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Abstract: The digestion of protein into peptide fragments reduces the size and complexity of protein
molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolu-
tion using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common
machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or
disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been
pursued in which samples are sorted into dichotomous groups by machine learning (ML) software
based on MALDI-TOF spectra. Samples were analyzed in ‘intact’ mode in which the proteins present
in the sample were not digested with protease prior to MALDI-TOF analysis and separately after
the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens),
specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The
proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensi-
tivity and specificity of dichotomous sorting. Two exceptions were when substantial differences
in chemical composition between the samples were present and, in such cases, both ‘intact’ and
‘digested’ protocols performed similarly. The results suggest proteolytic digestion prior to analysis
can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery.
However, when samples are easily distinguishable protein digestion is not necessary to obtain useful
diagnostic results.

Keywords: machine learning; molecular diagnostics; precision medicine; biomarker; MALDI-TOF;
diagnostic; protein digest; artificial intelligence (AI)

1. Introduction

The realm of diagnostic sensing technologies has undergone revolutionary transfor-
mations in recent decades, leading to significant advancements in precision medicine and
personalized patient care. Among the various diagnostic tools, Matrix-Assisted Laser
Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has emerged
as a powerful technique for bacterial identification and molecular-based diagnostics [1–5].
Its ability to rapidly analyze complex biomolecules, such as intact proteins with minimal
sample preparation, has revolutionized clinical diagnostics, enabling faster and more accu-
rate sorting of bacterial species and disease states. One initial application of MALDI-TOF
MS focused on creating a sensor for bacterial identification, where specific protein profiles
are used to differentiate bacterial species [6–14]. The simplicity, speed, and accuracy of this
method have revolutionized microbial identification in clinical settings. In recent years, this
approach has been extended to molecular diagnostics, encompassing the identification of
specific biomarkers associated with diseases, such as cancer and infectious diseases [15–20].

Given the potential in disease diagnosis and biomarker discovery, coupled MALDI-
TOF plus machine learning (ML) workflows have been gaining significant attention [20–24].
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Machine learning techniques have emerged as a powerful tool for uncovering patterns in
complex data sets, including mass spectra obtained through MALDI-TOF MS analysis. By
applying various algorithms, machine learning can decipher hidden information present
in signals and improve classification accuracy. The integration of machine learning algo-
rithms with MALDI-TOF-MS has introduced a paradigm shift in diagnostic approaches.
By processing and analyzing vast datasets from mass spectra, machine learning algorithms
can distinguish subtle differences between bacterial species and identify specific biomark-
ers associated with diseases. The impact of machine learning on disease diagnosis and
biomarker discovery has already been transformative in healthcare and advances continue
to rapidly progress [25–31]. However, to fully exploit the potential of MALDI-TOF MS
in disease diagnosis, innovative approaches must continue to be explored to improve the
sensitivity and specificity of diagnosis.

In this communication, we report that significant enhancement of dichotomous sorting
can be achieved by a simple and well-known modification to typical MALDI workflows.
The traditional analysis of intact proteins has been augmented using tryptic digestion,
which breaks down proteins into smaller peptide fragments of lower mass [32–34]. In
traditional MALDI-TOF-MS, intact proteins are predominantly analyzed for bacterial
identification and disease diagnostics. However, the size of intact proteins can limit the res-
olution and, more crucially, the sensitivity of the mass spectrometer, potentially leading to
challenges in accurately measuring low-abundance biomolecules. Tryptic digestion, a well-
established technique in proteomics, involves the enzymatic cleavage of intact proteins into
smaller peptide fragments of lower mass. Meanwhile, protein digestion itself is certainly
not novel; herein, we provide the initial report of this procedural enhancement boosting
both the sensitivity and specificity of MALDI-TOF-MS-based molecular diagnostics uti-
lizing machine learning. We argue that gain in performance originates from the inherent
sensitivity increase associated with the analysis of lower molecular weight fragments
(compared to intact protein) and the ability to achieve sensitive, high-resolution reflectron
mode measurements at masses < 3 kDa, the range of the mass spectrum within which
tryptic fragments generally appear. Since smaller peptide fragments are analyzed, this
increases the probability of detecting disease-specific biomarkers, which may be present at
low concentrations in clinical samples and otherwise evade detection. Gains in the sorting
performance of machine learning algorithms are shown to be of the highest value when
samples are the most chemically similar. In the subsequent sections of this manuscript, we
will describe four case studies that demonstrate the effectiveness of protein digestion for
the dichotomous sorting of samples by machine learning.

2. Materials and Methods

To investigate the effect of protein digestion we have conducted four case studies.
For each case study, we have analyzed samples both (1) after tryptic digestion (digested)
and (2) undigested (intact) by MALDI-TOF mass spectrometry, as summarized in Figure 1.
After collecting mass spectra, peak lists were exported into machine learning software
(RapidMiner) to train a machine learning model. A separate set of sample spots was also
analyzed with the same workflow and used as a scoring dataset to evaluate the performance
of the machine learning model. It should be noted the machine learning approach only
detects differences/patterns in the MALDI-TOF spectra between data sets. The approach
does not inherently detect biomarkers and, rather, only detects patterns apparent in data
resulting from any chemical or physical reality.



Sensors 2023, 23, 8042 3 of 18Sensors 2023, 23, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. (A) Experimental workflow. Sample A and Sample B are the two sample groups/types we 
differentiate by the MALDI-TOF spectra. Intact protein samples and digested samples were ana-
lyzed independently by MALDI-TOF and spectra imported into machine-learning software. Sens, 
spc, and J were computed by Equations (1)–(3) to assess model performance for a separate scoring 
data set. (B) Illustrates the process of binning the MALDI-TOF spectra. See Section 2.6 of the text for 
details. 

The performance of machine learning models was evaluated by computing the sen-
sitivity (sens), specificity (spc), and Youden index (J) by Equations (1)–(3): 𝑠𝑒𝑛𝑠 =  # 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  (1) 

Figure 1. (A) Experimental workflow. Sample A and Sample B are the two sample groups/types we
differentiate by the MALDI-TOF spectra. Intact protein samples and digested samples were analyzed
independently by MALDI-TOF and spectra imported into machine-learning software. Sens, spc, and
J were computed by Equations (1)–(3) to assess model performance for a separate scoring data set.
(B) Illustrates the process of binning the MALDI-TOF spectra. See Section 2.6 of the text for details.

The performance of machine learning models was evaluated by computing the sensi-
tivity (sens), specificity (spc), and Youden index (J) by Equations (1)–(3):

sens =
# true positives identi f ied

total number o f true positive samples
(1)
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spc =
# true negatives identified

total number of true negative samples
(2)

J = sens + spc − 1 (3)

Sensitivity is essentially the fraction of true positives detected. Specificity is the fraction
of true negatives detected. Both high sensitivity and specificity are required for successful
diagnostic tests; the Youden index (J) combines parameters to create a single parameter
describing performance.

2.1. Case Study 1: Pancake Mix—Gluten-Free vs. Wheat Gluten Mix
Sample Preparation

Two pancake mixes were acquired from a market. The first was a gluten-free option
and the second was a pancake mix with wheat flour gluten. However, it should be noted
there were additional chemical differences between the samples. To prepare the samples
for MALDI analysis, we used the protein extraction method of Meredith and Wren [35]. We
began by adding 0.6 g of each mix into separate 15 mL Falcon tubes and diluting the mix in
each tube to a volume of 14 mL, using the recommended solvent that is efficient in wheat
protein extraction. The solvent was composed of 3 M urea, 0.01 M tetradecyl trimethyl
ammonium bromide (TTAB), and 0.1 M acetic acid. We then mixed the contents of each
Falcon tube vigorously with inversion. Once mixed, the tubes were centrifuged for 2 min
at 3900 rpm to separate the undissolved mix from the supernatant. The supernatant was
then collected, yielding a turbid colorless liquid.

To make the undigested, or intact, samples, 0.5 mL of pancake extract solution (super-
natant) from each mix was mixed with 1 mL of 33% ethanol/33% H2O/33% acetonitrile in
0.1% formic acid and this mixture was spotted onto MALDI plates. The machine learning
model training data for the ‘intact’ sample set consisted of 48 samples of wheat gluten
pancake mix and an additional 48 samples of gluten-free mix spotted onto the MALDI
targets. The scoring/evaluation data set consisted of an additional 96 spots (48 gluten-free
and 48 with wheat gluten). Thus, there were 192 total spots for the MALDI analysis. Each
spot was composed of 1 µL of sample and 1 mL of CHCA matrix solution.

The digested samples were prepared by combining 0.5 mL of supernatant from both
samples with 0.5 mL of bicarbonate buffer (pH = 7.9), with 0.2% SDS and 0.1 mM DTT,
inside two 2 mL centrifuge tubes. Both centrifuge tubes were heated at 95 ◦C for 15 min to
promote protein denaturation and dithiol bond reduction. Samples were then removed
from heat and allowed to cool to room temp when an additional 1 mL of bicarbonate
buffer/SDS solution and 50 µL of a 50 mg/mL iodoacetamide were added to each tube.
Samples were incubated at room temperature for 30 min to alkylate thiols. Then, 50 µL
of a 0.2 µg/µL solution of trypsin was added to each vial. Once mixed thoroughly, the
tubes were incubated at 37 ◦C for 20 h. Finally, after the incubation process was completed,
0.1 mL of 1 M HCl (e.g., pH adjustment) was added to each vial to terminate digestion.

The digested samples were then spotted onto MALDI plates for analysis. Briefly, the
machine learning model training data set consisted of 48 samples of wheat gluten pancake
mix and an additional 48 samples of gluten-free mix spotted onto the MALDI targets. The
scoring/evaluation data set consisted of an additional 96 spots (48 gluten-free and 48 with
wheat gluten). Thus, there were 192 total spots for the MALDI analysis. Each spot was
composed of 1 µL of sample and 1 µL of CHCA matrix solution.

2.2. Case Study 2: Salmonella enterica ATCC 51741 vs. Salmonella enterica Serovar Infantis
Microbial Culture and Spotting

Salmonella enterica (ATCC ref 0501 K derived from ATCC 51741, Microbiologics, MN
56303 USA) and Salmonella infantis serovar were cultured in replicates on Tryptic Soy Agar
(TSA, Remel™, San Diego, CA, USA). The agar powder was dissolved in water (40 g in
1000 cc of distilled or purified water). The mixture was heated to dissolve the components
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fully and autoclaved for 15 min at 121 ◦C. Then, bacterial samples were grown on TSA agar
media overnight at 37 ◦C. Intact samples were prepared by adding 20 µL of 20% formic
acid solvent into 6 separate centrifuge tubes. Then, a 1 µL loop collected bacteria and
added them to each of the 6 tubes. Three of the tubes contained the S. enterica samples and
the remaining three contained the S. enterica serovar infantis. The tubes were then placed
in a sonicator for 20 min to aid in cell degradation/lysis. After sonication, we vortexed
each tube for 1 min on the ten setting to mix the samples thoroughly. Each of the 3 vials of
S. enterica ATCC 51741 was spotted in 16 spot positions, totaling 48 spots. Likewise, each of
the 3 vials of S. enterica serovar infantis was also spotted in 16 positions, totaling 48 spots.
These 96 spots comprised the training set for the intact samples. An additional 96 spots
from the same vials comprised the scoring set. Each spot was composed of 1 µL of sample
and 1 µL of CHCA matrix solution, as described earlier.

The digested samples were then prepared by adding 20 µL of reverse osmosis water to
6 separate vials. A 1 µL loopful from the appropriate colony was then collected and added
to the vials. Three of the vials contained the S. Enterica ATCC 51741 while the other three
vials contained the S. enterica serovar infantis subspecies. Again, a commercially available
kit was used for protein digestion (89895, Thermo Scientific, Waltham, MA, USA). In total,
20 microliters of lysis buffer and 0.75 µL of nuclease were added to each of the vials before
they were placed in the sonicator for 20 min. Afterward, 25 µL of both a reduction solution
and alkylation solution were added to each vial and gently mixed. The samples were then
incubated for 10 min at 95 ◦C to reduce and alkylate proteins. We removed the samples and
allowed them to cool to room temperature before 50 µL of trypsin solution was added to
each vial. Each vial was then placed in an incubator at 37 ◦C overnight. The next day, 50 µL
of digestion stop solution from the kit was added and the vials were gently mixed. Each
of the 3 vials of S. enterica ATCC 51741 was spotted in 16 spot positions, totaling 48 spots.
Likewise, each of the 3 vials of S. enterica serovar infantis was also spotted in 16 positions,
totaling 48 spots. These 96 spots comprised the training set for the intact samples. An
additional 96 spots taken from the same vials comprised the scoring set. Each spot was
composed of 1 µL of the sample and 1 µL of the CHCA matrix solution described earlier.

2.3. Case Study 3: Presence of blaCTX-M-65 AMR Gene in S. enterica Serovar Infantis
2.3.1. Independent Assessment of blaCTX-M-65 AMR Gene Presence

The S. enterica serovar infantis isolates carrying the blaCTX-M-65 gene were acquired
from a previous study conducted in the Dominican Republic, where sample collection and
Salmonella isolation adhered to the established project protocols [36–39]. To confirm the
presence or absence of the blaCTX-M-65 gene in the S. infantis isolates, each was first cultured
in TSA (MilliporeSigma, Burlington, MA, USA) and incubated at 37 ◦C for 24 h. Following
this, a single colony was selected from the culture plate, inoculated into Tryptic Soy
Broth (TSB, MilliporeSigma, Burlington, MA, USA), and incubated overnight in a shaking
incubator at 37 ◦C. Subsequently, DNA extraction was performed using the GenEluteTM
bacterial genomic DNA kit (Sigma-Aldrich, NA2100, NA2110, or NA2120, St Louis, MO,
USA), following the manufacturer’s recommended procedure. Then, the whole genome
of each bacterial isolate was analyzed using an Illumina NovaSeq-6000 sequencer. Genus
and species identification were conducted using FastANI (https://github.com/ParBLiSS/
FastANI (accessed on 16 July 2020)) in conjunction with the Genome Taxonomy database
(https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/ (accessed on 16 July
2020)). Furthermore, Staramr v0.4.0 (https://github.com/phac-nml/staramr (accessed on
20 July 2020)) was employed to screen assemblies for resistance determinants by utilizing
the ResFinder database from the Center for Genomic Epidemiology (CGE, https://cge.cbs.
dtu.dk (accessed on 30 July 2020)) and the CGE PointFinder scheme. Herein, these results
serve as the gold standard for further MALDI-TOF-based classification described below.

https://github.com/ParBLiSS/FastANI
https://github.com/ParBLiSS/FastANI
https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/
https://github.com/phac-nml/staramr
https://cge.cbs.dtu.dk
https://cge.cbs.dtu.dk
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2.3.2. Microbial Culture and Spotting

S. enterica serovar infantis isolates were cultured in replicates on TSA. The agar powder
was dissolved in water (40 g in 1000 cc of distilled or purified water). The mixture was
heated to dissolve the components fully and autoclaved for 15 min at 121 ◦C. Then, bacterial
samples were grown on TSA media overnight at 37 ◦C. A single isolated colony from the
agar plate was selected by using a 1 µL loop. The cell material was then mixed into
20 µL of formic acid within a sterile microcentrifuge tube. The sample was vortexed for
1 min on a setting of 10 prior to spotting on the MALDI plate. For undigested (intact)
samples, three sets of samples for the MALDI-TOF analysis were created: (1) gene-positive,
(2) gene-negative, and (3) scoring set samples. Positive samples contain the blaCTX-M-65 AMR
gene while negative samples do not. Both positive and negative sample sets were spotted
48 × 4 times. For example, each of the positive 48 samples was spotted in quadruplicate on a
MALDI stainless steel plate. The gene-negative samples were also spotted in quadruplicate
following the same procedure. The scoring set (evaluatory) samples were spotted in an
identical fashion, with 48 × 4 of both positive and negative being used.

The same samples were also processed via a standard tryptic digestion protocol using
a commercially available kit (89895, Thermo Scientific). Several bacterial samples from
multiple colonies of a culture plate were selected with a loop and diluted with 30 µL of
deionized water in a centrifuge vial. Three of our nine sample vials were negative for
blaCTX-M-65 while six were positive. Then, vials were centrifuged at 13,000 rpm for 3 min.
The supernatant was removed, leaving only the bacterial pellet. To open the cell and
prepare it for digestion, we combined 50 µL of cell lysis solution in each vial. Then, 1 µL of
universal nuclease was added to the mixture to neutralize the protein’s nucleic acids. A
reduction solution (50 µL) was added, and, then, gently mixed with 50 µL of alkylation
solution. The sample was incubated at 95 ◦C for 10 min to reduce and alkylate the protein.
Then, 50 µL of trypsin solution was added after cooling to room temperature to facilitate
protein digestion. After being incubated at 37 ◦C overnight, 50 µL of the digestion stop
solution was added the next morning. Then, samples were spotted onto the MALDI plate.
The ML training and scoring set were spotted separately. First, a training set was spotted
by adding 96 total spots for the training set (36 negative and 60 positive). Twelve spots
were created from each of the three gene-negative sample vials while ten spots from each
vial were deposited for the six positive vials. After creating the training set, an additional
96 wells were spotted in an identical fashion to create the scoring sample set.

For both intact and digested samples, the matrix was added shortly after placing 1 µL
of the sample on the MALDI target by the addition/mixing of 1 µL of a saturated solution
of alpha-cyano-hydroxycinnamic acid (CHCA) matrix solution. The solvent for this matrix
was a 1:1:1 mixture of acetonitrile, ethanol, and water with 3% trifluoroacetic acid (TFA).
The mixture was allowed to dry before analysis.

2.4. Case Study 4: Staphylococcus aureus—Enterotoxin-Positive or -Negative
2.4.1. Independent Assessment of Enterotoxin Presence

In this study, Staphylococcus aureus isolates were obtained from a frozen stock collec-
tion at the Food Microbiology Laboratory of Texas Tech University’s School of Veterinary
Medicine. These isolates were initially collected from environmental samples from a pre-
vious dairy farm project conducted in Texas. One microliter loopful was taken from each
isolate and inoculated into Tryptic Soy Broth (TSB, RemelTM, San Diego, CA, USA). These
cultures were incubated overnight in a shaking incubator at 200 rpm and maintained at
37 ◦C. Subsequently, ultra-high-temperature (UHT) milk samples were spiked with the
overnight cultures and subjected to enterotoxin detection using the VIDAS® Staph entero-
toxin II assay (bioMérieux, Durham, NC, USA), following the manufacturer’s protocol for
liquid milk samples. After the assay, the instrument automatically analyzed the results,
generating a test value for each sample. This value was compared against predefined
internal references (thresholds) and the results were interpreted as either enterotoxin-
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positive or -negative [40]. Our study used this assay as the gold standard for subsequent
MALDI-TOF-based classification.

2.4.2. Microbial Culture and Spotting

Using a 1 µL loop, we collected bacteria from single isolated colonies of S. aureus. A
total of 10 sample colonies were used, 5 enterotoxin gene-negative samples and 5 gene-
positive samples. Each sample was mixed with 9 mL of Tryptic Soy Broth (TSB) and then
placed into a shaking incubator at 200 rpm for 18 h. Samples were then centrifuged at
maximum speed for 3 min. Once completed, the supernatant was removed from each
sample, leaving only the sample pellet. The pellets were then centrifuged again for 1 min
to aid in removing any remaining supernatant. The intact samples were prepared first
by adding 50 µL of lysis buffer solution and 1 µL of universal nuclease to the pellet. The
samples were then sent to the BioRaptor sonicator for homogenization. Once completed,
the samples were split and 20 µL were taken from each gene-positive and -negative sample
and placed into separate vials. In one set of vials, 20 µL of 20% formic acid was added.
These samples were then vortexed on the 10 setting for 1 min.

The second set of vials containing 20 µL were subjected to protein digestion. Again, a
commercially available kit was used for protein digestion (89895, Thermo Scientific). The
digested samples were prepared by adding 50 µL of lysis buffer and 1 µL of universal
nuclease to each sample tube. The samples were then placed in the BioRaptor sonicator
for homogenization. After, 25 µL of reduction solution and 25 µL of alkylation solution
were added to each sample. The samples were incubated at 95 ◦C for 10 min to reduce and
alkylate the proteins. They were then removed and allowed to cool to room temperature,
where 50 µL of trypsin solution was added. The samples were incubated at 37 ◦C and 50 µL
of digestion stop solution from the kit was added the next morning. The digested samples
were spotted by using 48 enterotoxin-positive spots and 48 enterotoxin-negative spots. An
additional 96 spots (48 positive, 48 negative) were prepared on separate slides from the
same samples. Each spot was composed of 1 µL of sample and 1 µL of CHCA matrix.

2.5. MALDI-TOF-MS Analysis

Data were acquired using a Shimadzu Axima Performance MALDI-TOF mass spec-
trometer. For both intact and digested samples, the laser power was set at 74 (arbitrary
units) and 50 Hz repetition rate. The relationship between the arbitrary instrument unit for
laser power and true irradiance or peak power is unknown. An automated raster pattern
was used for the 500 profiles collected, with 2 pulses per profile. For intact samples, with
a mass range of 500–20,000 m/z in the linear TOF, positive ion mode was employed. For
digested samples, with a mass range of 200–7000 m/z in the reflection HiRes TOF, positive
ion mode was employed. After a MALDI spectrum was acquired, the Axima Performance
operating software was used to identify centroid mass peaks and record peak list data to a
comma-delimited (.csv) text file. Peak lists contained the m/z value and intensity automati-
cally assigned by the software. The instrument was calibrated with a TOFMIX synthetic
peptide mixture of known molecular weights (LaserBioLabs). The MALDI-TOF response
with molecular weight was investigated using known synthetic peptides of specific molec-
ular weights and concentrations. Peptide Mix 1 (Angiotensin II (1046.2 Da), Angiotensin I
(1296.5 Da), Neurotensin (1672.9 Da), ACTH [1–17] (2093.5 Da), ACTH [18–39] (2465.7 Da));
Peptide Mix 3 (Bovine Insulin Chain B (3495.9 Da), Bovine Insulin (5733.6 Da), Aprotinin
(6511.5 Da), Ubiquitin Bovine (8564.8 Da)); and protein calibration standards (Horse Heart
Cytochrome C (12,360.1 Da), Horse Myoglobin (16,951.5 Da), Trypsinogen (23,980.9 Da),
Yeast Enolase (46,670.9 Da), Bovine Serum Albumin (66,429.9 Da)) from LaserBioLabs
were employed.

2.6. Data Mining

The peak list files were then formatted into bins of prescribed width using a LabView
VI written in-house. Binning is a crucial aspect of the machine learning workflow and is
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described pictorially in Figure 1B. Essentially, the mass spectrum is divided into bins of
finite width and observed peaks of m/z within a tolerance are grouped together within a
bin. Typically, our bins are named to identify a certain central mass; however, the bin name
is essentially a label (as opposed to a numerical value). Binning introduces an artificial loss
of mass spectral resolution but is essential to ensure patterns in data are conserved. Binning
parameters were altered for different mass ranges based upon experimentally observed
variance in peak m/z assigned for identical peaks in the mass spectrum. The guiding
principle is to ensure the bin width is wider than the variability of peak m/z assigned in
the software so that identical peaks always are grouped into the same bin.

Bins were defined between m/z = 500–1500, 1500–2500, 2500–7000, 7000–12,000,
12,000–20,000 Da for intact samples. Bins were defined between m/z = 200–999,
1000–1999, 2000–2999, 3000–3999, 4000–4999, 5000–6999 Da for the digested samples. The
bin widths (tolerances) for the intact files in each mass range were: 1.25, 2.2, 3.5, 8, and
35 Da and the bin widths for the digested files for each mass range were all 0.5 Da. Then,
after a MALDI-TOF spectrum was acquired, the Axima Performance operating software
was used to identify centroid mass peaks and record data to a comma-delimited (.csv) text
file. The mass for bins for the intact files varied (δ M) by 1, 2, 5, 10, and 50 Da for each mass
range. The delta mass (δ M) for the digested files were all fixed at 1 Da. After formatting all
files, mass spectral data were compiled in a spreadsheet and transposed into the format
needed for data mining.

All data mining was accomplished within RapidMiner Studio software (Version 9.10,
RapidMiner GmbH). The gradient-boosted tree was the only machine learning model that
was utilized since the results of an earlier study within our laboratory provided clear data
showing that this method performed best with MALDI-TOF data sets [20]. There were two
dataset spreadsheets for every case study for the gradient-boosted tree machine-learning
model. First, a training dataset spreadsheet was used to build the machine learning model.
For all samples in the training set, the true state (negative or positive), as defined by
the gold standard method, was identified as the ‘label’ within the software. In addition,
binned MALDI-TOF mass spectra for each sample were associated with the labels on each
line of the spreadsheet. When the machine learning model runs, the known training set
data is used to draw statistical inferences between the presence of MALDI-TOF peaks at
certain m/z values and the true diagnostic outcome. The patterns resulting from these
computations become the machine learning model. Then, a second spreadsheet is built
containing MALDI-TOF mass spectra and sample identifiers. This second spreadsheet
is composed of different spectra collected from different spots on the MALDI target and
forms the scoring data set. The machine learning model constructed is then applied to the
scoring dataset and the model makes a prediction in a dichotomous manner (positive or
negative). Then, we compare the prediction to reality for each sample within this scoring
set to predict sensitivity and specificity. This allows for the evaluation of performance. The
gradient-boosted model has its own variables, which can be adjusted by the user within
the software. The gradient-boosted tree model has many adjustable parameters, including
the number of trees, number of bins, and learning rate. During the investigative trials, the
number of trees was varied between 50, 101, 401, and 701; the number of bins was varied
as being either 20 or 40; and the learning rate was varied among the values: 0.01, 0.0001,
0.00001. Again, upon each run, the training data set was used to construct the model and
the separate scoring data set was used to evaluate. Each run consisted of the data from
the appropriate case study. Diagnostic sensitivity (sens) and specificity (spc), as well as
the Youden Index (J), were computed for all of the case studies and samples, as described
in Equations (1)–(3).

3. Results
3.1. Estimate of Sensitivity Increase via Tryptic Digestion

Signal intensity in MALDI–TOF is known to be attenuated as molecular weight in-
creases. Figure 2 reports the signal intensity loss we observe as a function of m/z for a series
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of known peptides and proteins that were spotted on a MALDI plate in a known quantity.
As observed, the mass-normalized signal intensity loss of nearly two log units per decade
of molecular weight (MW) was observed as a rough quantitative estimate of this effect.
Such loss in signal (sensitivity) severely limits the ability to achieve diagnostic sensing
via MALDI TOF since only abundant, lower-molecular-weight proteins may routinely be
observed during routine screening of samples.
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for a known mass of a series of known peptides and proteins spotted. The slope of the best-fit line
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the MALDI-TOF response with increasing molecular weight.

To fully understand the impact of this, consider the known proteome of Salmonella
enterica, as reported by the UniProt database [41]. Uniprot lists 5445 known proteins of
mass > 3 kDa encoded by the genome of this bacterium. Figure 3C reports the count
number and abundance of these known, intact proteins as a function of molecular weight
(Da). As observed, proteins near 10 kDa appear to be most common for Salmonella and
roughly 80% of proteins associated with Salmonella are above 10 kDa in mass. However,
the MALDI-TOF spectra of this organism (Figure 3A) typically exhibit only ≤3–10 peaks
in the higher mass region of the spectrum. Despite the vast majority (number count) of
proteins present in Salmonella being >10 kDa, very few peaks appear in a MALDI mass
spectrum within that mass range. Many of the larger, low-abundance proteins that escape
detection may be of diagnostic value to identifying the bacteria and/or classifying samples
into sub-categories but are undetected in a typical experiment on intact proteins.
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Figure 3. (A) Typical MALDI mass spectrum of a bacterial isolate. Note—large number of peaks
present in the low mass region and low frequency of peaks > 10 kDa. (B) Predicted MALDI-TOF
signal enhancement for protein digest vs. molecular weight relative to a 1 kDa peptide based upon
the results of Figure 2. (C) Count number (-) of known proteins in Salmonella enterica plotted vs.
molecular weight and frequency or abundance (•) vs. molecular weight. Despite ~80% of known
proteins having mass >10 kDa, few are observed within MALDI-TOF spectra, as demonstrated in (A).

As protein molecular weight increases, it becomes far less likely that adequate signal-to-
noise will be observed in a MALDI-TOF mass spectrum to detect and record the presence
of such proteins. Since proteolytic digestion generally yields peptide fragments in the
mass range of 700–1500 Da, a range of masses more optimal for sensitive detection in
MALDI-TOF-based workflows is achieved [42]. Thus, reducing the molecular weight of
proteins while maintaining discriminatory molecular characteristics may allow improved
diagnostics via MALDI-TOF sensing with machine learning.

The pattern observed from the data and presented in Figure 2 allows for the estimation
of the MALDI–TOF signal enhancement achieved through the digestion of proteins as
a function of molecular weight. The expected enhancement factor computed from the
trend observed is reported in Figure 3B. For this enhancement estimate, we consider a
prototypical 1 kDa peptide resulting from the proteolytic digestion of a larger protein. For
a parent protein of only 3–4 kDa, a signal enhancement of approx. 10 may be expected for
the detection of the smaller peptide fragment. However, larger signal enhancements of
100–10,000-fold would be expected when the parent protein is more than 10–100 kDa. Since
the proteolytic digestion of proteins enhances the detection of potential biomarkers, such
experimental steps may affect machine-learning-based sorting.
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3.2. Results for Case Studies
3.2.1. Case Study 1: Pancake Mix—Gluten-Free vs. Wheat Gluten Mix

The initial case study involved attempts to distinguish between pancake mix with
and without wheat gluten present (e.g., gluten-free). Since the chemical composition of
these two samples is fundamentally different, we assign this case study a relatively low
level of difficulty in terms of machine learning/sorting. Figures 4A and 5A report receiver
operating characteristic (ROC) curves describing the performance of the machine learning
models for intact (green data points) and digested (blue data points) samples. Tables of
performance data are also included in the manuscript’s Supplement S1 Section.
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Figure 4. ROC curves for the machine-learning-based sorting of digested and intact samples when
binary peak intensity is used. (A) Case Study 1: pancake mixes; (B) Case Study 2: Salmonella
speciation; (C) Case Study 3: blaCTX-M-65 gene detection; (D) Case Study 4: Enterotoxin-positive
or -negative. The small numeral adjacent to each data point is the number of trials this value was
observed in.
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Figure 5. ROC curves for the machine-learning-based sorting of digested and intact samples when
continuous peak intensities were used. (A) Case Study 1: pancake mixes; (B) Case Study 2: Salmonella
speciation; (C) Case Study 3: blaCTX-M-65 gene detection; (D) Case Study 4: Enterotoxin-positive
or -negative. The small numeral adjacent to each data point is the number of trials this value was
observed in.

Results for the binary peak quantitation method are observed in Figure 4A; both
intact and digested samples of pancake mixes were easily distinguishable when the binary
method of peak quantitation was used. Generally, the Youden index was J > 0.8 and J = 1
was obtained in several instances (perfect sorting of scoring set). The average J value for
the digested samples was 0.838 while for the intact samples, the mean J was 0.896. This
result indicates that intact samples performed slightly better in classification by machine
learning; however, no significant difference between the average J values for digested vs.
intact data sets was observed (p < 0.05) for this case study. The ratio between the average J
values (Jdig/Jintact) was 0.93, indicating similar performance in sorting between intact and
digested cases. In short, for Case Study 1, in which sample composition is believed to be
quite different, no advantage was gained by conducting the protein digestion procedure. It
should also be noted that the average J values for both intact and digested samples (0.75 and
0.56), when peak intensity values were included in the machine learning model, yielded
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poorer performance than the simple binary approach. This outcome is counter-intuitive
but regularly encountered. We posit the decrease in performance occurs because of the
large sample-to-sample signal intensity irreproducibility that is encountered in MALDI (up
to 80% RSD by our estimates).

3.2.2. Case Study 2: Salmonella enterica ATCC 51741 vs. Salmonella enterica Serovar Infantis

The second case study aimed to sort two types of Salmonella based on MALDI-TOF and
machine learning. ROC curves describing the results are presented in Figure 4B for binary
peak analysis and 5B when peak intensities were used. In both cases, high-performing
sorting was achieved, with J values typically > 0.8 indicated. The average J observed for
digested samples was 0.81 and the average was J = 0.96 for sorting intact samples when
binary peak intensity information was used. In this instance, a significant difference in
performance was observed between intact and digested samples, with intact performing
significantly better. Again, the ratio between the average J values (Jdig/Jintact) was 0.85,
indicating that both sample preparation methods sorted the serovars well. When peak
intensities were included in the analysis, the mean J for the digested samples was 0.852;
J = 0.875 for the intact samples and Jdig/Jintact = 0.97. For this case, the mean J values are
statistically indistinguishable. In Case Study 2, no advantage of digestion was demonstrated
and both methods of sample preparation led to the effective sorting of samples (similar to
Case Study 1).

3.2.3. Case Study 3: blaCTX-M-65 Gene-Positive or -Negative

The third case study aimed to sort a scoring set of Salmonella samples known to be
either positive or negative for the blaCTX-M-65 gene. This gene encodes for the production
of a 283 amino acid β-lactamase responsible for catalyzing the hydrolysis/destruction
of antibiotics containing the lactam ring. The gene’s presence infers the bacterial ability
to potentially be resistant to a wide palette of common antibiotics, including penams,
cephalosporins, cephamycins, monobactams, carbapenems, and carbacephems. After the
development of the ML algorithm through analysis of the training set, as described in the
methods section, a scoring set of separate samples was used to generate the ROC curves
reported in Figures 4C and 5C. Again, intact and digested samples were directly compared
for sorting success. In the case of Figure 4C, all intact protein trials (12 trials) yielded no
ability to sort gene-positive from gene-negative under the conditions tested. However,
digested samples achieved more success, with J ranging from 0.3 to 0.784. In total 11/12
data points yielded J > 0.48 for the digested samples. The performance for sorting the
digested samples was significantly better than the intact samples (p < 0.05) when binary
peak descriptors were used.

Figure 5C illustrates results for blaCTX-M-65 gene detection when peak levels/intensities
were used in the ML model. Again, the ML model exhibited no ability to sort positives from
negatives for intact samples under the conditions used. However, digested samples yielded
more favorable J values ranging from 0.18 to 1. Yet, two-thirds of the trials attempted
yielded J < 0.4 and only marginal diagnostic performance was achieved. Nevertheless,
Case Study 3 demonstrated, conclusively, that digestion of the protein present during
sample preparation can lead to significantly improved sorting via MALDI-TOF-based
ML workflows.

3.2.4. Case Study 4: Staphylococcus aureus–Enterotoxin-Positive or -Negative

Case Study 4 aimed to group bacteria based on the indication (or lack of) of enterotoxin
through the VIDAS® SET2 assay. Enterotoxins are heat-stable, water-soluble proteins
secreted by S. aureus and known to cause episodes of food poisoning in humans [43].
Figure 4D reports the ROC analysis for both intact and digested samples when binary
peak descriptors were used. As observed, the intact samples (green) could not be correctly
identified by the machine learning models tested. However, J values as large as 0.51 were
observed for samples digested prior to MALDI-TOF. Most (10/12) samples exhibited
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J ≈ 0.3, reflecting only a marginal ability to differentiate between organisms capable of
producing enterotoxin and those that are not. When considering ROC curves when peak
intensities are used (Figure 5D), again, protein-intact samples offered no diagnostic value
for the models tested. The digested samples performed better, yielding J = 0.26–0.44 for
the trials. This level of performance as a diagnostic is poor and alternative tests, such
as immunological or genetic-based options, are higher performing. Despite the limited
diagnostic success, digested samples yielded statistically better performances (J values)
compared to intact samples for Case Study 4.

4. Discussion

Table 1 and Figure 6 summarize the average results for the diagnostic sensitivity,
specificity, and Youden index for this study. A rapid study of the J values leads to a
summary conclusion that intact samples performed slightly better in Case Studies 1 and
2. However, in Case Studies 3 and 4, intact samples offered no diagnostic ability while
digested samples offered some ability to sort into dichotomous groups. We argue that Case
Studies 3 and 4 (AMR gene presence and enterotoxin presence) represent more challenging
cases for sorting since the samples are more fundamentally similar in composition. The
outcome that protein digestion for more complex samples dramatically improves diagnostic
sorting represents a crucial development in the field of MALDI-TOF machine learning
workflows. Future practice may incorporate digestion steps as part of the workflow
to enhance molecular diagnostics for challenging cases. Conversely, when samples are
believed to be quite chemically dissimilar (as in Case Studies 1 and 2), digestion steps
may unnecessarily complicate the workflow and induce time-consuming and expensive
steps that are unnecessary for success. Thus, the results of our analysis suggest protein
digestion prior to MALDI-TOF machine learning is only particularly valuable to analysts
when confronted with challenging cases of sorting.

Table 1. Table reporting the average sensitivity, specificity, Youden index (J), and maximum J for case
studies and trials.

Case Study Trial Sens (Avg.) Spc (Avg.) Javg Jmax

Case Study 1

Intact binary 1 0.90 0.90 1
Intact w/signals 1 0.75 0.75 0.94

Digest binary
Digest w/signals

0.98
0.99

0.86
0.61

0.84
0.60

0.86
0.90

Case Study 2

Intact binary 0.97 0.99 0.96 1
Intact w/signals 1 0.88 0.88 0.94

Digest binary 0.99 0.81 0.81 0.92
Digest w/signals 0.98 0.86 0.84 0.90

Case Study 3

Intact binary 1 0 0 0
Intact w/signals 1 0 0 0

Digest binary 0.70 0.82 0.51 0.78
Digest w/signals 0.91 0.51 0.42 1

Case Study 4

Intact binary 0.33 0.07 −0.60 0
Intact w/signals 0.1 0.1 −0.80 −0.4

Digest binary 0.47 0.82 0.29 0.51
Digest w/signals 0.44 0.90 0.34 0.44
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Figure 6. Summary of results for case studies. Case Studies 1–4 were of increasing complex-
ity/difficulty. The figure reports whether statistically different values in mean J were observed
(p < 0.05) between intact and digest samples (the ratio Jdig/Jintact is the ratio between average J values
for digested vs. intact samples) and the maximum J encountered for the set of samples. ML models
for Case Study 1 (pancake mixes) yielded excellent sorting for both digested and intact samples, with
Youden indices (J) near one and insignificant differences in J-values between methods. Case Study
2 results suggested intact analysis yielded significantly better J values with p < 0.05; however, both
models were largely effective at classifying, as evidenced by a J ratio of 0.9. In Case Studies 3 and
4, significant differences were observed in J values, with digested samples performing much better.
Intact samples for Case Studies 3 and 4 illustrated no predictive ability within the ML models.

A second remarkable outcome of experimentation is the realization that including
MALDI-TOF signal intensity values often yields poorer diagnostic performance. Formatting
data as binary peak list files (peak present or not at certain m/z) often yields improved
results. This outcome is largely counter-intuitive. We believe this originates due to the large
spot-to-spot variability in signal intensity observed in MALDI-TOF measurements, which
can exceed 80% relative standard deviation. This large instrumental variability coupled
with biological variability in protein expression, differential ion suppression within the
mass spectrometer, and irreproducibility in the extent of protein digestion likely creates
sufficient ‘noise’ encoded within signal intensities to render this information useless for
pattern recognition. We should also comment that this condition may be overcome if
improved sample preparation/sample spotting steps are used.

5. Conclusions

In conclusion, this research paper showcases the significance of protein digestion in
enhancing sensitivity and specificity in MALDI-TOF-based bacterial identification and
molecular diagnostics. The integration of machine learning algorithms with protein diges-
tion offers great promise in disease diagnosis and biomarker discovery when samples are
adequately complex. Guidance for best practice for sample preparation remains complex
and an art relying on the skill of the analyst. When samples vary considerably, protein diges-
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tion adds costly and unnecessary steps. However, when only minor differences are present
in the sample chemistry, protein digestion and MALDI-TOF analysis on the resultant sam-
ple can offer transformative improvement in diagnostic accuracy. These findings present
compelling evidence for the continued exploration, development, and use of this innovative
approach to transform clinical microbiology, diagnosis, and personalized medicine.
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