature combinations, and six randomly
selected feature combinations. The performances of the constructed models were compared
in terms of accuracy, training time, and PPV to assess the effectiveness of the number
of FPDs.

Furthermore, the proposed feature-selection methods were validated by employing
five representative or related feature-selection algorithms (mRMR, chi-square, ReliefF, MD
evaluation, and FDM) to select feature combinations. Subsequently, a diagnostic model
based on 5-fold cross-validation Gaussian kernel SVM was constructed using the selected
feature combinations, and its performance was compared with the previous models in
terms of accuracy, training time, and PPV.

5. Results and Discussion
5.1. Optimal Sensor Selection Based on DNF

In the R2R system, the in-feeder roller vibration data (IFR-V data) included sensor
data from three sensors (sensor 1, sensor 2, and sensor 3) along with their X, Y, and Z axes,
resulting in a total of nine datasets. Additionally, the KAIST bearing-vibration data (B-V
data) included two sensor data for the X and Y directions for two housings (housing A,
housing B), resulting in a total of four datasets. The datasets of IFR-V data and B-V data
were evaluated using the DNF algorithm to determine their effectiveness. The evaluation
results presented in Table 4 indicate that the Y-axis data from sensor 2 exhibited the highest
DNF number about IFR-V data. Therefore, this dataset was deemed the most suitable for
the diagnosis of eccentricity. Similarly, the evaluation results presented in Table 5 indicate
that the Y-direction data from housing A exhibited the highest DNF number about B-V
data. Therefore, this dataset was deemed the most suitable for the diagnosis of bearing.

The 20-feature variables shown in Table 1 were extracted from the dataset with the
highest DNF number and 190 feature combinations, each consisting of two different vari-
ables, were constructed.
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Table 4. DNF number of each dataset in IFR-V data.

Sensor 1 2 3

Axis X Y Z X Y Z X Y Z

DNFn 1.091 1.104 1.094 1.101 1.126 1.103 1.080 1.085 1.082

Table 5. DNF number of each dataset in B-V data.

Housing A B

Sensor direction X Y X Y

DNFn 6.321 14.334 1.816 2.154

5.2. Eccentricity Diagnosis Results Based on the FPD Number for Each Feature Combination

Figure 6 displays a scatter plot showing the six high-ranking feature combinations
obtained from the FPDn calculation on the IFR-V data. The red and blue data points
represent the defect and normal classes, respectively. The corresponding FPDn, PD, and
MD values for each feature combination are indicated in the upper left corner of the plot.
The eccentricity diagnosis results of the R2R system-based classifier design, following
the five steps outlined in Section 4.3, for the six high-ranking feature combinations are
presented in Table 6. A higher FPDn value indicates a reduced overlap between class-
dependent areas, indicating a better separation of data distribution for the normal and
eccentricity cases and lower potential for misclassification. Additionally, owing to the
significant distance between the class-dependent distributions in the overlapping areas,
we anticipated a strong classification performance. The accuracy achieved using the six
high-ranking feature combinations demonstrated excellent performance, ranging from a
minimum of 89.08 to a maximum of 91.33%.

Table 6. Classification results of the high-ranking six FPDn feature combinations.

FPD Kurtosis–Peak
to Peak

K Factor–
Kurtosis

Kurtosis–6th
Moment

Standard
Deviation–Kurtosis

Maximum
Kurtosis

Interquartile
Range–KurtosisParameter

PD 0.206 0.159 0.137 0.142 0.183 0.195
MD 3.463 2.487 2.063 1.982 2.552 2.634

FPDn 0.059 0.064 0.066 0.071 0.072 0.074
Learning time

[s] 1.705 1.724 1.976 1.968 1.940 1.767

Accuracy [%] 91.33 90.75 90.08 89.67 89.08 90.08
PPV [%] 93.06 93.27 92.57 92.05 91.65 91.25

Figure 7 illustrates the six feature combinations with low rankings as determined by
the FPDn output. The eccentricity diagnosis results of the R2R system, obtained through
the application of the five-step algorithm-based classifier design proposed in Section 4.3,
are presented in Table 7 for these low-ranking feature combinations. A low FPDn value
suggests that the data distributions for normal and eccentric cases exhibit similarities,
leading to overlapping areas between classes and a high density of misclassified data.
Additionally, the distances between the distributions of each class within the overlapping
areas were small, making accurate classification challenging. The accuracy achieved using
the low-ranking feature combinations ranged from a minimum of 47.08 to a maximum of
54.42%, indicating significantly poor performance.
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Table 7. Classification results of the low-ranking six FPDn feature combinations.

FPD Absolute
Mean–Mean

Mean–
Skewness

Skewness–
Median

Skewness–Trimmed
Mean

Skewness–
Mode

Skewness–Absolute
MeanParameter

PD 0.428 0.468 0.470 0.469 0.464 0.466
MD 0.002 0.003 0.004 0.005 0.005 0.006

FPDn 241.020 144.158 120.185 103.373 88.827 83.794
Learning time [s] 3.008 2.518 2.691 2.620 2.612 2.436

Accuracy [%] 47.08 54.42 53.67 53.08 53.08 52.25
PPV [%] 46.24 58.10 55.79 55.10 55.04 53.64

Figure 8 depicts the six feature combinations that were randomly selected, and Table 8
displays the results of the eccentricity diagnosis for the R2R system obtained through the
application of the five-step algorithm-based classifier design proposed in Section 4.3 on
these randomly selected feature combinations. These random selections were made without
using the FPD algorithm. The accuracy varied significantly, ranging from a minimum of
67.7 to a maximum of 89.2%, highlighting the substantial performance variation that arises
when feature combinations are chosen randomly. Hence, employing a suitable algorithm
for the selection of appropriate feature combinations is crucial.
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Table 8. Classification results of six random feature combinations.

FPD Absolute Mean–5th
Moment

Median–K
Factor

Kurtosis Factor–5th
Moment

Interquartile
Range–Peak to Peak

Trimmed
Mean–6th Moment

Kurtosis–Factor
SkewnessParameter

PD 0.350 0.199 0.309 0.216 0.168 0.365
MD 0.021 0.683 0.780 2.707 0.597 0.802

FPDn 16.398 0.292 0.396 0.080 0.280 0.455
Learning time [s] 2.478 1.878 2.334 1.886 2.588 2.473

Accuracy [%] 67.75 84.25 77.83 89.25 84.33 76.92
PPV [%] 78.71 90.53 84.65 91.24 92.92 83.44

Table 9 displays the average values of FPDn and the diagnostic indicators of machine
state, such as training time, accuracy, and PPV, for the diagnostic models constructed
using six high-ranked feature combinations, six low-ranked feature combinations, and six
randomly selected feature combinations.
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Table 9. Comparison of average classification results of feature combination groups.

Parameter High-Ranked Six Low-Ranked Six Random Six

FPDn 0.068 130.226 2.984
Learning time [s] 1.847 2.648 2.273

Accuracy [%] 90.17 52.26 80.06
PPV [%] 92.31 53.98 86.91

Comparing the results, the six high-ranked feature combinations exhibited a training
time that was 30.25% lower than that of the six low-ranked combinations, along with an
accuracy and PPV 37.90 and 38.32% higher, respectively. Additionally, when compared to
the six randomly selected feature combinations, the six high-ranked feature combinations
demonstrated a training time 18.75% lower, as well as an accuracy and PPV 10.11 and
5.39% higher, respectively. These findings highlight the close relationship between FPDn
and the classification performance, confirming the appropriateness and effectiveness of
feature combination selection based on the FPD algorithm in the development of models
for eccentricity diagnosis in R2R systems.
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5.3. Diagnosis of Bearing Fault via Comparison with Feature-Selection Algorithms Proposed in
Prior Studies

Table 10 presents the machine learning performance metrics for the proposed al-
gorithm and representative feature-selection methods (mRMR, chi-square, ReliefF, MD
evaluation, and FDM) based on B-V data using kernel Gaussian SVM-based five-fold cross-
validation. The metrics include accuracy, training time, and PPV. The FPDn-based classifiers
demonstrated lower training times compared to those using other feature-selection algo-
rithms (mRMR, chi-square, ReliefF, MD evaluation, and FDM) with reductions of 44.17,
53.03, 56.01, 57.29, and 15.56% respectively. Furthermore, the accuracy of the FPDn-based
classifiers was higher, exhibiting improvements of 2.06, 8.45, 5.46, 11.53, and 0.83%, re-
spectively, compared to that of other algorithms. Similarly, the PPVs of the FPDn -based
classifiers were higher, with improvements of 1.67, 8.18, 5.49, 11.40, and 0.81%, respectively.
In summary, the classifiers employing the proposed algorithm achieved lower training
times than those using other feature-selection methods, with an average reduction of
44.17%. Moreover, the classification accuracy and PPV of the proposed algorithm were
higher, with average improvements of 5.81 and 7.58%, respectively, compared to those of
other algorithms.

Table 10. Comparison of classification results according to the feature-selection method.

Parameter mRMR Chi-Square ReliefF MD Evaluation FDM FPDn

Learning time [s] 23.97 28.48 30.41 31.33 15.84 13.38
Accuracy [%] 93.15 86.75 89.75 83.67 94.37 95.21

PPV [%] 93.60 87.09 89.78 83.87 94.46 95.27

The proposed algorithm demonstrates superior performance compared to other
feature-selection algorithms in terms of training time, accuracy, and PPV. The reasons
are as follows. The representative filtering feature-selection methods, MRMR, chi-square,
ReliefF have the limitation of considering only independent statistical features and distribu-
tions. MD evaluation can reflect the correlation of two features based on the distance, but it
has low accuracy because it does not introduce the density of the data, and FDM considers
both density and MD together and achieves better results than other feature-selection
techniques by reflecting the correlation of two features together. However, it does not
achieve the highest accuracy because it does not introduce the partial density, which is
the parameter most closely related to the misclassification rate. The proposed algorithm
had the best performance because it selected the features using the parameters, partial
density and MD, considering the correlation between the features most closely related to
the performance. It evaluated feature combinations by considering the density and distance
of overlapping regions specific to each class, enabling the selection of the most suitable
features for the classification model in the rotating element diagnosis.

FPD algorithms can solve the problem of low accuracy, which is a limitation of existing
filter-based feature-selection methods. As a result, the classifier based on the proposed
algorithm provides a more accurate and time-efficient diagnosis of the rotating element
in R2R systems than that achieved by other feature-selection methods. FPD, as a robust
feature-selection algorithm, considers both density and distance based on classes, along
with the most sensitive parameter for misclassification. It calculates PD in overlapping
regions and quantifies the classification by considering the class distance in those regions.

6. Conclusions

Aiming to enhance efficient diagnosis of the operating status of rotational components
in R2R production systems, this paper presents a feature-selection method based on partial
density (FPD), which ultimately improves the coating quality and contributes to PHM.
The FPD approach introduces the concept of partial density, which focuses solely on mis-
classified class data within overlapping regions. It also provides a quantitative evaluation
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method for classification by considering the ease of classification based on the Mahalanobis
distance between the classes forming the partial density. Generally, a lower FPDn value
indicates a higher classification accuracy, allowing for the ranking of feature combinations
in ascending order based on FPDn.

To validate the effectiveness of the proposed algorithm, a diagnostic experiment
was conducted on the eccentric roll of an in-feeder roller within an industrial-scale R2R
continuous production system. The top six and bottom six feature combinations were
constructed based on the FPDn ranking of the collected vibration data, while an additional
six feature combinations were randomly selected. The model trained using the top six
feature combinations exhibited an average reduction in training time of 30.25% compared
to that of the bottom six and random six feature combinations. Moreover, it demonstrated
improvements of 37.90 in accuracy and 38.32% in the PPV, confirming the efficacy of the
FPD algorithm-based feature selection. Furthermore, to highlight the superiority of the FPD
method, feature combinations were selected using five previously studied feature-selection
methods (mRMR, chi-square, ReliefF, MD evaluation, and FDM), and the training time,
classification accuracy, and PPV were compared. The FPD method exhibited lower training
times than classifiers employing mRMR, chi-square, ReliefF, MD evaluation, and FDM,
by 44.17, 53.03, 56.01, 57.29, and 15.56%, respectively. Additionally, it achieved higher
accuracies of 2.06, 8.45, 5.46, 11.53, and 0.83%, respectively, as well as higher PPVs of 1.67,
8.18, 5.49, 11.40, and 0.81%, respectively.

In conclusion, the proposed FPD algorithm effectively selects feature combinations for
fault classification, reduces the training time of the rotational machine eccentricity diagnosis
model in R2R systems and improves classification accuracy. This is achieved using a high-
quality learning dataset to construct feature combinations that enhance accuracy and
expedite training. The FPD algorithm accomplishes this by extracting class density by
excluding the class with the maximum density and evaluating the classification rate based
on the Mahalanobis distance between classes.

In this study, only SVM was used to verify the performance, and no other machine
learning or deep learning techniques were used. In addition, since the data for the eccen-
tricity experiment were collected in only one experimental setting, the data for various
R2R system conditions [69–71] were not available, so it was not possible to verify the per-
formance trend of the learning model according to the roll-to-roll system setup condition.
Therefore, future research could use various machine learning and deep learning methods
to achieve additional diagnostic performance from the technique and identify the impacts
of different R2R system setup conditions like web materials, sensor types, imbalanced
conditions, which could make significant contributions in computational domains and
furthermore the physical domain.

Therefore, we plan to develop machine learning and deep learning-based diagnostic
models for precise health diagnosis, prognosis, and health management (PHM) of R2R
manufacturing systems and other manufacturing systems using unbalanced data collected
from various sensors such as acceleration, vision, and tension sensors with various web
materials such as metal and PET film.
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