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Abstract: Post-stroke depression and anxiety, collectively known as post-stroke adverse mental out-
come (PSAMO) are common sequelae of stroke. About 30% of stroke survivors develop depression
and about 20% develop anxiety. Stroke survivors with PSAMO have poorer health outcomes with
higher mortality and greater functional disability. In this study, we aimed to develop a machine learn-
ing (ML) model to predict the risk of PSAMO. We retrospectively studied 1780 patients with stroke
who were divided into PSAMO vs. no PSAMO groups based on results of validated depression and
anxiety questionnaires. The features collected included demographic and sociological data, quality of
life scores, stroke-related information, medical and medication history, and comorbidities. Recursive
feature elimination was used to select features to input in parallel to eight ML algorithms to train
and test the model. Bayesian optimization was used for hyperparameter tuning. Shapley additive
explanations (SHAP), an explainable AI (XAI) method, was applied to interpret the model. The
best performing ML algorithm was gradient-boosted tree, which attained 74.7% binary classification
accuracy. Feature importance calculated by SHAP produced a list of ranked important features that
contributed to the prediction, which were consistent with findings of prior clinical studies. Some of
these factors were modifiable, and potentially amenable to intervention at early stages of stroke to
reduce the incidence of PSAMO.

Keywords: automated risk prediction; post-stroke adverse mental outcome; artificial intelligence;
machine learning

1. Introduction
1.1. Background

Stroke is one of the main contributors to morbidity and mortality in developed coun-
tries [1]. In 2019, Singapore’s age-specific crude incidence rate of stroke was 257.6 per
100,000 population; stroke was the fourth leading cause of death and the leading cause
of disability [2]. Post-stroke depression (PSD) and anxiety (PSA), collectively known as post-
stroke adverse mental outcome (PSAMO),are common sequelae of stroke. About 30% of stroke
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survivors develop clinical symptoms of depression at some point following stroke [3,4]; and
about 20% develop anxiety [4,5]. Stroke survivors with PSAMO have poorer health outcomes,
including higher mortality [6,7] and greater functional disability [8,9].

Contributors to PSA include post-stroke fatigue [10,11], sleep disturbance [10], and
psychosocial factors like nonmarital status, lack of social support, [11] living alone [12],
family history of depression [13], and severity of stroke [13]. There is considerable overlap
in the factors that contribute to PSD and PSA, e.g., left hemisphere lesions and cognitive
impairment [14]. Indeed, patients may experience symptoms of anxiety after PSD, and vice
versa [15–17]. Early intervention and treatment can play important roles in managing PSD
and PSA. Studies have shown that antidepressants and psychotherapy in the early stages
of stroke can be helpful to manage PSAMO [12,18,19].

1.2. Literature Review

Wang et al. also studied the use of ML algorithms to predict PSA, using a sample
size of 395 cases and predictors such as demographics and lab results. However, risk
factors that attributed to PSA were identified using conventional statistical significance
that was calculated from multivariate logistic regression and not explained by the ML
model. Ryu et al. and Fast et al. conducted studies in the area of PSD, and utilized a
large variety of features for modeling. However, the limitation of both studies was their
relatively small sample sizes (65 and 307 respectively), which impaired the generalizability
of the models. Among the studies mentioned above, only Fast et al. developed a model
that was explainable from which risk factors attributed to PSD could be evaluated. The
other studies did not use any explainable artificial intelligence (XAI) methods.

In summary, there are limited studies that have utilized ML algorithms to develop
a predictive model. Regarding the studies that have used ML algorithms, PSD and PSA
have been studied separately and not as PSAMO as a whole. Most of the studies have used
a small sample size and the developed model has not been explainable. Thus, we have
not been able to identify the important features that the model used to arrive at such a
conclusion. A summary of the studies reviewed can be found below (Table 1).

1.3. Motivation and Proposed Method

We were motivated to develop a predictive model to automatically identify stroke
patients at risk of PSAMO for early intervention. Compared to manual screening for PSD
and PSA via questionnaire administration [20,21], which is onerous and prone to human
biases, such a model could facilitate efficient screening. Machine learning (ML) have been
shown to be superior to classical statistics in developing prediction models [22,23]. As such,
we tested several ML algorithms, including the following: logistic regression, decision tree,
gradient-boosted tree, random forest, XGBoost, CatBoost, AdaBoost, and LightGBM. Com-
pared with recently published ML models that have either studied only PSD or PSA [24–26],
our model attained higher accuracy for the combined PSAMO diagnosis (Table 1).

Table 1. Summary of studies for automated prediction of post-stroke adverse mental outcome.

Author Dataset Features Outcome Techniques Best
Performance

Ryu et al. [24], 2022 31 PSD and 34
non-PSD cases

Medical history,
demographics,
neurological,

cognitive, and
functional test data

PSD SVM, KNN, RF
SVM: AUC 0.711;

Acc 0.70; Sens
0.742; Spec 0.517

Fast et al. [25], 2023 49 PSD and 258
non-PSD cases

Demographics,
clinical, serological,

and MRI data
PSD * GBT, SVM GBT: Balanced Acc

0.63; AUC 0.70
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Table 1. Cont.

Author Dataset Features Outcome Techniques Best
Performance

Wang et al. [26], 2021 395 cases
Demographics, lab

results, vascular
risk factors

PSA

RF, DT, SVM,
stochastic gradient

descent, multi-
layer perceptron

RF: 18.625
Euclidean distance

between
anxiety scores

Current study
285 PSAMO and

1495 no
PSAMO cases

Demographics,
stroke-related data,

surgical and
medical

history, etc.

PSAMO *

Logistic regression,
DT, GBT, RF,

XGBoost, CatBoost,
AdaBoost,
LightGBM

GBT: AUC 0.620;
Acc 0.747;

F1-score 0.341

Acc, accuracy; AUC, area under the curve; DT, decision tree; GBT, gradient-boosted tree; KNN, k-nearest neighbor;
RF, random forest; Sens, sensitivity; Spec, specificity; SVM, support vector machine. * Developed models
were explainable.

1.4. Main Contributions

To the best of our knowledge, our study is the first ML model for predicting the risk
of PSAMO, instead of PSA and PSD separately. Our model was trained on a 1780-subject
dataset, the largest to date, which represented a broader population and enhanced the
generalizability of our results. Like [26], our model incorporated explainable artificial
intelligence (XAI) that was able to highlight the most discriminative features used by the
model for PSAMO risk prediction, which would be useful for targeted intervention of
identified patients with high-risk features.

2. Methods
2.1. Data Collection and Study Design

The study population comprised 1780 patients who had been admitted for ischemic
or hemorrhagic stroke to a tertiary care hospital, each of whom had completed an anxiety
or depression screening assessment within 7–37 days from the time of stroke. The time
window facilitated the inclusion of patients who had been stabilized after acute stroke
management, and it was consistent with the 30-day window of prediction in the literature
for identifying PSAMO during stroke recovery [27–30]. Baseline characteristics, including
demographics, social information (e.g., occupation, educational level, etc.), quality of life
scores, stroke-related information, medical history and comorbidities, medication history,
and history of psychiatric conditions and interventions, were collected that constituted
potential features to be input into the model (see Table S1). Patients who died before
37 days were excluded. The retrospective analysis of the data had been approved by the
hospital ethics review board. A summarized workflow of the proposed model can be found
below (Figure 1).
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Figure 1. Flow diagram of the proposed model.

2.2. Identification of PSAMO

We used the Hospital Anxiety and Depression Scale (HADS) [31] and the Patient
Health Questionnaire (PHQ) [32] to diagnose PSA, PSD, and PSAMO among our study
participants. HADS is a fourteen-item questionnaire; anxiety and depression have seven
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items each, with each item scored from 0 to 3. PSA and PSD were diagnosed based on
scores of 7 or greater on the HADS-anxiety and HADS-depression scales, respectively
(82% sensitivity and 78% specificity [33]), and PSAMO was diagnosed based on scores of 10
or greater on the HADS-total scale [34]. The PHQ has two versions. PHQ-9 is a nine-item
questionnaire with a score range from 0 to 27; a score of 8 or greater indicated PSD [32]
(88% sensitivity and 86% specificity for major depression [35]). PHQ-2 is an abbreviated
version containing only the first two items of PHQ-9 [36]; a score of 3 or greater denoted
PSD (83% sensitivity and 92% specificity for major depression [36]). In the presence of the
abovementioned scenarios, the stroke patient was defined as having PSAMO; and in the
absence, no PSAMO.

2.3. Statistical Analysis

Features with continuous values were first tested for normality using the Shapiro–Wilk
test. If the distribution was normal, the Student’s t-test was employed to test for significance
between the PSAMO and no PSAMO groups. The values were reported as mean ± standard
deviation. If the distribution was non-normal, the Mann–Whitney U test was employed
to compare the groups and their values were reported as medians (interquartile range).
Categorical features were tested for significance using a chi-square test and were reported
as counts (n) and percentages (%). The results of the statistical analysis helped to provide
a preliminary understanding of the data collected between the 2 cohorts (PSAMO and
no PSAMO).

2.4. Data Preprocessing and Engineering

Due to the retrospective nature of our study, features with more than 25% missing data
were excluded from modeling. Missing data in the remaining features were assumed to be
missing at random and were imputed using multiple imputation-chained equations [37].
For training, the test data split was 70:30. The training set was used to train and validate
the model using 10-fold cross-validation; the test set was set aside as unseen data to
be used to evaluate model performance after model development. For the training set,
continuous features were standardized, and the calculated mean and standard deviation
were applied to and transformed on the test set. Categorical features were also one-hot
encoded, with similar treatments on both the training and test sets. After preprocessing
the dataset, 46 features were obtained that were used for modeling. The list of features is
found in Table S1.

2.5. Model Development

Figure 2 is the flow diagram of the steps taken for model development.
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2.5.1. Recursive Feature Elimination (RFE)

We used recursive feature elimination (RFE) as a feature selector to choose the most
discriminative features from a given dataset for downstream modeling. To find the optimal
number of the most discriminative features, RFE iteratively eliminates less important
features based on their impact on the model’s performance using the same ML algorithm
that is deployed to train the model later. A basic default model of each algorithm was used
during RFE to potentiality reduce overfitting of the training data. Taking support vector
machine (SVM) as an example, a basic default SVM model can be used to perform RFE for
feature selection. Then, the data with the selected features can be further trained using the
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SVM algorithm with its hyperparameter tuned using Bayesian optimization as explained
in Sections 2.5.3 and 2.5.4 below.

2.5.2. Synthetic Minority Oversampling Technique (SMOTE)

The prevalence of PSAMO in our study population was mildly imbalanced at 17%.
Class imbalance can exacerbate the classification bias towards the majority class, especially
in ML modeling of high-dimensional problems [38]. To address the class imbalance, we
applied the synthetic minority oversampling technique (SMOTE) [39] to the dataset to
increase the proportion of the minority class to 50% by synthetically creating samples. The
SMOTE algorithm would randomly select a minority class sample, identify its nearest few
other samples using the k-nearest neighbor technique, and then synthesize samples by
interpolating feature values between the selected sample and its neighbors.

2.5.3. Application of Machine Learning Algorithms

We deployed eight ML algorithms to train the model. The logistic regression ML
algorithm with the least absolute shrinkage and selection operator [40] is a regularization
technique for mitigating overfitting that estimates the probability of the outcome belonging
to either class, akin to conventional statistical logistic regression. The other seven algorithms
were tree-based algorithms. The decision tree [41] iteratively splits the data into new trees
depending on the values of the features, arriving eventually at the final classifications, the
leaves. In a random forest classifier [42], multiple decision tree algorithms are combined to
make better aggregate predictions via an ensemble learning method called bagging [43], in
which new trees are trained in parallel on subsets of the training data that have been selected
randomly with replacement. This reduces overfitting and enhances model generalizability.
The remaining five ML algorithms employ another ensemble learning method called
boosting [44], in which training is iterated sequentially, with each new tree focusing on and
learning from errors made by the preceding tree. Gradient-boosted tree [45] trains on the
errors of previous iterations of trees. XGBoost incorporates a regularization element in the
trees to prevent overfitting [46]. AdaBoost assigns higher weights to data points that have
been wrongly classified, giving them higher importance in the next iteration [47]. CatBoost
constrains model complexity by growing only symmetric trees [48]. LightGBM, a more
efficient boosting algorithm, uses a gradient-based one-side sampling technique to select
the optimal set of data to train the next iteration of trees, reducing computation time while
maintaining model performance [49].

2.5.4. Bayesian Optimization and Cross-Validation

During the training of each ML algorithm, the hyperparameters were tuned using
Bayesian optimization [50,51]. Bayesian optimization evaluates past iterations and lever-
ages on the results to iteratively explore the best possible parameter space to maximize
model performance. The process stops upon reaching the maximum number of iterations
or when early stopping criteria have been met. Each set of hyperparameters is evaluated
using repeated stratified 10-fold cross-validation with five repeats.

2.6. Model Evaluation

We evaluated the model using standard performance metrics: accuracy and F1-score
(the geometric mean of specificity and sensitivity). In addition, we performed a receiver
operating characteristic analysis, reporting the area under the curve (AUC) as an index
of the degree of discrimination between the two groups. Youden’s J adjustment [52] was
performed to calculate the optimal binary classification threshold value, i.e., the Youden
index, which is defined as the largest distance from the AUC curve to the line of no
discrimination, for each of the ML algorithms:

Youden Index = Maxcutoff
(
Sensitivitycutoff + Specificitycutoff − 1

)
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2.7. Model Explanation

We applied Shapley additive explanations (SHAP) [53], a model-agnostic XAI method
that uses corporative game theory to quantitate the predictive value of every feature, on
the model with the best-performing ML algorithm. SHAP estimates the average marginal
contribution of each feature and then ranks the features based on their respective contribu-
tions to the prediction, which is a measure of feature importance. SHAP is an XAI method
that offers a global explanation, which is useful in our context to understand how different
features impact the model’s predictions on average and the overall behavior of a model
across the entire dataset. This helps to identify key factors that attribute to PSAMO, which
is one of the research objectives of this study, and intervention plans can be developed
around such factors.

2.8. Packages Used

The statistical analyses and modeling in this study were implemented in Python
3 programming language [39,46,48–50,53–59]. The packages used and their functions are
listed in Appendix A.

3. Results

Descriptive statistics of the study population and comparisons between the PSAMO
vs. no PSAMO groups are found in Table S2.

The training set which consists of 69 features was fitted into RFE for feature selection.
During RFE, the optimal number of the most discriminative features were selected for
each ML algorithm. Figure 3 plots the average accuracy of the individual algorithms
against the number of features. The optimal number of discriminative features differed
among the algorithms. For instance, the decision tree algorithm attained its peak mean
test accuracy using 13 features. As such, the decision tree algorithm would be trained and
tuned using only the 13 features selected by RFE. The hyperparameters of the decision
tree algorithms were tuned using Bayesian optimization, with each set of hyperparameters
evaluated using repeated stratified 10-fold cross-validation with five repeats. The best set
of hyperparameters, i.e., the decision tree algorithm with the best performance, was then
evaluated on the test set, which was held out and not used during the training.
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Table 2 shows the performance of all ML algorithms with the best set of hyperpa-
rameters that were used and trained on. The training set is reported with a mean and
95% confidence interval of the results obtained from the repeated stratified 10-fold cross-
validation with five repeats. The test set is reported after Youden’s J adjustment.
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Table 2. Prediction performance obtained using our proposed models.

Train Set Test Set (after Youden’s J Adjustment)

Accuracy AUROC F1-Score Accuracy AUROC F1-Score

Logistic
Regression

0.696
(0.647–0.738)

0.870
(0.864–0.877)

0.658
(0.646–0.673) 0.640 0.573 0.304

Gradient-boosted tree 0.973
(0.958–0.982)

0.946
(0.932–0.957)

0.950
(0.924–0.964) 0.747 0.620 0.341

Light GBM 0.905
(0.878–0.922)

0.942
(0.924–0.964)

0.882
(0.872–0.894) 0.659 0.646 0.355

Decision tree 0.729
(0.660–0.760)

0.831
(0.810–0.844)

0.705
(0.656–0.729) 0.713 0.622 0.338

Random forest 0.800
(0.779–0.820)

0.911
(0.906–0.915)

0.779
(0.770–0.787) 0.506 0.671 0.359

XGBoost 0.899
(0.874–0.920)

0.956
(0.934–0.968)

0.877
(0.868–0.889) 0.539 0.641 0.346

AdaBoost 0.843
(0.825–0.860)

0.946
(0.939–0.948)

0.828
(0.811–0.841) 0.727 0.634 0.354

CatBoost 0.966
(0.950–0.980)

0.966
(0.952–0.970)

0.957
(0.945–0.971)

0.631 0.592 0.318

After training all algorithms, the best-performing model for the prediction of PSAMO
was the gradient-boosted tree with accuracy, F1-score, and AUC values of 0.747, 0.341,
and 0.620, respectively; the latter after adjustment of the cut-off value using the Youden
Index (Table 2).

SHAP Explanation of the Gradient-Boosted Tree Model

SHAP was applied to the gradient-boosted tree model. Figure 4 depicts the top ten
most important features calculated using the SHAP algorithm.
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4. Discussion
4.1. Model Performance

The developed ML model enabled automated classification of PSAMO vs. no PSAMO
in stroke patients with 74.7% accuracy based on baseline features (as referenced against
conventional manually administered HADS and PHQ tests), allowing for reproducible
and expeditious risk predictions. An early prediction model would enable doctors to
systematically triage stroke patients at risk of PSAMO for further confirmatory assessments
and to institute early intervention where applicable to prevent or ameliorate adverse
mental health outcomes. Of note, our ML model could predict the risk of PSAMO, i.e.,
PSD and PSA collectively, and was more accurate than similar models in the literature
(Table 1). Finally, even though we had labeled our dataset based on the results of manually
administered PHQ and HADS, these tests were nonetheless subject to human errors and
biases [20,21]. In particular, their reliance on the Likert scale for scoring exposed them
to measurement errors and tendency biases that could be sensitive to different modes of
administering the tests [60].

The best performing model in our study is the gradient-boosted tree (GBT). The advan-
tage of using GBT is its ability to model nonlinear relationships with complex interactions
between features. GBT is also known to be more robust to outliers as compared to some
other algorithms like linear regression. GBT has its limitations, for example, the potential of
overfitting, especially if the depth of the tree is not well chosen as a hyperparameter. This
limitation is mitigated by using Bayesian optimization to identify the optimal hyperparam-
eters. Another limitation that arises from using GBT is the lack of interpretability due to
its ensemble nature as compared to linear regression, where the model can be interpreted
by its calculated coefficient. This is also mitigated by using SHAP as a model explanation
algorithm to identify the important features.

There are limitations to conduct a one-to-one comparison against previous studies
as our study is the first to study PSAMO, while previous studies have examined PSD or
PSA separately [24–26]. Other studies have also utilized different evaluation metrics and
ML algorithms that were not used in this study [24,26]. The closest study that could be
referenced is Fast et al.’s [25] study. Fast et al.’s best performing model is also GBT. Both
studies showed similar AUROC performances (0.7 ± 0.1 vs. 0.620). However, our study
has a greater sample size (1780 vs. 307), which is more representative of the population,
and therefore it improves the generalizability of our findings. The features that were used
were also slightly different, with only lab markers and demographics as the only common
features that were used in both studies. There were also similar findings in the feature
importance in both studies, which is further elaborated below.

4.2. Explainable Features

The most discriminative features in the dataset as assessed by SHAP (Figure 4) were
consistent with the findings of prior clinical studies [61–69]. While many factors like
recurrent stroke, the most important feature that predicted PSAMO in our study, were
non-modifiable, some risk factors might be amenable to interventions. Lower educational
level and household income were risk factors for PSAMO in our study, as well as
in others [61–64]. This is also coherent with Fast et al.’s study [25], which also used
SHAP to interpret its GBT model and its top important features are years of education
and sex. Higher education enables patients to have clearer insights into their disease,
participate more actively in their own care, and better manage their emotions, all of
which may reduce the risk of PSAMO [63,65]. Lower income has been found to be
associated with less patient participation in after-stroke care [66], possibly due to a lack of
access to appropriate care. Based on our model findings, doctors can initiate intervention
plans that address socioeconomic risk factors through social aid, improved access to care
services, and personalized disease education. Being single was also a risk factor for
PSAMO (Figure 4), which could be attributed to lower social and emotional support [67–69].
Enhancing community emotional support can reduce depressive symptoms [67], and
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encouraging patients to stay connected with a social network can help promote positive
support-seeking behavior.

4.3. Study Advantages and Limitations

Our study has the following advantages and limitations.

4.3.1. Advantages

• To the best of our knowledge, this is the first ML model that has been designed to
predict the risk of PSAMO, a composite of PSD and PSA.

• The model predicted the risk of PSAMO with good accuracy (i.e., 74.7%).
• Trained on the largest PSAMO dataset to date, our model results are less susceptible to the

influence of outliers, and therefore are representative of the broader stroke population.
• XAI-enabled model interpretability allows doctors to develop intervention plans for

important risk factors for PSAMO.

4.3.2. Limitations

• This is a cross-sectional study and the observed associations cannot infer causality.
Future expansion of this study to longitudinal data may offer stronger insights.

• Deep learning methods such as neural networks can be investigated in the future,
which may produce better results.

5. Conclusions

We have demonstrated the feasibility of using ML algorithms to predict PSAMO.
Our ML model predicted PSAMO reproducibly with good accuracy and at a low cost,
without the need for onerous manual diagnostic tests. Our study used a large dataset
to train the model, which enhanced the generalizability of the results. Moreover, the
interpretation of the model was facilitated using SHAP, which identified important risk
predictors of PSAMO that were consistent with published clinical studies. This provided
indirect validation of our model, which would help boost confidence among potential
clinician users. The added insight into the key risk factors of PSAMO offers opportunities
for early intervention. In future works, we propose to study more complex algorithms,
such as neural networks or other deep learning methods, which may drive improvements
in classification performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23187946/s1, Table S1: List of features collected and used for
modelling; Table S2: Descriptive Statistics of the study cohort.

Author Contributions: Conceptualization, C.W.O. and E.Y.K.N.; Methodology and formal analysis,
C.W.O., L.G.C. and U.R.A.; Data curation, M.H.S.N. and L.G.C.; Writing—original draft preparation,
C.W.O.; Writing—review and editing, E.Y.K.N., L.G.C., R.-S.T. and U.R.A.; supervision, E.Y.K.N.,
L.G.C. and U.R.A.; project administration, C.W.O., E.Y.K.N., M.H.S.N., L.G.C. and Y.M.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study is approved by the Ethics Committee of National
Healthcare Group, Domain Specific Review Board (DSRB) (DSRB Ref No. 2022/00289).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are not available due to privacy restrictions.

Acknowledgments: The authors would like to thank Tan Tock Seng Hospital, Singapore for providing
for allowing this study to be done.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/s23187946/s1
https://www.mdpi.com/article/10.3390/s23187946/s1


Sensors 2023, 23, 7946 10 of 12

Appendix A

Table A1. List of Python packages used.

Package Name Functions

Pandas
Data pre-processing and engineering

Numpy

Scipy
Conducting statistical tests and descriptive statistics

Statsmodels

fancyimpute Implementation of Multiple Imputation-Chained Equations (MICE) imputation

Imblearn Implementation of SMOTE

scikit-learn Training and cross validation of Machine Learning Models such as “Logistic Regression”, “Support Vector
Machine”, “Decision Tree”, “Random Forest” and “AdaBoost”

Xgboost Training of “XGBoost” algorithm

Catboost Training of “CatBoost” algorithm

Lightgbm Training of “LightGBM” algorithm

bayes_opt Bayesian Optimization for hyperparameter tuning

SHAP SHAP values

Matplotlib Display of graphs and charts
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