
Citation: Franco, P.; Condon, F.;

Martínez, J.M.; Ahmed M.A.

Enabling Remote Elderly Care:

Design and Implementation of a

Smart Energy Data System with

Activity Recognition. Sensors 2023, 23,

7936. https://doi.org/10.3390/

s23187936

Academic Editors: Juan Antonio

Holgado-Terriza, Miguel J. Hornos

and Carlos Rodriguez-Dominguez

Received: 30 June 2023

Revised: 30 August 2023

Accepted: 13 September 2023

Published: 16 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enabling Remote Elderly Care: Design and Implementation of a
Smart Energy Data System with Activity Recognition
Patricia Franco , Felipe Condon , José M. Martínez and Mohamed A. Ahmed *

Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
patricia.franco@usm.cl (P.F.); felipe.condon.13@sansano.cl (F.C.); jose.martinez@usm.cl (J.M.M.)
* Correspondence: mohamed.abdelhamid@usm.cl

Abstract: Seniors face many challenges as they age, such as dementia, cognitive and memory
disorders, vision and hearing impairment, among others. Although most of them would like to
stay in their own homes, as they feel comfortable and safe, in some cases, older people are taken to
special institutions, such as nursing homes. In order to provide serious and quality care to elderly
people at home, continuous remote monitoring is perceived as a solution to keep them connected to
healthcare service providers. The new trend in medical health services, in general, is to move from
’hospital-centric’ services to ’home-centric’ services with the aim of reducing the costs of medical
treatments and improving the recovery experience of patients, among other benefits for both patients
and medical centers. Smart energy data captured from electrical home appliance sensors open a new
opportunity for remote healthcare monitoring, linking the patient’s health-state/health-condition
with routine behaviors and activities over time. It is known that deviation from the normal routine can
indicate abnormal conditions such as sleep disturbance, confusion, or memory problems. This work
proposes the development and deployment of a smart energy data with activity recognition (SEDAR)
system that uses machine learning (ML) techniques to identify appliance usage and behavior patterns
oriented to older people living alone. The proposed system opens the door to a range of applications
that go beyond healthcare, such as energy management strategies, load balancing techniques, and
appliance-specific optimizations. This solution impacts on the massive adoption of telehealth in
third-world economies where access to smart meters is still limited.

Keywords: activity detection; appliance recognition; load monitoring; machine learning;
non-obtrusiveness; remote healthcare; simultaneous detection

1. Introduction

Current research in ambient assisted living (AAL) has been oriented to assess the
feasibility of using technology in healthcare practices. AAL utilizes available technology
across different domains such as computer science, engineering, medicine, and social
sciences to identify human activities and provide medical insights, commonly referred
to as telehealth. Additionally, AAL technologies provide two main types of monitoring:
preventive, which forewarns patient risks by analyzing activities of daily living (ADLs),
and responsive, which reacts to events such as falls, alarms, and patients leaving their
home [1]. This can be achieved through the analysis of the data provided by home
devices using smart appliances, wireless networks, software applications, smart meters,
and medical sensors [2]. In other words, smart energy data can be used to provide
unobtrusive health monitoring [3].

The report of the Smart Future of Healthcare Workshop in February 2020 (see https:
//2020health.org/publication/smart-future-of-healthcare/ (accessed on 20 May 2022))
examined different ways in which smart energy data can be used in remote healthcare.
According to the authors, applications are collected in three broad domains: ambient
assisted living support, population-level screening and support, and self-monitoring. The
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first clinical trial using smart energy data for telehealth was conducted in 2016 [4]. Since
then, the potential benefits of smart energy data in supporting health and care systems are
of increasing interest due to the massive adoption of smart meters and other smart grid
technologies in a growing number of countries worldwide.

A potential source of smart energy data comes from the residential sector [5]. In smart
homes, home energy management systems (HEMSs) are expected to enable efficient service
management, provide customers with comprehensive internal information exchange func-
tions, and help family members maintain continuous contact with the outside world [6].
The application of the smart home concept and HEMSs aims to facilitate the user’s op-
eration and management of household appliances to achieve automation and optimized
operation [7]. To establish such a management system, the first step is to identify and moni-
tor the energy consumption of the main electrical appliances in the home. This is known
as load monitoring [8]. Common loads of interest are washing machines, dishwashers,
vacuum cleaners, electric vehicles (EVs), and heating, ventilation, and air conditioning
(HVAC) [2,9]. Using data collected from electricity readings, technology can accurately
identify the use of individual electrical devices in the home and routine behaviors of people
to detect when anomalies occur [10,11].

Load monitoring techniques are classified into two main groups, as shown in Figure 1:
software-based methods (non-intrusive load monitoring (NILM)) and hardware-based
methods (intrusive load monitoring (ILM)). Both categories consist of a data acquisition
stage, involving appliances and metering devices, and an analytics part, commonly consist-
ing of two stages: feature extraction and classification. The last two processes are usually
carried out in a middleware technology, being a local/remote server. Machine learning
(ML) techniques are employed in both monitoring methods, especially for classification.
The main difference between the two methods lies in the acquisition stage, since NILM uses
smart meters as a single point of sensing, while ILM implies multiple sensors. Furthermore,
ILM has two subcategories: one is based on metering devices (e.g., smart plugs attached to
home appliances) known as distributed sensing, and the other is based on smart appliances.
Smart appliances are devices with built-in capabilities to monitor and report their consump-
tion [2,12]. Both NILM and ILM need a communication network to allow data exchange
between local devices (appliances, meters, and home gateway) and the middleware where
the analytics stage takes place. Therefore, load monitoring systems can be represented as
an internet-of-things (IoT) platform able to support activity recognition and a wide variety
of services.

According to [1], research activities in the medical field are interested in ILM and
NILM approaches and their applications in delivering home healthcare services. Compared
to hardware-based methods, NILM offers easier installation, since it only needs one point
of sensing, but achieves less accurate results and adds more difficulty to implementation
in practical scenarios. The aggregated signal can be very noisy and few appliances can
be detected depending on the sampling frequency [8]. Even with advanced artificial
intelligence (AI) algorithms, only a few major appliances can be monitored (e.g., ovens,
washing machines, HVACs, EVs). Furthermore, the performance of NILM on different
datasets remains inconclusive in terms of device types and metrics used [13]. On the other
hand, ILM methods offer greater reliability than NILM but require the installation of more
equipment, which results in an increase in the costs [14,15]. However, with the growing
popularity of smart plugs in the market, this situation has changed. These metering devices
are small, compact, compatible with traditional plug-in sockets, and accessible in most
countries. They combine various technologies and address all aspects for effective load
monitoring. In contrast, current smart meter technology has problems with changes in
energy consumption, privacy and security of the metering data, and the management
of collected data. Therefore, distributed sensing using smart plug devices becomes a
potential solution that can unobtrusively improve the process of efficient low-cost load
monitoring, bringing the possibility of converting traditional devices to be smart [16]. This
allows ADLs and routine behavior patterns of householders to be identified, obtaining
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valuable information not only for health but also for energy efficiency, user satisfaction,
and sustainability of homes. However, the implementation capabilities of these systems
in practice are quite limited, since the absence of reliable evidence prevents any definitive
guide or recommendation for their operation in a real environment. The main challenge is to
develop a platform able to work in real time identifying simultaneous ADLs (i.e., multiple
activities at the same time).

NILM ILM

Data
Acquisition

Classification

Feature Extraction

Figure 1. Schematic diagram of load monitoring methods. On the left, software-based (NILM), and
on the right, hardware-based (ILM).

Specifically in Chile, regulations exist for the use of smart meter technology but access
to smart appliances is still limited due to economic reasons. On the other hand, according to
the results of the 2017 census (see https://www.ine.gob.cl/estadisticas/sociales/censos-de-
poblacion-y-vivienda (accessed on 10 June 2023)), around 2.4 million people are living alone.
Telemedicine in Chile is mainly oriented to teleconsultations in ambulatory, hospitalization,
and urgency care, telereports, and explicit health guarantee networks (GES), according
to the national telehealth program [17]. Therefore, the introduction of smart energy data,
ambient assisted living technologies, load monitoring, and the classification of activities of

https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda
https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda
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daily living will bring significant opportunities to improve the quality of life and remote
healthcare services of Chilean society.

In this work, we propose the design and implementation of a smart energy data with
activity recognition (SEDAR) system for monitoring the main loads inside a household and
extracting routine behavior patterns of consumers, which can significantly impact indepen-
dent living and social care. We develop a platform that benefits from edge technologies
to provide relevant behavioral information of users living independently. We consider
smart energy data generated through the interaction with existing household appliances
as the only source of information. This allows the identification of low- and high-power
devices, such as the television set (TV) and the heater, without interfering with the user’s
routine. Therefore, privacy and acceptability concerns are mitigated through the use of
smart plugs installed across the house. Every appliance can be connected to any plug, thus,
giving the system flexibility and making the house smart. Using ML and statistical analysis
techniques, the system allows appliance usage frequency, activity distribution, and average
inactivity periods to be collected to build a user profile.

We deployed the real system in a laboratory environment at Universidad Técnica
Federiso Santa María (UTFSM), Valparaiso, Chile, overcoming the implementation issues of
previous approaches. The proposed platform can be used for different purposes, either as a
family-oriented tool for remotely monitoring the elders living alone, without intervention in
their daily routines, or as a comprehensive solution for monitoring the energy consumption
of a household, coupling with an HEMS. In Chile’s context, the proposed system can help to
overcome the emerging challenges in telehealth programs targeting a massive deployment
of remote healthcare systems for elderly care.

To the best of our knowledge, no prior research has tackled the need for reliability
in the data source by presenting a solution utilizing smart plugs, and no similar solution
currently exists in Chile. Furthermore, no previous studies have addressed the uncertainty
associated with evaluation metrics, such as the accuracy, by proposing various prepro-
cessing techniques and more complex ML models. In addition, there has been a lack of
practical implementation of load monitoring and remote healthcare systems, particularly
in edge-based settings. The contributions of this work are summarized as follows:

• We designed and validated an IoT platform in a real scenario to unobtrusively perform
load monitoring and activity recognition (ADLs), aiming to enable remote elderly care
in Chile.

• The proposed system achieves near real-time operation by accurately identifying
both low- and high-power-consumption devices, overcoming the limitations of NILM
solutions in this regard.

• The proposed system is capable of recognizing activities being simultaneously per-
formed, and showing the information to users in a friendly manner through a dash-
board interface.

• The proposed system is flexible, allowing the connection of any appliance indepen-
dently of the plug, making it adaptable to different devices.

The rest of this paper is organized as follows: in Section 2, we present a comprehen-
sive study of state of the art for IoT and ML solutions regarding in-home monitoring and
elderly care. In Section 3, we discuss previously used techniques, their limitations, and
the novelty of the proposed strategy. In Section 4, we give detailed information about the
proposed system. Next, in Section 5, we describe the processing applied to the collected
data. In addition, in Section 6, we explain the experiments performed and the results
obtained. Furthermore, in Section 7, we analyze the advantages and disadvantages of
the system. Finally, in Section 8, we arrive at conclusions and present the guidelines for
future work.

2. Related Work

In recent years, a significant part of the research community has been interested
in the advances in the IoT, sensing, and communication technologies for telehealth. Two
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main views can be distinguished when analyzing related work in this regard: applications
for hospital/medical services (medical oriented) and applications for family members
(family oriented). Both approaches aim to monitor people remotely by identifying routine
behavior patterns and if and when anomalies occur. The main difference between medical-
and family-oriented applications lies in the type of anomalies or information given by
the proposed application. Although medical services show a more detailed report that
can help treat a specific disease, family-oriented applications show an overall context of
patient/person behavior.

2.1. Medical-Oriented Applications in Research

To fulfill medical applications, wearable sensors have been preferred due to their
capabilities in diagnostic and monitoring applications. These devices are capable of gather-
ing physiological and movement data of patients, providing status monitoring [18]. The
authors of [19] reviewed low-cost and accessible IoT technologies available for biomedical
engineers, presenting a comprehensive insight into the technical specifications of sensing
devices, including wearable sensors. A different solution is presented in [20], where the
authors designed a distributed platform to monitor the patient’s movements and status
during rehabilitation exercises. However, since these approaches required the installation
of devices near the patients, in some cases attached to their clothes, inconveniences to
everyday life can be introduced [3]. Similar problems occurred in [21], in which the authors
used a camera to record and employed computer vision techniques to perform the recogni-
tion. This raised privacy concerns, and hence, a low opportunity for a massive adoption
of the system. To overcome such privacy issues and avoid disrupting the normal routine
of people, in [1], the authors presented an NILM-based system capable of recognizing
anomalous behavior in dementia patients. Machine learning algorithms were trained with
data collected during a real-case scenario campaign. This approach facilitated the detection
of specific ADLs in an unprecedented manner without incurring undue burden on the cog-
nitive demands of patients or cost. However, since NILM relies solely on smart meter data,
only major appliances were detected, including the kettle, microwave, toaster, electric oven,
and washing machine. On the other hand, the authors of [22] carried out a pilot study for
in-home monitoring of patients with Parkinson’s disease (PD), focusing on house activity
and time in bed. A device was installed in the bedroom of seven ambulatory individuals.
The device, called Emerald, was able to passively detect routine activity of patients using
radio waves, however, only certain points of interest could be monitored. The authors
of [23] proposed a platform which gave promising results, especially in fall detection, but
it was based on flexible non-contact triboelectric sensors (NCTSs). A similar cloud-based
platform for providing support to the healthcare medium through load-monitoring-based
solutions was discussed in [24]. Apart from being based on NILM techniques, no practical
implementation was provided.

Although previous research has successfully achieved human activity recognition,
allowing the monitoring of patients with several illnesses, the results are still inconclusive
in terms of non-activity detection. This means, how to differentiate whether if the patients
are sleeping, not at home, or if some other alarming situation occurs. In addition, various
authors have highlighted the lack of progress and reliability as the main difficulty in
the development of remote healthcare applications. This is mainly due to the fact that
government and institutional funding opportunities have not recognized the specific
multi-disciplinary requirements for rigorous clinical research involving smart energy data
and ML.

2.2. Family-Oriented Applications in Research

Family-oriented applications have mainly targeted elderly people living alone in
such a manner that family members can remotely monitor their beloved ones (in-home
monitoring) by analyzing their power consumption. Recent innovative solutions in remote
healthcare have reaffirmed this idea. In [8,25], the authors used NILM techniques to
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recognize ADLs. Specifically, in [25], the authors compared results in houses with single
occupants and multiple members. Their model succeeded in carrying out rough monitoring
of most elderly people on a large scale, however, some adjustments had to be made in
order to improve the accuracy. In the case of [8], the system struggled with simultaneous
detection, being only capable of recognizing one activity at a time. Another example
is [26], in which the authors presented Smart Home Control, an intelligent platform to offer
fully customized automatic control schemes and perform an analysis of historical records
and detect residents’ behavior patterns through IoT and ML. Nevertheless, this system
conveyed challenging problems related to the difficulty in interpreting the results obtained
by decision trees and random forest algorithms, leading to a lack of explainability in the
generated models. On the other hand, the authors of [27] focused on detecting anomalies
following an intrusive approach. They also used ML techniques, specifically probabilistic
networks and H2O autoencoder, for identifying both activities and abnormal behavior.
This system relied on a set of pre-segmented activities rather than appliance usage. The
validation of such a system in a practical scenario is also missing. A similar problem arises
in [28], in which the authors proposed a human activity recognition (HAR) model using
a semi-supervised transfer learning algorithm, but experiments were run using a public
radar-based HAR dataset. In [29], the authors presented ApplianceNet, a smart-plug-based
mechanism to recognize appliances being used and residential patterns. The work was
oriented to in-home monitoring, identifying six different activities of consumers. However,
the work is only simulation-based, using data from five houses of the REFIT dataset, thus,
a practical validation of such a system is required.

Regarding home care for elderly people, further research is required to conduct a
comprehensive analysis that extends beyond the comparison of different ML models
and techniques. As mentioned by the authors of [30], the implementation of such
systems in real-time scenarios is still limited. Similar to medical-oriented applications,
the results remain inconclusive when it comes to identifying non-activity. In the same
way, the accuracy of the models varies on different datasets, leading to uncertain results.
Most authors exploit the benefits of cloud-based systems, but having a centralized
management may decrease efficiency in large-scale implementation scenarios. Exploring
edge solutions can help to overcome this issue by having local management and remote
storage [6]. However, various alternatives exist on where to put the intelligence, and
the comparison of such systems with a so-called "blind" platform (i.e., without AI or
intelligence) is still missing.

2.3. Summary

As a summary, Table 1 highlights the main aspects identified in the literature, com-
paring the methodologies followed by previous authors and the one proposed in this
work. The first two columns contain the references and the type of paper, i.e., technical
or survey. In essence, there are three different data sources as the main providers for
AAL and telehealth applications, wearable sensors, cameras or visual information, and
dense sensing devices (such as smart plugs, smart meters, and others), which are used
in the data acquisition stage of both ILM and NILM solutions. These characteristics are
shown in the next four columns of Table 1. Also, we summarize the target domain which
the given study can help to mitigate or monitor according to the researchers. These are
directly related to medical- and family-oriented applications. As can be seen, this work
proposes ILM techniques for recognizing common ADLs, which provide the system with
higher reliability compared to those based on NILM, and with less obtrusiveness than
those based on wearable sensors or cameras. Additionally, the system offers advantages
as both an in-home monitoring system for tracking total and individual appliance power
consumption, and as a remote elderly care solution capable of generating a user profile
based on behavior patterns such as appliance usage frequency, activity distribution, and
average periods of inactivity.



Sensors 2023, 23, 7936 7 of 29

Table 1. Summary of previous research work.

Reference Type Wearable
Sensors Camera ILM NILM Target Application

[1] Technical X X X X Dementia

[25] Technical X X X X Anomalous behavior

[31] Survey X X X X Vital signs monitoring

[23] Technical X X X X Accident prevention, fall detection

[20] Technical X X X X Rehabilitation

[19] Survey X X X X Behavioral patterns

[32] Survey X X X X Anomalous behavior

[22] Technical X X X X Parkinson’s Disease

[33] Survey X X X X Elderly care

[18] Survey X X X X Rehabilitation

[34] Survey X X X X In-home monitoring

[26] Technical X X X X Behavioral patterns, comfort

[35] Technical X X X X Elderly care

[27] Technical X X X X Anomalous behavior

[36] Technical X X X X Elderly care

[37] Technical X X X X Remote monitoring for people in rural areas

[24] Technical X X X X Elderly care

[28] Technical X X X X Surveillance, in-home monitoring

[38] Technical X X X X Exertion recognition, asthenia

[39] Technical X X X X Not specified

[21] Technical X X X X In-home monitoring

[40] Technical X X X X In-home monitoring

[41] Survey X X X X AAL

[42] Survey X X X X In-home monitoring

[43] Survey X X X X In-home monitoring

[44] Survey X X X X In-home monitoring

[3] Survey X X X X In-home monitoring

[29] Technical X X X X In-home monitoring

[45] Technical X X X X Recommendations

[46] Technical X X X X Activity Recognition

[47] Technical X X X X Activity Recognition

This work Technical X X X X In-home monitoring, elderly care,
HEMS integration

X: Not considered. X: Considered.

3. Methodology

Useful data for in-home monitoring can be provided by three main sources related
to the physical devices used to collect data: wearable devices, cameras, and other sensing
devices. These sources have been commonly classified as wearable sensors and non-
wearable sensors [32]. Wearable sources includes those devices which need to be carried by
the user in order to sample vital information. Devices such as gyroscopes, accelerometers,
and radio-frequency identification (RFID) tags are part of this category. As a special type of
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wearable device, smart phone-based applications are also considered since the user must
carry the smart phone to collect the data. Wearable devices may bring discomfort and
privacy issues which is not convenient in many cases. On the other hand, non-wearable
sources include two subcategories, vision-based approaches and dense sensing, which do
not require any user involvement. Vision-based solutions consist of infrared (IR), depth, or
common cameras installed in the vicinity of the household to monitor the user’s activities.
Although this technique gives detailed information, it has significant constraints regarding
privacy of occupants and the complexity of the analytics algorithms. In addition, it is
required that users or occupants be placed in the line of sight of the camera, which in
many occasions is difficult to guarantee. Conversely, dense sensing involves any other
sensors (RFID, motion, temperature, smart plugs, smart meter) which can be deployed
in the household, and they can provide useful data to monitor user activity. A primary
advantage of this method hinges on it not requiring any extra user intervention or physical
contact other than regular activities [6,32].

Dense-sensing-based human activity recognition techniques have been categorized
into three main groups: action-based, interaction-based, and motion-based [43]. Depending
on the type of sensor deployed to collect data, the appropriate category will be selected.
For example, interaction-based solutions consider human–object interactions while motion-
based sensors include movement tracking and motion sensors. In particular, action-based
approaches have proven to be a reliable option in healthcare applications since they involve
ADLs and AAL. These solutions benefit from smart energy data to monitor household
occupants without requiring the installation of special equipment. Both NILM and ILM
methods have been widely used in this regard, offering state-of-the-art results in experi-
mental scenarios [1,22]. However, non-intrusive methodologies face several limitations
regarding standardization, detection of non-activity, and widespread adoption, owing to
the reliance on smart meters [8,10].

Particularly in Chile, the slower integration of smart meter technology can be at-
tributed to several factors:

• Cost concerns: high installation costs deter utilities and consumers.
• Infrastructure challenges: upgrading existing infrastructure is a complex and expen-

sive task.
• Lack of awareness: consumers might not fully understand the benefits of smart meters.
• Privacy and security: concerns about data privacy and security hinder adoption.
• Regulatory hurdles: complex regulatory processes delay widespread roll-out of

smart meters.
• Utility resistance: utilities might resist operational changes.
• Financial constraints: economic challenges impact adoption decisions.
• Vendor availability: limited supply chain options currently exist in the country.

On the other hand, access to smart plugs in Chile aligns well with their potential
for in-home monitoring and remote elderly care. Competition among vendors, utility
initiatives, and established import and distribution networks further contribute to their
prevalence. The ease of integration and consumer awareness of energy-saving technologies
have propelled the popularity of smart plugs. This accessibility not only supports Chile’s
sustainability goals but also enables a more detailed activity profile of consumers, since
both high and low power consumption appliances can be monitored.

A schematic of all of the enabling technologies for activity recognition and in-
home monitoring is depicted in Figure 2. The devices involved in each category are
represented in different colors. Wearable devices (smart watch) are colored red, vision-
based equipment (IP camera) is colored blue, and dense sensing is colored green. Both
ILM and NILM techniques are based on dense sensing for data acquisition. As ILM
offers higher reliability than NILM, and access to smart plugs is increasing in Chile,
we selected ILM to carry out this work. However, the total power consumption is also
considered in the data analysis and can be visualized along with the individual appliance
consumption breakdown.
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The ILM technique is defined as a set of metering devices denoted by D attached to
home appliances. Every smart plug d ∈ D sends univariate time-series readings rd at each
time instant t [29]. This measurement is continuously repeated after an interval of length ∆t.
Then, the time-series sample for a smart plug d is represented as a sequence of length N, as
represented in Equation (1):

Rd = (rd(t1), rd(t2), rd(t3); . . . ; rd(tN))
T ; ∀d ∈ D, (1)

in which ti+1 = ti + ∆t and Rd is the transpose of the dth smart plug sample. Each smart
plug d is assumed to be independent, thus, it is possible to analyze a single smart plug
and repeat the analysis for the rest of the plugs in D. Then, the system is simplified as in
Equation (2), so that rd = r and sequence with length t1 = t, where t ∈ {1, 2, 3 . . . N} [29].

R = {r}N
t=1 (2)

Therefore, to develop such a load monitoring and activity recognition system (action-
based dense sensing), in addition to appliances and metering devices, further processing is
needed. The task is to first identify the appliances being used and then infer an activity
according to the labels assigned [10]. Therefore, it is reasonable to think of the structure of
such a system from an IoT perspective.

Dense sensingWearable sensors Vision-based

Smart
Meter

Ambient sensors

Smart TV

IP camera

Smart Watch

Smart
Plug

Figure 2. Basic schematic of enabling technologies and techniques for activity recognition and
in-home monitoring.

Usually, three- to five-layer architectures are necessary when considering appliances,
metering devices, communication technologies, middleware technologies, and data
visualization [6]. Four-layered architectures are commonly an extension of the three-
layered architectures, since the communication network layer separates the home area
network and remote communication network, which are also defined within middleware
technologies in many cases. In some scenarios, a customized data visualization layer
is included and oriented specifically to the target application [31]. However, having a
smaller number layers can offer advantages such as simplicity, ease of implementation,
and reduced overheads [48]. A critical aspect to consider is security. While some authors
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argue that security should be ensured at every layer [49], others propose the inclusion
of an additional layer specifically dedicated to security concerns [26]. Several threads,
from physical attacks to malware infection, need to be handled to provide a reliable
monitoring service.

4. Design and Implementation of the Proposed SEDAR System

The proposed architecture, illustrated in Figure 3, is structured into three layers, each
playing a vital role in the system’s overall functionality.

• The lower layer, called data acquisition, encompasses physical devices such as appli-
ances and metering devices (smart plugs). At this layer, energy transactions take place.

• Moving up, the communication network layer incorporates various network tech-
nologies available in the market for local communication. It connects smart plugs
with the home gateway and establishes a connection between the home gateway
and middleware.

• Next, the data analytics layer gathers a range of technologies, including ML models
and preprocessing algorithms for data processing, showing this information to users
through a web interface. This layer serves as a mediator between physical devices and
services. The integration of a diverse array of healthcare services is possible, covering
in-home monitoring, user comfort, safety, and behavior analysis.

Security measures are considered at every layer, rising as a transversal layer in the
proposed architecture. For the data acquisition, physical considerations are needed. If
the physical security of the devices is compromised, attackers might gain direct access
to sensitive information about users. For the communication network, security includes
strong Wi-Fi Protected Access 3 (WPA3) for the local network and the use of firewalls
and intrusion detection/prevention systems (IDS/IPS) to the wide area network (WAN)
traffic for suspicious activities and potential intrusion attempts. In the case of the data
analytics layer, common security measures include authentication and access controls
for the middleware technology, the use of encryption transport layer security (TLS) and
secure socket layer (SSL) certificates to protect messaging, regularly updating and patching
software on all components to address known vulnerabilities, monitoring traffic for unusual
activities, and educating users about security best practices and potential threats to prevent
social engineering attacks.

It is important to clarify that in this context, the term ‘’users” refers specifically to the
individuals who receive the processed data, rather than the occupants of the house.

To validate the design of the proposed architecture, a testbed was implemented in the
B110 Telematics Laboratory, Universidad Técnica Federico Santa María, Valparaiso, Chile.
The system’s setup is depicted in Figure 4, with labels highlighted using the corresponding
layer colors assigned in Figure 3.

It is crucial to emphasize that Figure 3 encompasses all possible configurations of
the system, including cloud-/edge-based setups, with or without smart meters, and the
inclusion of additional services in the analytics stage. The purpose of this figure is to
illustrate the functionality of each component within the layers, which remains consistent
regardless of the specific configuration or setup employed. Figure 4 shows the deployed
setup, representing one of the possible configurations.
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Figure 3. Architecture of the proposed SEDAR. Three-layer structure: data acquisition, communica-
tion network, and data analytics. LAN: local area network; WAN: wide area network.

Raspberry Pi

Figure 4. Testbed implementation in B110 Lab, Universidad Técnica Federico Santa María, Chile.
Data acquisition devices highlighted in blue; home gateway highlighted in green; Raspberry Pi, and
web interface highlighted in yellow. HAN: home area network.

4.1. Data Acquisition Layer

The goal in the data acquisition (DAQ) layer is to obtain load measurements at an
adequate rate, aiming to identify distinctive load patterns in the following stages [50].
Therefore, in the DAQ layer, two main entities collaborate: one is household appliances
and the other is metering devices. The metering devices can be installed at four different
levels according to the equipment deployment granularity in the DAQ layer [6]:

• Area level: The metering devices are used to monitor household areas, measuring the
consumption after the utility’s energy meter.

• Plug level: The metering devices are located next to the plugs to monitor directly
appliances connected to the outlet or multi-outlet.
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• Appliance level: The metering devices are embedded directly in the appliances or
placed in a dedicated outlet (i.e., the outlet for a specific appliance).

To develop this work, smart plug devices were installed at plug level, located next to
the outlet. This means that every appliance can be connected to every plug, hence the need
for labeling. Due to market availability in Chile, Sonoff Pow R2 devices were selected for
use with the system. These devices are able to acquire readings from appliances, but they
lack a plug. As a solution, the Sonoff Pow R2 devices were integrated into a conventional
plug, as shown in Figure 5. Sonoff devices have some limitations with the proprietary
firmware, not having the capability for being plug and play. To solve this issue, we installed
ESPurna as firmware. This is a custom firmware for ESP8285-/ESP8266-based smart
switches, lights, and sensors. It uses the Arduino core for the ESP8266 framework and a
number of third party libraries. The ESPurna firmware allows control of the Sonoff devices
through a web interface, called Web UI, where different parameters can be configured, such
as the message queue telemetry transport (MQTT) protocol.

Figure 5. Sonoff Pow R2 integrated with conventional plug to collect data.

At this stage, a crucial parameter to consider is the sampling rate. The data sampling
can be classified into two categories: high-speed sampling and low-speed sampling. De-
pending on the target application, the sampling rate for electricity consumption may vary.
A fairly high sampling rate ranges from 1 kHz to almost 100 kHz in most cases [2,8,51].
For higher sampling rates, the identification results are more precise, typically allowing
state transitions to be captured and eventually separating brands in the same category [51].
However, most commercial devices cannot achieve high-speed sampling. Furthermore,
the complexity of data storage, transmission and processing for high-speed sampling is
significantly increased compared to low-speed sampling [2]. In the case of this work, we
set the sampling rate to 6 s, a high sampling value, used in several previous state-of-the-art
studies [8,10,11] and well-known datasets [52].

Furthermore, an eGauge data logger was installed to monitor the overall power
consumption of the laboratory, simulating the functionality of a smart meter within a
household setting. The appliances used in this work are summarized in Table 2. According
to Enel, a Chilean service provider, these are five of the most common appliances in Chile
(see https://www.enel.cl/es/clientes/tarifas-y-regulacion/consumo-artefactos-electricos.
html (accessed on 15 May 2023)). The columns represent the brands and models. All
devices were purchased in 2022; they operate with a voltage of 220 V, and a frequency of
50 Hz according to the Chilean standard.

https://www.enel.cl/es/clientes/tarifas-y-regulacion/consumo-artefactos-electricos.html
https://www.enel.cl/es/clientes/tarifas-y-regulacion/consumo-artefactos-electricos.html
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Table 2. List of appliances considered.

Appliance Brand Model City Country

Kettle Hamilton Beach 40987-CL Valparaiso Chile
TV LG 24TL520S-PS Valparaiso Chile

Hair dryer Siegen SG-3049 Valparaiso Chile
Minibar Nex CR-52 Santiago Chile

Electric heater Ufesa RD-1500D Santiago Chile

4.2. Communication Network Layer

In order to connect metering devices to an application host or service provider, a
communication network must be deployed. Two types of networks need to be managed in
order to implement an in-home monitoring system:

• Home area network (HAN): Inside a household, the home area network is used
to provide monitoring of energy usage. This communication network carries data
generated by the metering devices and home appliances to the middleware technology
in which the post-processing (monitoring, control, comfort analysis, occupancy, among
other applications) is performed. Examples of communication technologies include
IEEE 802.3 family, power line communications (PLCs), serial communication RS-
232/485, wireless networks (IEEE 802.11 family, IEEE 802.15 family, mobile field
network) (GSM-based 2G, CDMA-based 3G, LTE-based 4G, NR-based 5G), and low-
power networks (NarrowBand IoT, LoRa, Sigfox) [53,54].

• Wide area network (WAN): Outside the household domains, the WAN provides data
exchange between smart homes and services providers, forming smart neighborhoods
and cities. Furthermore, central managed solutions, such as the cloud-based load
monitoring system and database servers, are accessible through this communication
network.

Since this work focuses on local communication, the proposed system only considers
a HAN. Wi-Fi technology was employed to enable the communication between smart
plugs and the HAN gateway, as well as the edge middleware devices. To facilitate this
communication, MQTT messages are transferred over the Wi-Fi network.

4.3. Data Analytics Layer

The data analytics layer (DAN) encompasses the middleware technologies, which
can consist of a cloud-computing-based central processing mechanism and/or edge-based
distributed computing intelligence. These technologies are responsible for executing and
optimizing data processing strategies within the system. In these processes, AI and ML
models can be deployed, enabling the system to understand the routine and life habits of
multiple householders. In this way, the data can be reused, accumulated, and visualized at
any time [55]. Therefore, two main tasks need to be accomplished at this stage [56]:

1. Collect data from different metering devices at the plug level through the HAN.
2. Provide monitoring and analysis of the main loads inside a household.

Feature extraction and classification techniques as part of load monitoring are cru-
cial for the initial identification of major appliances that contribute to higher electrical
consumption, and for the further development of the consumer profile, which provides
useful information such as behavior patterns and other activities (ADLs) [10,11]. Major
appliances are mostly used by consumers for routine housekeeping tasks such as cooking,
doing laundry, or food preservation.

In this work, we implemented an edge-based middleware using a Raspberry Pi Model
B acting as the MQTT broker, along with a local computer (PC) for subsequent data
processing. This architecture is shown in Figure 6, where DAN-layer components are
highlighted in yellow frames. Due to smart plug availability in Chile and in order to
improve system reliability and effectively monitor low-consumption appliances like the TV
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and the fridge, we favored intrusive techniques over NILM. The Raspberry Pi is equipped
with Eclipse Mosquitto (see https://mosquitto.org/ (accessed on: 5 December 2022))
for facilitating communication between the smart plugs and the local PC via the MQTT
protocol. On the PC, we developed a dashboard using Node-RED, which provides near
real-time information on the electrical consumption of appliances being used and activities
performed. Furthermore, a MySQL local database was employed to store historical behavior
data, including activity distribution, appliance usage frequency, and average periods of
inactivity. These parameters are available per hour, day, or week. The architecture of the
dashboard implemented is detailed in Figure 7.

Sonoff devices send messages every 6 s to the broker. The information contained in
these messages is represented in Equation (3):

r(t) = {MAC, IP, p(t), E(t), S(t), Q(t), PF(t), i(t), v(t)}; ∀r ∈ R, (3)

in which a reading r from the set of measurements R at time instant t contains, in addition
to the media access control (MAC) and internet protocol (IP) addresses, the active power
p(t), measured in watts (W); the energy consumed E(t), expressed in kilowatt hours (kWh);
the apparent power S(t), given in volt-amperes (VA); the reactive power Q(t), measured
in volt-ampere reactive (VAR); the power factor PF(t), which is dimensionless and ranges
from 0 to 1; the current i(t), given in milliamperes (mA); and the voltage v(t) of the plug,
measured in volts (V).

Once a message is received, the system applies filters based on the MAC address
to extract specific readings: p(t), E(t), i(t), and v(t). These readings are plotted for each
Sonoff device individually. Additionally, the active power readings are accumulated in
a first-in first-out (FIFO) queue with a size of ten samples. When the queue is full, an
array {p(ti), p(ti+x), p(ti+2x), . . . , p(ti+sx)} of power measurements is created, where x
represents the sampling frequency (6 s) and s corresponds to the window size (10 samples).
This array is sent to the feature extractor. The obtained feature vector is normalized and
used as input for a ML classifier. The classifier model is stored on the PC and instantiated
through a Python script. This approach allows the system to handle multiple queues
for different Sonoff devices and enables the parallel instantiation of the classifier model,
thereby facilitating the identification of appliances operating simultaneously. Then, each
label assigned, which corresponds to the appliance being used, is stored in the MySQL
database along with the timestamp of the detection. This allows for the recording and
organization of appliance usage information in the database for further analysis and
tracking purposes.

In addition, when an appliance is identified, an associated activity is inferred from its
usage. Possible activities include thermal comfort (if the heater is turned on), fridge cooling
(during the cooling cycles of the minibar), body care (if the hair dryer is in use), water
boiling (in case the kettle is switched on), and relaxing (when the TV is detected). Each
activity is also stored in the MySQL database, along with its corresponding timestamp.
By capturing and organizing this activity information, it becomes possible to analyze
the distribution of activities and calculate average inactivity periods. Such analysis can
contribute to characterizing a person’s behavior and detecting any unusual deviations from
their regular routine. These historical data are obtained as follows:

• Activity distribution: determined by calculating the percentage of time each activity
is performed during different time intervals, such as the last hour, last 24 h, and
last week.

• Average inactivity periods: calculated by averaging the duration of the inactivity
periods during different time intervals, such as the last hour, last 24 h and last week.

• Appliance usage frequency: computed by counting the number of times each appliance
is detected during different time intervals, such as the last hour, last 24 h, and last week.

https://mosquitto.org/
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Figure 6. Schematic diagram of the proposed system. Data analytics (DAN) layer components are
highlighted in yellow frames.
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Figure 7. Architecture of the proposed dashboard. The Python script and database elements are
highlighted in a different color since they are hosted locally. API: application programming interface;
HTTP: hypertext transfer protocol.

The system also provides additional information such as the total power consumption
P(t) and the location. Total power consumption, as shown in Figure 7, is obtained through
the eGauge device using an application programming interface (API) provided by the



Sensors 2023, 23, 7936 16 of 29

vendor. The system sends requests to retrieve the active power values every second.
Similarly, the location information is obtained by making a request to a Google API.

As a result, a user profile is constructed referring to house occupants and based on
current total and individual appliance power consumption, as well as the historical values
of appliance usage frequency, activity distribution, and average inactivity periods.

4.4. Security

Security concerns are conceived as a transversal layer in the proposed architecture.
This means that at every layer, we took security measures to ensure the protection of
sensitive data, user privacy, and the integrity of the network. As the system is implemented
locally, with no internet access, possible attacks include:

• Physical attacks: hardware devices can become damaged or intentionally removed
from the plug, thereby hindering the system’s functionality.

• Insecure device configuration: vulnerabilities in device settings can be exploited to
gain unauthorized access or disrupt network operations [57].

• Device-to-device interception: even without internet access, an attacker could position
between two devices within the LAN and intercept the traffic exchanged between
them. This could involve capturing unencrypted communication or attempting to
decrypt encrypted traffic if the encryption keys are compromised [57,58].

• Data manipulation: an attacker positioned between two devices can modify the data
being exchanged between them. While the modification might not have the same
impact as altering internet traffic, it could still lead to unintended consequences within
the local network [57].

• Credential harvesting: An attacker might trick users within the local network into
revealing sensitive information, such as login credentials, through techniques like
phishing or social engineering [57].

• Address resolution protocol (ARP) poisoning: ARP spoofing can still occur within a
local network. Attackers can associate their own MAC addresses with IP addresses of
legitimate devices, potentially leading to communication redirection or unauthorized
access [57].

• Rogue devices: an attacker could set up a rogue device within the network, mas-
querading as a legitimate device to intercept or manipulate traffic [57].

• Session hijacking: if a device within the network uses sessions for communication,
an attacker could attempt to hijack an active session to gain unauthorized access to a
device or system [57,58].

• Malware infection: if an infected device is connected directly to the middleware,
malware can spread to other devices without internet access [57].

To avoid the aforementioned attacks and ensure integrity of the LAN, especially in the
context of smart plugs, MQTT, and Node-RED, we considered the following measures:

• Physical security: ensure physical security on gateways to prevent unauthorized
access.

• Strong encryption: use WPA3 encryption for the Wi-Fi network. This provides strong
encryption protocols to the data transmitted [59].

• Secure password: set a strong and unique password on all devices and the
Wi-Fi network.

• Service set identifier (SSID) hiding: disable broadcasting the network name so that
it is not visible to devices scanning for Wi-Fi networks. This adds an extra layer of
security by making it less obvious that the network exists [59].

• MAC address filtering: enable MAC address filtering on the gateway to allow only
specific devices with approved MAC addresses to connect to the network [59].

• Gateway firmware updates: regularly update the router’s firmware to address security
vulnerabilities and ensure the latest security features are in place [59].

• Remote management: disable remote management of the gateway’s settings. This
prevents attackers from trying to access its configuration remotely.
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• Two-factor authentication (2FA): enable two-factor authentication for accessing the
gateway’s settings to add an extra layer of security [59].

• Network segmentation: separate the network into separate virtual area networks
(VLANs) for different device types [59].

• Disable unused services: turn off any unnecessary services on the gateway, such as
universal plug and play (UPnP) or Wi-Fi protected setup (WPS), as this can introduce
potential vulnerabilities.

• TSL/SSL: use encryption (TSL/SSL) for MQTT communication to ensure data confi-
dentiality [59].

• Updates: regularly update and patch software on all components of the middleware
to address known vulnerabilities [59].

• Authentication: implement strong authentication and access controls for MQTT [59].
• Educate users: educate users about security best practices and potential threats to

prevent social engineering attacks. In this case, it was explained to every staff member
in our laboratory.

5. Feature Extraction and Classification for Appliance Recognition

In order to identify the appliances being used by occupants following ILM strategies,
in addition to distributed sensing, it is necessary to further process the data received.
This processing is known as feature extraction and classification [6,11]. The proposed
system acquires the appliance data through the Sonoff Pow R2 devices and forwards this
information through Wi-Fi to the middleware, in which a local computer hosts a web
application.

We developed a feature extractor which receives an array of power samples and
returns a vector of statistical features, as in Equation (4):

vector = [’min’, ’max’, ’mean’, ’std’, ’skew’, ’kur’, ’var’, ’mad’, ’above_mean’, ’zeros’], (4)

in which each element in the array corresponds to a specific featured extracted from the
data, including minimum (‘min’), maximum (‘max’), mean (‘mean’), standard deviation
(‘std’), skewness (‘skew’), kurtosis (‘kur’), variance (‘var’), mean absolute deviation (‘mad’),
count above the mean (‘count_mean’), and count of zero values (‘zeros’). The function to
extract and calculate the features is detailed in Algorithm 1. The proposed function extracts
statistical features using a sliding window approach, storing elements in a FIFO queue. It
iterates over the data and calculates features given in Equation (4) within each window.
The vector obtained is stored in an array. This function handles different window size
options and considers padding if necessary. However, we used a window size of 10 and
padding as recommended in [11]. The proposed feature extractor efficiently processes the
data and provides a comprehensive set of features for classification.

To properly handle highly varying magnitudes negatively impacting on classification,
we performed feature scaling following the Scikit-Learn’s MinMaxScaler function, shown
in Equation (5):

Scaler(x) =
x−min(x)

max(x)−min(x)
(5)

where max(x) and min(X) are the maximum and the minimum values of the feature,
respectively. If feature scaling is not performed, then the ML model tends to give more
weight to larger values, and to consider smaller values as the lower values, regardless of
their units.

The proposed ML classifier is shown in Figure 8. It follows a feed-forward neural
network architecture (FFNN) built in the Keras framework with a Tensorflow backend. We
created the model as sequential, meaning that layers were added sequentially. The first
layer is a fully connected layer (dense) with 500 unit/neurons. We added a dropout layer
after the dense layer to help prevent overfitting by randomly setting a fraction of units to
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0 during training. The second layer is another fully connected layer of 100 units, and the
final is a fully connected layer with the number of units corresponding to the number of
classes in the target variable. As our testbed includes five appliances (five classes), then the
final layer has five units, this being the output of the model. In operation, each neuron of
the proposed model computes a weighted sum of its inputs, adds a bias term, applies an
activation function, in this case ReLU (Equation (6)), to introduce non-linearity, and passes
the result to the next layer. The weights and biases are adjusted during training to capture
complex relationships between the input data and the desired output. Dense layers enable
neural networks to learn and model intricate patterns, making them powerful tools for
solving a wide range of tasks, such as appliance recognition.

Algorithm 1: Function to view features in a window.
1: create a FIFO queue with a maximum size of 10 if it does not exist.
2: push new data to the FIFO queue.
3: if (the queue is full) then
4: stride = 10
5: window_size = 10
6: activation_threshold = 3
7: mode = ‘padding’
8: zeros = 0
9: above_mean = 0

10: for each element in FIFO do
11: if value ≥ activation_threshold then
12: Store activation values in a list.
13: else
14: zeros += 1 {Count of zero values inside the window.}
15: end if
16: end for
17: min = min(activations) {Minimum activation value.}
18: max = max(activations) {Maximum activation value.}
19: mean = sum(activations)/ count(activations) {Mean activation value.}
20: sum_of_squared_deviations = reduce(map(activations, x⇒ (x - mean)2), 0, (sum, deviation)⇒ sum +

deviation)
21: mean_squared_deviation = sum_of_squared_deviations/count(activations)
22: std = square_root(mean_squared_deviation) {Standard deviation of activation values.}
23: if (activations has at least 3 values) then
24: sum_of_cubed_deviations = reduce(map(activations, x⇒ (x - mean)3), 0, (sum, deviation)⇒ sum +

deviation)
25: skew = sum_of_cubed_deviations/(activations.length ∗ std3) {Skewness of activation values.}
26: else
27: skew = 0
28: end if
29: if (if activations has at least 4 values) then
30: sum_of_fourth_power_deviations = reduce(map(activations, x⇒ (x - mean)4), 0, (sum, deviation)⇒

sum + deviation)
31: kur = sum_of_fourth_power_deviations/(activations.length ∗ std4) {Kurtosis of activation values.}
32: else
33: kur = 0
34: end if
35: var = std/mean {Variance of the activation values.}
36: absolute_deviations = map(activations, x⇒ abs(x - mean))
37: mad_sum = reduce(absolute_deviations, 0, (sum, deviation)⇒ sum + deviation)
38: mad = mad_sum/count(activations) {Mean absolute deviation of the activation values.}
39: for each value x in activations do
40: if x > mean then
41: above_mean += 1 {Values above the mean activation.}
42: end if
43: end for
44: vector = [min, max, mean, std, skew, kur, var, mad, above_mean, zeros]
45: empty activation list.
46: end if
47: shift the queue.
48: return vector
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The ReLU activation function is given by Equation (6):

f (x) =

{
x, if x ≥ 0
0, otherwise

(6)

To compile the model, we used the categorical cross-entropy loss function, which is
commonly used for multiclass classification tasks. This function is defined as in Equation (7):

Categorical Cross-Entropy Loss = −
C

∑
i=1

yi log(pi), (7)

where C is the number of classes, yi represents the true label (ground truth) for the i-th
class and pi the predicted probability for the i-th class outputted by the model. The loss
function calculates the logarithms of the predicted probabilities and multiplies them with
the true labels. By summing these values over all classes and taking the negative, the loss
penalizes larger discrepancies between the predicted and true probabilities.

.
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.
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.
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.

.

.
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Hidden
Hidden

Figure 8. Structure of the proposed machine learning classifier. The model has two hidden layers of
500 and 100 units, respectively. Dropout is represented by turning off units (gray color) in the first
hidden layer. Neurons not affected by dropout are represented in white color.

It is important to remark that we selected the values of window size, number of layers,
and neurons, along with the type of model, based on the best results obtained in [10,11].

6. Results

In order to prove the reliability of the proposed system, we performed a series of
experiments. The first step was to train the ML classifier. In this regard, we collected
two weeks of data from the five appliances and stored them in comma-separated value
(CSV) files. A summary of the collected data is shown in Table 3. It highlights the number
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of instances collected (100,582), the format of the data (a JSON including the timestamp
and the values of r(t) defined in Equation (3)), and the number of missing values (two).
From the JSONs we extracted the timestamp and r(t) and stored them in the CSV file for
further use.

Table 3. Summary of the collected data.

Instances Format Missing Values

100,582 JSON(timestamp, r(t) (Eq.)) [3] 2

We applied the sliding window approach described in Algorithm 1 for the active power
samples and formed a statistical features dataframe to input to the model. Considering
that most smart plug devices available on the market measure active power, we specifically
focused on this parameter to build a standardized system that can be applied to various
smart plug brands. The advantage of our approach is that the model relies on statistical
features derived from the active power readings, rather than being dependent on specific
device characteristics or proprietary features. Therefore, if plugs different from Sonoff
Pow R2 devices are used, the model can still perform classification accurately, ensuring its
applicability and usefulness in various settings and scenarios.

6.1. Training Results

From the two-week dataset, we used 80% for training, 10% for validation, and the
remaining 10% for testing. Figure 9 shows the confusion matrix obtained with the test set.
As can be seen, significant class imbalance negatively impacts the model’s performance.
There is a considerable difference in the number of samples of the fridge and TV compared
with the rest of the appliances. This happens due to the variations in the frequency in appli-
ance usage throughout the day. For example, certain appliances like the TV may be used
more frequently than others such as the hair dryer, depending on the occupants’ habits and
routines. A special case is the fridge, since it is continuously connected and automatically
goes through cooling cycles, not reflecting user behavior. However, monitoring permanent
loads such as fridges may be useful for other purposes, such as detecting malfunctions
or failures in the appliance. For this reason we considered the fridge for classification but
excluded it from activity analysis concerns.

The model accurately classifies the majority of classes, fridge and TV, having a single
misclassification between the two. For minority classes such as the heater, the situation is
the opposite, no samples are correctly classified in this case.

Table 4 shows the classification metrics for the five appliances using the proposed
model. The precision metric measures the correctly classified proportion for each appliance.
The recall metric measures the proportion of correctly identified instances out of the total
instances for each appliance. The F1 score combines precision and recall, providing a
balance measure of the model’s performance for each appliance. The results show the
negative impact of the imbalanced dataset on the model, with a significant difference in
performance between the majority and minority classes. For example, the fridge obtains a
100% precision while the heater obtains 0%. In the case of the kettle, 70% of the positive
predictions are correctly classified. Although the heater is a multi-state appliance, most of
the time its operation switches between only two levels of power consumption, causing
the ML model to misclassify it on three occasions as a kettle, the operation of which
transitions between on and off, thus, decreasing its classification precision. However, the
model demonstrates an accuracy of 98%, reflecting the correctly classified instances across
all appliances but not fully accounting for the class imbalance in the data. The addition
of the Cohen’s kappa coefficient provides a more comprehensive understanding of the
model’s behavior by normalizing the classification accuracy based on the class distribution.
This measure was calculated as 96%, indicating a strong level of agreement between the
predicted and actual classifications.
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Figure 9. Confusion matrix obtained with the test set for the proposed classifier. Colors represent
the total of correctly classified samples for each class, from gray (none or few samples) to dark blue
(more than 100 samples).

Table 4. Classification metrics.

Appliance Precision Recall F1 Score

Fridge 1.00000 0.99517 0.99758
Hair dryer 0.83333 1.00000 0.90909

Heater 0.00000 0.00000 0.00000
Kettle 0.70000 0.87500 0.77778

TV 1.00000 1.00000 1.00000

Accuracy 0.98101
Cohen’s kappa 0.961651

Once the model was trained, it was stored and instanced in a Python script for further
integration with the Node-RED environment.

6.2. Real-Time Operation

The web interface comprises six views, one for each individual Sonoff device and
the main dashboard. Each device view displays the status, corresponding to the name of
the appliance in use, along with the p(t), E(t), i(t), and v(t) readings. If no appliance is
detected in a given plug, ‘’no activity registered” will be displayed instead. Examples of
these situations are shown in Figure 10. The user can switch between the statuses of the five
devices, to receive a more complete description of the appliance’s consumption or obtain a
summarized version along with detailed activity information in the main dashboard.

In the case of the main dashboard, shown in Figure 10, it provides an overview of
the occupant’s profile, including the location, total power consumption, a summary of
the status of each Sonoff device, the ongoing activities, the appliance usage frequency, the
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average inactivity periods, and the activity distribution. This comprehensive display allows
users to easily access and analyze the collected data and gain insights into the occupant’s
energy consumption patterns and daily activities. The appliance usage frequency, average
inactivity periods, and activity distribution complement the occupant’s profile. In Figure 10,
these parameters are shown for the last 24 h, however, the system allows users to obtain
historical parameters for the last hour and the last week as well.

All appliances are successfully identified by the system, including those representing
the minority classes, such as the heater, with no correctly classified samples in the test set.
Figure 11 shows screenshots of the Sonoff devices view recognizing each of the appliances.
This proves the relative reliability of metrics such as precision and recall, commonly used
in classification problems, which may be affected by class imbalance.

Figure 12 shows the simultaneous detection capability of the system, highlighting
one of its key advantages. In this particular scenario, both the heater and the hair dryer
are active, indicated by Sonoff devices 1 and 3, respectively. This simultaneous detection
allows us to infer activities related to body care, such as hair drying, while also ensuring
thermal comfort by using the heater.

The ability to detect and identify multiple appliances at the same time provides
valuable insights into the occupant’s behavior. Capturing and analyzing such information
enhances the system’s usefulness in various contexts, such as energy management, behavior
monitoring, and anomaly detection.

Another important capability of the system is its flexibility, allowing any appliance to
be connected independently of the plug and still being able to recognize it. In Figure 13,
the hair dryer was moved from Sonoff 3 to 1. Despite this change, the system successfully
identified the hair dryer in both cases. This flexibility is achieved through the utilization of
active power statistical features rather than relying on specific plug or device characteristics.

Figure 10. Web interface of the proposed SEDAR. Main dashboard side menu and non-activity status
are highlighted in orange frames.
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Figure 11. Devices view, showing all appliances correctly classified. Statuses are highlighted in
orange frames.

Figure 12. Main dashboard screenshot during simultaneous activity detection.
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(a) Plugged into device 3

(b) Plugged into device 1

Figure 13. Screenshots of the main dashboard showing the hair dryer being moved from device 3 to
device 1. Appliance name is underlined in orange.

7. Discussion and Limitations

Compared to prior state-of-the-art family-oriented approaches, such as [8,25], the
proposed SEDAR had an improved accuracy, achieving a 96% Cohen’s kappa coefficient
regardless of the significant class imbalance in the dataset. Furthermore, our system is
capable of detecting and identifying multiple appliances at the same time, providing
valuable insights into the occupant’s behavior. Other solutions, such as [26–29], have
either limited explainability or lack of a practical implementation of their system. The
proposed SEDAR, on the other hand, provides reliable insights and represents an innovative
approach to appliance and activity recognition, which successfully identifies the appliances
in use and accumulates historical activity data for further processing. Using advanced
techniques in ML and data processing, our system offers a robust and reliable solution
to understand and monitor appliance usage in a home setting. Other approaches, such
as [1,22–24], focused on medical-oriented services, mainly following NILM techniques,
which can lead to unreliability in the results obtained since this method is based on the
smart meter signal. The aggregated power consumption signal can be very noisy, only
allowing major appliances to be detected, i.e., those with higher electrical consumption.
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In addition, access to smart meters is limited in many countries, including Chile, due
to regulation issues. Therefore, the proposed system can impact significantly in a future
massive deployment, increasing acceptability, since smart plugs can be installed throughout
the house and appliances are not required to be attached to a specific plug, adding flexibility
to the proposed system and making the house smart.

One of the key strengths of the proposed system lies in its ability to accurately
identify specific appliances in near real time. However, some limitations exist when
working at a lower resolution. For example, varying the stride and queue size can
decrease the recognition time, since with the current configuration ten samples need
to be collected before extracting features and classifying. As the sampling frequency is
6 s, the appliance will be detected 1 min after it has been turned on. Similar happens
when the appliance is turned off, there will be a 1 min delay before the system returns
to “no activity registered” status. This delay can be handled by decreasing the window
size [11]. In addition, we have added a second activation threshold for activity inference.
This way, a double condition needs to be accomplished in addition to detecting a given
appliance: the active power has to be above a certain level. This increases the recognition
time for ’off’ states.

Through the utilization of sensor data, we can distinguish between different appliances
and capture their usage patterns with high precision. This capability opens up a range of
possibilities for energy management, load balancing, and appliance-specific optimization
strategies. However, the performance encountered some limitations. For multi-state appli-
ances, such as the hair dryer and the electric heater, transitions were always misclassified.
In certain states, these appliances have similar power consumption, therefore, the model
will wrongly assign the label. To solve this issue, various modifications can be performed. A
more balanced dataset is necessary, which captures the variations in multi-state appliances.
Other features need to be explored that help the system discriminate when the active power
is the same for different multi-state devices. In addition, by making the system remember
past states, the transitions issue may also be solved.

The proposed system is oriented to elderly people living alone. It remains a challenge
for a multi-user-oriented solution. However, the system goes beyond immediate recognition
by accumulating historical data. By continuously capturing and analyzing activity patterns
over time, we enable deeper insights into household dynamics, energy consumption
patterns, and occupant behaviors. These accumulated data serve as a valuable resource for
energy auditing, behavioral analysis, and the development of personalized energy-saving
recommendations. More complex scenarios need to be explored, including forecasting
capabilities for reliable anomaly detection.

Overall, the system remains non-obtrusive to occupants. It seamlessly integrates into
their daily routine without requiring any additional effort or modification. The system oper-
ates transparently in the background, continuously monitoring and identifying appliances
without interfering with their normal usage.

8. Conclusions

In this work, a smart energy data with activity recognition system is designed
and implemented towards enabling remote elderly care. The system has a three-layer
architecture, namely, data acquisition, communication network, and data analytics.
Sonoff Pow R2 devices were used to send a message every 6 s to a Raspberry Pi acting as
an MQTT broker. In a Node-RED environment, these messages are processed allowing
appliances in use to be identified and inferring an activity from them. An ML classifier
receives a vector of active power features and returns a label corresponding to the
appliance name. Historical data are available through communication with a MySQL
database. The occupant’s profile, along with near real-time data, is accessible to users
such as caregivers and people monitoring the occupants through a user-friendly web
interface. This interface provides valuable information about appliance usage, activity
patterns, and occupant behavior.
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One of the main advantages of the system is its non-obtrusiveness. It seamlessly
integrates into the living environment without imposing any significant changes in
occupant’s daily routines. Additionally, flexibility and versatility, as it can adapt to
different appliance types and is compatible with existing infrastructure. The classifier
model achieves a 96% Cohen´s kappa coefficient, demonstrating strong accuracy, even
in scenarios involving simultaneous operations. Nonetheless, there are still limitations
that need to be addressed. Due to the sampling frequency of 6 s, the system experiences
a delay of approximately 1 min in recognizing whether an appliance has been turned
on or off. Moreover, when it comes to multi-state appliances, the system consistently
misclassifies transitions.

The proposed system can positively impact ambient assisted living and energy effi-
ciency, being a complementary technology to remotely monitor the well-being of seniors
living alone, and accounting for the energy consumption of the household, which allows
its future integration with an HEMS. Future work will be oriented to refine and expand
the capabilities of the proposed system by exploring other features and integrating fore-
casting. In addition, special algorithms and more complex strategies to deal with class
imbalance will be developed. This represents a step further in developing sustainable and
intelligent homes.
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Abbreviations
The following abbreviations are used in this manuscript:

2FA Two-factor authentication
AAL Ambient assisted living
ADLs Activities of daily living
AI Artificial intelligence
API Application programming interface
ARP Address resolution protocol
CSV Comma-separated value
DAQ Data acquisition
DAN Data analytics layer
EVs Electric vehicles
FIFO First-in first-out queue
GES Explicit health guarantee
HEMS Home energy management system
HVAC Heating, ventilation, and air conditioning
HTTP Hypertext transfer protocol
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IDS Intrusion detection system
ILM Intrusive load monitoring
IoT Internet of things
IR Infrared
LAN Local area network
ML Machine learning
MQTT Message queue telemetry transport protocol
NCTS Non-contact triboelectric sensors
NILM Non-intrusive load monitoring
PD Parkinson’s disease
PLCs Power line communications
RFID Radio-frequency identification
SEDAR Smart energy data with activity recognition
SSL Secure socket layer
TLS Transport layer security
TV Television set
UTFSM Universidad Técnica Federiso Santa María
VLAN Virtual local area network
WAN Wide area network
WPA3 Wi-Fi Protected Access 3
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