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Abstract: The minor copper (Cu) particles among major aluminum (Al) particles have been detected
by means of an integration of a generative adversarial network and electrical impedance tomography
(GAN-EIT) for a wet-type gravity vibration separator (WGS). This study solves the problem of blurred
EIT reconstructed images by proposing a GAN-EIT integration system for Cu detection in WGS.
GAN-EIT produces two types of images of various Cu positions among major Al particles, which are
(1) the photo-based GAN-EIT images, where blurred EIT reconstructed images are enhanced by GAN
based on a full set of photo images, and (2) the simulation-based GAN-EIT images. The proposed
metal particle detection by GAN-EIT is applied in experiments under static conditions to investigate
the performance of the metal detection method under single-layer conditions with the variation
of the position of Cu particles. As a quantitative result, the images of detected Cu by GAN-EIT
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Abstract: The minor copper (Cu) particles among major aluminum (Al) particles have been detected 
by means of an integration of a generative adversarial network and electrical impedance tomogra-
phy (GAN-EIT) for a wet-type gravity vibration separator (WGS). This study solves the problem of 
blurred EIT reconstructed images by proposing a GAN-EIT integration system for Cu detection in 
WGS. GAN-EIT produces two types of images of various Cu positions among major Al particles, 
which are (1) the photo-based GAN-EIT images, where blurred EIT reconstructed images are en-
hanced by GAN based on a full set of photo images, and (2) the simulation-based GAN-EIT images. 
The proposed metal particle detection by GAN-EIT is applied in experiments under static condi-
tions to investigate the performance of the metal detection method under single-layer conditions 
with the variation of the position of Cu particles. As a quantitative result, the images of detected Cu 
by GAN-EIT 𝜓  in different positions have higher accuracy as compared to ⟨𝛔∗⟩ . In the region 
of interest (ROI) covered by the developed linear sensor, GAN-EIT successfully reduces the Cu de-
tection error of conventional EIT by 40% while maintaining a minimum signal-to-noise ratio (SNR) 
of 60 [dB]. In conclusion, GAN-EIT is capable of improving the detailed features of the reconstructed 
images to visualize the detected Cu effectively. 
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1. Introduction 
An effective recycling system is required to meet the high global demand for recycled 

aluminum (Al), copper (Cu), and plastic particles from electronic waste while considering 
economic and environmental factors [1]. In order to achieve an effective recycling system, 
a wet-type gravity vibration separator (WGS) is commonly provided to the recycling in-
dustry [2]. The WGS, as shown in Figure 1, has the ability to produce recycled particles 
with a high-purity grade from recycled materials through a separation process of an Al–
Cu–plastic particle mixture [3]. The mixtures of Al, Cu, and plastic are sorted on the WGS 
vibration deck based on each particle’s density properties. The deck is inclined so that the 
Cu outlet at one end is higher than the plastic outlet at the other. The water flows from 
the middle of the deck toward the plastic outlet channel (see Figure 1a). Cu particles, with 
high-density properties, sink to the deck’s base and flow to the Cu outlet channel due to 
the vibration. Plastic particles, with low-density properties, float above the deck base and 
follow the running water to move to the plastic’s outlet channel. On the other hand, Al 
particles, with medium-density properties, float slightly and are still affected by water 
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. In the region of interest
(ROI) covered by the developed linear sensor, GAN-EIT successfully reduces the Cu detection error
of conventional EIT by 40% while maintaining a minimum signal-to-noise ratio (SNR) of 60 [dB].
In conclusion, GAN-EIT is capable of improving the detailed features of the reconstructed images to
visualize the detected Cu effectively.

Keywords: metal particle detection; electrical impedance tomography; generative adversarial network

1. Introduction

An effective recycling system is required to meet the high global demand for recycled
aluminum (Al), copper (Cu), and plastic particles from electronic waste while considering
economic and environmental factors [1]. In order to achieve an effective recycling system,
a wet-type gravity vibration separator (WGS) is commonly provided to the recycling
industry [2]. The WGS, as shown in Figure 1, has the ability to produce recycled particles
with a high-purity grade from recycled materials through a separation process of an Al–
Cu–plastic particle mixture [3]. The mixtures of Al, Cu, and plastic are sorted on the WGS
vibration deck based on each particle’s density properties. The deck is inclined so that
the Cu outlet at one end is higher than the plastic outlet at the other. The water flows
from the middle of the deck toward the plastic outlet channel (see Figure 1a). Cu particles,
with high-density properties, sink to the deck’s base and flow to the Cu outlet channel
due to the vibration. Plastic particles, with low-density properties, float above the deck
base and follow the running water to move to the plastic’s outlet channel. On the other
hand, Al particles, with medium-density properties, float slightly and are still affected by
water flow and vibration. The Al particles hit the back wall and go through the Al outlet
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channel. Finally, the Al particles flow along the channel to the Al outlet, as shown (see
Figure 1b). Even though the WGS is able to produce more than 90% pure Al particles in the
recycling process of Al–Cu–plastic particle mixture, the purity of separated Al particles is
significantly decreased due to the minor mixed Cu particles in the Al outlet channel of the
WGS. The proper parameters, such as the waste input rate, water flow rate, slope level of
the deck, and vibration frequency, adjust the purity percentage, but the parameters depend
on the manual operation, which requires intensive monitoring [4]. Thus, in order to raise
the purity of Al particles up to 90%, it is important to detect minor Cu particles in the Al
outlet channel using Cu volume fraction ϕCu.
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Figure 1. Overview of (a) the wet-type gravity vibration separator (WGS) and (b) the separation
process of Al particles.

Generally, in order to detect minor Cu particles, magnetic and optical detectors have
already been proposed for dry metal separators [5]. Ferrous metals can be easily separated
from waste by large permanent magnets, leaving behind nonferrous metallic particles
such as Cu and Al, which are mixed with nonmetallic particles such as rubber and plastic.
The nonferrous metals are recovered by Eddy current separators, which use a time-varying
magnetic field generated by an electromagnet to extract small particles from ore. The system
recovers smaller particles more effectively without heavy rotary magnets, and the system
runs in a completely dry condition to avoid wet slurry contamination [6]. However,
the relative magnetic permeability of Cu, Al, and water are almost similar, which causes
difficulties in detecting minor Cu particles among major Al particles in wet conditions.

On the other hand, optical detectors that use image processing to identify minor Cu
particles have a significant advantage in detecting minor Cu particles [7]. The minor Cu
particles in the uppermost layer are detected by image processing techniques. Still, because
of the abundance of particles, metal particles flow in WGS during the separation process,
producing the particles in a multi-layer configuration. The particles beneath the surface
stay undetectable in this scenario. To address the image processing technique’s restriction,
the impedance measurement is used to find the changes in electrical conductivity qualities
between Al and Cu [8] since Al has a conductivity of σCu = 3.45 × 1010 mS/m while Cu
has higher conductivity around σCu = 5.85 × 1010 mS/m [9] and σwater = 1 mS/m. Based
on the different σ for each material, the electrical impedance measurement system has the
ability to detect the ϕCu by measuring the impedance difference among Cu, Al, and water
in the outlet channel of the WGS.

Under the above-mentioned situation, electrical impedance tomography (EIT),
which is a non-invasive and continuous impedance measurement method, has the pos-
sibility to detect minor Cu particles. EIT has the capability to reconstruct conductivity
particle distribution of a region of interest utilizing material conductivity properties [10]
based on the electrical properties of the higher σCu than σAl and σWater. However, EIT has a
drawback to detect the minor Cu particles due to detection on the outside of the sensitivity
sensing area of EIT [11], which produces a weaker signal to detect the minor Cu particles,
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resulting in blurry images. Hence, in order to improve the image reconstruction quality of
EIT, machine learning techniques were proposed.

Machine learning enhances impedance measurement [12], especially for non-invasive
imaging of the interior conductivity distribution of samples. Deep neural networks were
introduced to solve the EIT problems to approximate the full inverse map to avoid the
iterative solution process [13]. Another study used a machine learning adaptive electrode
selection technique to build and apply a unique measurement enhancement approach to
optimize electrode placements around the specimen instead of simply spacing electrodes
at frequent intervals [14]. Machine learning can also be used to evaluate EIT pictures and
improve the precision of EIT. A neural network-based method for the inverse problem of
EIT was effective in reconstructing the conductivity distribution of a phantom object [15].

The generative adversarial network (GAN) is a generative model that creates new data
similar to training data [16]. GAN has been used to recreate details of conductivity particle
distribution in images reconstructed by the Landweber and Newton–Raphson techniques.
The Conditional GAN (CGAN) provides detailed images, improving image quality and
identification in various gas–liquid two-phase particle distributions [17]. GAN has also
been used to determine phase fractions of G-L-S three-phase flows in the ECT/EMT dual-
modality image fusion. The fusion model matches the phantoms under investigation, and
experimental findings show appropriate particle distribution of electromagnetic charac-
teristics [18]. In a previous study, GAN was utilized to enhance reconstructed images
by leveraging the high contrast of EIT images and the sharp resolution of ultrasound
images [19]. GAN has the ability to increase the quality of EIT reconstructed images by
training blur images on generators and comparing them to clear images on discriminators,
resulting in higher-quality reconstructed images for detection. However, unlike the refer-
enced studies that employed close boundary sensors, our proposed methodology utilizes
linear open boundary sensors.

This study solves the single-layer problem of EIT image reconstruction and proposes
a deep learning approach based on GAN to estimate high-quality reconstructed EIT im-
ages from blurred images and introduce an integration system, which is GAN-EIT for
ϕCu detection in WGS. Three objectives: (1) Simulation of ϕCu in metal mixtures as the
generator, (2) experimental measurement of ϕCu in the Vibration deck of WGS as the
discriminator, and (3) evaluation of the significance of GAN-EIT for ϕCu measurement.
The impedance measurement is conducted by injecting a constant current source and
measuring the potential difference between eight channel electrodes by an adjacent mea-
surement system. At the same time, the linear sensor is attached to the outlet of the Al
channel. GAN-EIT is integrated by utilizing the reconstructed EIT images from the experi-
ment results as input for the generator in the GAN framework, which generates enhanced
images. These images are evaluated by the discriminator from the reconstructed EIT images
from the simulation results to determine their similarity to the ground truth, resulting in
improved image quality. The experiment is conducted in static (no vibration) conditions.
Several variations of the amount of Cu and Al particles are arranged in order to mimic the
actual condition. The evaluation is done by RGB comparison analysis between EIT and
GAN-EIT results.

2. Integration of GAN and EIT to Wet-Type Gravity Vibration Separator
2.1. EIT Linear Sensor and Performance Test

Figure 2 shows the EIT linear sensor’s (a) design, (b) performance test procedure by
impedance measurement, and (c) performance test result employed in this study. As shown
in Figure 2a, the EIT linear sensor features eight stainless steel electrodes with electrode
conductivity σe = 1.47× 106 S/m and electrode permittivity εe = 10−15. The electrode
shape is a cylinder screw with a diameter ∅e = 3 mm, which is configured the same as the
round-shaped particle diameter ∅p for Al and Cu, resulting in ∅e = ∅Al = ∅Cu. In this
preliminary study, the round-shaped Al and Cu particles with a diameter of ∅p = 3 mm
are utilized in order to exclude the impact of different shapes of real metal particles. Addi-
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tionally, the linear sensor is enclosed; hence, no flowing particles are studied to eliminate
the influence of flow variation. Thus, this research aims to investigate the characteristics of
metal particles under both static conditions. The EIT linear sensor system consists of an
electrode array placed in a linear arrangement, and the metal particle is put on top of the
linear sensor. The linear sensor length, ls is adjusted to occupy as many Cu–Al particles
mixture as possible in a closed-packed manner, consistent with the width of the Al outlet.
As a result, the total number of particles is Np = ls

∅p . The EIT linear sensor is placed on one
side of the Al outlet and attached to the WGS machine.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

electrode shape is a cylinder screw with a diameter ∅e = 3 mm, which is configured the 

same as the round-shaped particle diameter ∅p for Al and Cu, resulting in ∅e  =  ∅Al =

∅Cu. In this preliminary study, the round-shaped Al and Cu particles with a diameter of 

∅p = 3 mm are utilized in order to exclude the impact of different shapes of real metal 

particles. Additionally, the linear sensor is enclosed; hence, no flowing particles are stud-

ied to eliminate the influence of flow variation. Thus, this research aims to investigate the 

characteristics of metal particles under both static conditions. The EIT linear sensor system 

consists of an electrode array placed in a linear arrangement, and the metal particle is put 

on top of the linear sensor. The linear sensor length, 𝑙s is adjusted to occupy as many Cu–

Al particles mixture as possible in a closed-packed manner, consistent with the width of 

the Al outlet. As a result, the total number of particles is 𝑁p =
𝑙s

∅p
. The EIT linear sensor is 

placed on one side of the Al outlet and attached to the WGS machine. 

 

Figure 2. EIT linear sensor’s (a) design, (b) performance test procedure by impedance measurement, 

and (c) performance test result. 

In order to conduct the performance test of the EIT linear sensor, an impedance meas-

urement is conducted. As shown in Figure 2a, the area of the measurement is configured 

in a standard four-wire impedance measurement by employing four electrodes 𝑒1,

𝑒2,  𝑒3, and 𝑒4. In this case, the impedance measurement is coverage by linear sensor length 

at performance test 𝑙𝑡. As shown in Figure 2b, the impedance measurement is conducted 

by performing a fast Fourier transform (FFT) ℱ algorithm which is expressed as [20], 

𝐙𝑓 =
ℱ|𝑈𝑓

m(𝑡)|

ℱ|𝐼𝑓
𝑠(𝑡)|

 (1) 

where 𝐙𝑓 is the measured impedance at specific frequency 𝑓, 𝑈𝑓
m(𝑡) is the measured volt-

age between 𝑒2 and 𝑒3 in the time domain 𝑡 at 𝑓, and 𝐼𝑓
s(𝑡) is the current source injection 

in 𝑡 at 𝑓. In the performance test shown in Figure 2b, 𝐙𝑓 measurement cases are divided 

into three categories, which are C0: water only (without particles) as a measurement’s 

background, C1: the C0 case with one Al (C1a) or one Cu (C1b) as an inclusion in the 

center of the sensor (between 𝑒2 and 𝑒3), and C3: the C0 case with full-packed Al particles 

as an inclusion (C2a) which is modified to C2a case with a Cu particle as a replacement in 

the center of the sensor (C2b). 

Figure 2c shows the result of the performance test conducted by performing the 

𝐙𝑓 measurement in five different cases, as shown in Figure 2b. Here, we calculate the ab-

solute 𝐙𝑓  difference between the water only 𝐙𝑓
C0  case and after the Al/Cu inclusion in 

𝐙𝑓
C1a, 𝐙𝑓

C1b, 𝐙𝑓
C2a, and 𝐙𝑓

C2b cases as absolute impedance drop Δ|𝐙𝑓| by, 

Δ|𝐙𝑓| =
|𝐙𝑓| − |𝐙𝑓

C0|

|𝐙𝑓
C0|

[100%] (2) 

Figure 2. EIT linear sensor’s (a) design, (b) performance test procedure by impedance measurement,
and (c) performance test result.

In order to conduct the performance test of the EIT linear sensor, an impedance
measurement is conducted. As shown in Figure 2a, the area of the measurement is con-
figured in a standard four-wire impedance measurement by employing four electrodes
e1, e2, e3, and e4. In this case, the impedance measurement is coverage by linear sensor
length at performance test lt. As shown in Figure 2b, the impedance measurement is
conducted by performing a fast Fourier transform (FFT) F algorithm which is expressed
as [20],

Z f =
F
∣∣∣Um

f (t)
∣∣∣

F
∣∣∣Is

f (t)
∣∣∣ (1)

where Z f is the measured impedance at specific frequency f , Um
f (t) is the measured voltage

between e2 and e3 in the time domain t at f , and Is
f (t) is the current source injection in t at f .

In the performance test shown in Figure 2b, Z f measurement cases are divided into three
categories, which are C0: water only (without particles) as a measurement’s background,
C1: the C0 case with one Al (C1a) or one Cu (C1b) as an inclusion in the center of the
sensor (between e2 and e3), and C3: the C0 case with full-packed Al particles as an inclusion
(C2a) which is modified to C2a case with a Cu particle as a replacement in the center of the
sensor (C2b).

Figure 2c shows the result of the performance test conducted by performing the
Z f measurement in five different cases, as shown in Figure 2b. Here, we calculate the
absolute Z f difference between the water only ZC0

f case and after the Al/Cu inclusion in

ZC1a
f , ZC1b

f , ZC2a
f , and ZC2b

f cases as absolute impedance drop ∆
∣∣∣Z f

∣∣∣ by,

∆|Z f | =

∣∣∣Z f

∣∣∣−∣∣∣ZC0
f

∣∣∣
|Z C0

f

∣∣∣ [100%] (2)
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where
∣∣∣ZC0

f

∣∣∣ is the background absolute impedance, which is measured at the C0 case.
As shown in Figure 2c, the EIT linear sensor has the capability to detect the single Al/Cu
inclusion under the C0 case condition, as well as a single Cu inclusion under the full packed
Al particles and water (C2a case). In the C1a case, the ∆

∣∣∣ZC1a
f

∣∣∣ is dropped 14.84% because of

Al inclusion; also, in the C1b case, ∆
∣∣∣ZC1b

f

∣∣∣ is dropped 23.32% because of Cu inclusion. As

well as in the C2a case, the ∆
∣∣∣ZC2a

f

∣∣∣ dropped 51.24% because of the full-packed Al inclusion

and has a countable change in the C2b case, where ∆
∣∣∣ZC2b

f

∣∣∣ is dropped 57.24% because
of single Cu inclusion among the full-packed Al and water background. In summary the
∆
∣∣∣ZC1a

f

∣∣∣< ∆
∣∣∣ZC1b

f

∣∣∣ and ∆ |Z C2a
f |< ∆|ZC2b

f

∣∣∣ occurred since the σAl < σCu.

2.2. Integration of GAN-EIT

Figure 3 shows the integration of the generative adversarial network and electrical
impedance tomography (GAN-EIT), which is composed of a (1) image reconstruction
algorithm and a (2) GAN algorithm.
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2.2.1. Image Reconstruction Algorithm

The conductivity distribution σ of metal particle in sensor domain Ω for image recon-
struction is expressed as

σ = [σ1(r1), . . . , σn(rn), . . . , σN(rN)]
T ∈ RN (3)

where rn = (xn, yn) ∈ R is the row vector at the n-th mesh point (1 ≤ n ≤ N). The value of
σ is obtained using standard Jacobian matrix J, which is composed of all combinations of the cur-
rent injection I and measured impedance Z. J is defined as J =

[
Jn

m, Jn
m, . . . , Jn

m, . . . JN
M
]
RM×N ,

where M is the total number of measurements, and N is the total number of spatial res-
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olutions meshes. The fundamental equation for standard Jacobian matrix element Jm
n

calculation of m-th pattern of measured impedance at n-th element of mesh is [21],

Jm
n = −

∫
A
∇U

(
Ii,i+1

)
·∇U

(
I j,j+1

)
dA (4)

where γ
(

Ii,i+1) is the potential field due to current I injected between the i-th electrode ei
and its adjacent electrode ej+1, where i = 1, 2, . . . , E, U

(
I j,j+1) is the potential field due to

assumed current in the case of impedance measured between remaining electrodes, which
is the j-th electrode ej and its adjacent electrode ej+1, where j = i + 2, i + 3, . . . , i + 6, A is
area of electric field in the sensor. For this study, the Gauss–Newton image reconstruction
algorithm is used as follows [22],

σk+1 = σk +
(

JTJ + λR
)−1

JT∆Z (5)

where R is a regularization matrix; λ is a relaxation factor which is determined by the
L-curve method [23], and ∆Z = [∆Z1, . . . , ∆Zm, . . . , ∆ZM]T ∈ RM, is the normalized
measured impedance under boundary shape ∂Ω which is expressed as

∆Zm = ZAl,Cu
m − ZAl

m (6)

where ZAl,Cu
m is inclusion impedance based on Al–Cu mixtures, and ZAl

m represents the
initial measured impedance of Al only.

The GAN algorithm models only consist of a generator and a discriminator model.
The generative model is produced based on an existing dataset of EIT images and evaluated
by feedback from the discriminator. The discriminative model learns the probability particle
distribution based on the real image and determines whether the generated images are real
ones. The data from the generator and discriminator reach a convergence state by playing
a zero-sum game.

2.2.2. GAN Algorithm

The GAN algorithm used in this study is based on image-to-image mappings [24].
The generator G maximizes the likelihood L, which is the function of the voltage U, and the
conductivity σ, according to [25],

L(G, U, σ) = ∏M
i=1 PG(V)

(
σ(i); θG

)
(7)

where P is the discrete distribution function, and the goal is to find the suitable generator
parameter Θ∗G,

Θ∗G = argmax
θG

Eσ

[
log PG(U)

(
σ(i); θG

)]
(8)

Θ∗G = argmax
θG

∫
σ

pσ(x)log pG(U)(x; θG)dx−
∫

σ
pσ(x)log pσ(x)dx (9)

where E is the mathematical expectation and p is the continuous distribution function.
The term

∫
σ pσ(x)log pσ(x)dx removed from the previous formula, which is independent of

θG, must have no effect on the maximum point solution. The goal is to build the following
Kullback–Leiber divergence, which is a statistical measure of probability distribution
similarity.

Θ∗G = argmax
θG

∫
σ

pσ(x)log
p(x; θG)

pσ(x)
dx (10)

Θ∗G = argmin
θG

KL
(

Pσ(x)
∥∥∥PG(U)(x; θG) (11)
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Because the K–L divergence minimization problem cannot be solved directly with
maximum likelihood, the discriminator loss is defined as follows in order to optimize the
generator parameters, i.e., to calculate instead of using maximum likelihood estimation:

Value(D, G) =
∫

σ
pσ(x)log D(x)dx +

∫
V

pU(x)log(1− D(G(x)))dx (12)

According to the Radon–Nikodym theorem:

Value(D, G) =
∫

σ

(
pσ(x)log D(x) + pG(x)log(1− D(x))

)
dx (13)

where pσ(x) and pG(x) are not affected by the discriminator D(x). Let the integrand of the
previous formula take the derivative of D(x) and set it to 0:

pσ(x)
D(x)

+
pG(x)

D(x)− 1
= 0 =⇒ D(x) =

pσ(x)
pσ(x) + pG(x)

(14)

It can be demonstrated that if and only if pσ(x) = pG(x), D(x) = 0.5, the reconstructed
conductivity calculated by the generator is exactly consistent with the real conductivity, and
the discriminator cannot tell whether the image is from the generator or real samples. In this
article, the GAN generator and discriminator are both back-propagation neural networks
that adapt to voltage and conductivity vectors. This GAN model’s goal function is:

min
θG

max
θD

Value(D, G) = Eσ[log D(σ)] + EV [log(1− D(G(U))) ] (15)

where D(x) is the discriminator and G(z) is the generator. While Px is the real data particle
distribution, Pz is the particle distribution of the generated data. The discriminator D(x) is
trained to maximize its ability to decide whether the generator output is real or not while
the generator G(z) is trained to minimize the output. When the real particle distribution
is equivalent to the generated particle distribution, the output by the discriminator is
considered as the optimal result.

The ideal image is the reference image, which is obtained from image processing or
simulation. The blurred images from the reconstructed image serve as the training set
for the generative model. The generated image is then investigated by the discriminative
model to determine whether the image is equivalent to the ground truth. When the data
particle distribution of the discriminator is equivalent to the data particle distribution of
the generator, the output of the discriminator is defined as the optimal result.

2.2.3. Evaluation Metric

To assess the effectiveness of GAN-EIT, we measured the similarity between the GAN-
EIT image and the ground truth using the Pearson correlation coefficient (PCC) [26] and
structural similarity indices (SSIM) [27]. PCC is a statistical measure of the strength of
the linear relationship between two variables and determines how related two variables
are to each other. The Pearson correlation coefficient (PCC) ranges from −1 to 1, where
−1 indicates a perfectly negative correlation, 0 indicates no correlation, and 1 indicates a
perfectly positive correlation. The PCC can be expressed as,

PCC =
∑N

i=1 (yi − y)
(
y′i − y′

)
∑N

i=1(yi − y)2∑N
i=1
(
y′i − y′

)2 (16)

where yi is the intensity of the i-th pixel in ground truth image, y′i is the intensity of the i-th
pixel in GAN-EIT image, y is the mean of yi, and y′ is the mean of y′i.
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The SSIM indicates the nonlinear change between GAN-EIT images and the ground
truth images [28], which is defined as

SSIM
(
y, y′

)
=

(2·yy′+ c1)·
(

2·µyy′ + c2
)

(
y2 + y′

2
+ c1

)
·
(

µ2
y + µ2

y′ + c2

) (17)

where µy and µy′ denote the standard deviation of y and y′, and µyy′ is the covariance
of both images. The addition of variables c1 and c2 stabilizes the division with a weak
denominator. Higher SSIM values indicate better image synthesis [29].

3. Simulation
3.1. Preparation of Full Set Photo Images

Figure 4 shows cases for full sets of photo images. The image was captured by putting
a camera on top of the linear sensor to get the top view of metal particles inside the linear
sensor. Each image is obtained with different positions of Cu particles. Cu position from
5 to 9 is investigated as the preliminary study.
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3.2. Preparation of Full Set Simulation Images
3.2.1. Simulation Method

Numerical simulation studies are employed by a finite element method (FEM) software
based on COMSOL Multiphysics v5.3a with AC/DC module at stationary study in order
to generate input for training data set [30]. The simulation of electric potential φ(r) inside a
subdomain Ω is produced by placing a current across the surface in boundary ∂Ω on each
electrode transmitter with the injected current i [31].

∇·(σ∗(r))∇φ(r) = 0, r ∈ Ω (18)

φ(r) + Zcσ∗(r)
∂φ(r)

∂n
= Ul , r ∈ el , l = {1, . . . , L} (19)

∫
∂Ωel

σ∗(r)
∂φ(r)

∂n
dS = I, r ∈ ∂Ωel (20)

σ∗(r)
∂φ(r)

∂n
= 0, r ∈ ∂Ω\

L⋃
l=1

el (21)

where, σ∗ := σ + 2π f ε ∈ C
[
Sm−1] is the non-homogenous admittivity property of metal,

σ and ε are the conductivity and absolute permittivity [Fm−1] respectively in Ω at the
frequency f , φ(r) ∈ C[V] is the electric potential particle distribution, and r := (x, y, z) is
the coordinate system in subdomain Ω.
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3.2.2. Simulation Condition

The simulation focuses on the displacement of particles in a three-dimensional (3D)
model under static conditions. Since the measurement technique is based on four-wire
impedance measurement, the 3D model is constructed by considering the configuration of
each of the four electrodes and the particles in the measurement domain Ω. The simulation
creates reference images of Al–Cu mixtures by varying the Cu positions in the static condi-
tion. Here, the linear sensor consisted of eight electrodes with a size of 51 × 3 × 10 mm.
The particle diameter ∅p remains constant and configured the same with the electrode di-
ameter ∅e = 3 mm. In order to assess the measurement under submerged particle condition,
the water layer height hw is adjusted to 0.75∅p. The conductivity value of Al particles is
set at σAl 3.45 × 1010 mS/m, Cu particles is at σCu = 5.99 × 1010 mS/m and water are at
σw = 1 mS/m. In addition, on the boundary condition setting, a constant current injection
on injecting electrode e1 is I = 1 [mA] with frequency f = 2 [kHz]. Meanwhile, the ground
electrode is set to e4 and floating potential electrodes are set to e2 and e3, respectively.

3.2.3. Simulation Result

Figure 5 shows the image reconstruction based on simulation results in static condi-
tions. Electrical impedance tomography (EIT) has been used effectively to generate images
based on simulation results. The reconstructed EIT images successfully distinguished Cu
(red) in various positions according to different Cu position numbers as in the illustra-
tion, demonstrating EIT’s accuracy in capturing and representing changes in electrical
impedance within Al–Cu mixtures. These reconstructed images are further employed as
inputs for the Generative Adversarial Network (GAN) model, improving the quality of
reconstructed images.
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4. Experiment
4.1. Experimental Setup

Figure 6a shows the experimental setup of the EIT system, which is composed of
a linear sensor, an eight-channel multiplexer, an impedance analyzer (IM 3570, Hioki E.E.
Corporation, Tokyo, Japan), and a PC. The linear sensor was manufactured from poly-
lactic acid (PLA) with the dimension of the container 51 × 3 × 10 mm and consisted of
eight electrodes. Stainless steel screws with 3 mm in diameter were used as the electrodes
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linear sensor with the gap between each of 3 mm. The shape and arrangement of the
linear sensor were built as a preliminary investigation of measuring the conductivity of Cu.
The impedance analyzer measures the impedance from different voltages from the linear
sensor. As a device for switching between electrodes, the multiplexer switches the acting
electrodes based on the neighboring measurement pattern. The PC in this system manages
all measuring methods and gathers data for subsequent analysis. The conductivity distri-
bution between the Cu and Al particle mixes is then visualized by an image reconstruction
approach. As a result, the Cu particles are distinguished from the Cu–Al particle mixtures.
The command and image reconstruction are done from the PC. In the post-processing, the
GAN algorithm is applied to improve the reconstructed image quality.
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4.2. Experimental Conditions

The current applied in the measurement of AC current is I = 1mA with a fixed
frequency of 2 kHz. In the static condition experiment, vibration from the metal separator
was neglected. A static condition experiment was done in order to understand two things:
basic physics of measurement and linear sensor evaluation. The ideal particle is preferred
to the real particle in preliminary experiments. The ideal particle is Al and Cu balls with
a diameter of 3 mm, while real particles have a tiny size in millimeter order and random
shape. This study investigated the metal behavior under a 1-layer condition. Figure 6b,c
show the variation of position and number of Cu particles to determine the sensing area of
the linear sensor. Cu position from 5 to 9 is investigated as the preliminary study.

4.3. Experimental Method

Figure 7 shows the adjacent measurement pattern where each electrode in the linear
sensor was taking turns to act as the Hc, Lc, Hp, and Lp electrode. An adjacent injection-
measurement pattern is used in this study. Here, for each measurement number (n),
one electrode acts as the current injector or high current (Hc), the injected current then
flows through the ground or low current (Lc) electrode, and the voltage generated by the
flowing current is then measured by pair of electrodes acting as high potential (Hp) and
low potential (Lp).

4.4. Experimental Results

The electrical impedance tomography (EIT) technique has been successfully utilized
to reconstruct images based on experimental results. However, as shown in Figure 8,
the reconstructed EIT images were found to be blurry, making it difficult to distinguish
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between the different Cu positions within Al–Cu mixtures. These blurry images were fur-
ther used as inputs for the Generative Adversarial Network (GAN) model to enhance their
quality and improve their visual clarity. The results obtained from the GAN-EIT integration
demonstrated that the GAN model was successful in enhancing the images obtained from
EIT, resulting in images that were more feasible to distinguish between the different Cu
positions within Al–Cu mixtures. These findings highlight the potential of integrating
EIT with GAN for enhancing the image quality and improving the interpretability of the
reconstructed images in experimental settings. The results of this study underscore the
promising potential of the GAN-EIT integration and its relevance for further research and
practical applications.
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Figure 7. Adjacent measurement pattern where V is the voltage measurement and A is the current injection.
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5. Discussion
5.1. EIT Analysis

Figure 9 shows the comparison of spatial mean conductivity distribution 〈σ∗〉 under
simulation 〈σ∗〉SIM and an experiment using EIT 〈σ∗〉EIT, which represent the relationship
between 〈σ∗〉 and metal position in the case of different Cu position (5–9). The 〈σ∗〉
represent spatial mean conductivity distribution in the sensor domain. The relationship
between 〈σ∗〉 and metal position is successfully recognized for Cu position in 5, 7, and 9
for both simulation and experiment, which are shown by the highest 〈σ∗〉 on each plot.
However, in the case of the Cu position at 6, both simulation and experiment results fail to
recognize the Cu position correctly as in fact, the highest 〈σ∗〉 is shown in metal position
5 and 7, meanwhile, for the Cu position at 8, the 〈σ∗〉EIT shows metal position 9 as the
highest 〈σ∗〉, while the 〈σ∗〉SIM shows metal position 7 and 9 as the highest 〈σ∗〉. One of the
reasons is that the even Cu position is located on top of the electrode which generates image
artifacts. On the other hand, the odd Cu position is located between electrodes, which
generates correct images. Overall, EIT successfully reconstructed images of several Cu
positions but remains unreliable as a single modality for a metal position detection method.
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5.2. GAN-EIT Image Evaluation

The evaluation of the GAN-EIT image is shown in Figure 10. In summary, based on the
PCC values, Cu positions number 5–8 demonstrate moderate positive linear correlations
with their respective counterparts. Conversely, Cu position number 9 exhibits a relatively
strong positive linear correlation. Meanwhile, based on the SSIM values, all image pairs rep-
resented by these variables display moderate levels of structural and perceptual similarity,
with Cu position number 9 showcasing the highest level of similarity.



Sensors 2023, 23, 8062 13 of 17

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 9. Comparison of normalized spatial mean conductivity distribution under simulations and 

experiments for Cu position (a) 5, (b) 6, (c) 7, (d) 8, and (e) 9. 

5.2. GAN-EIT Image Evaluation 

The evaluation of the GAN-EIT image is shown in Figure 10. In summary, based on 

the PCC values, Cu positions number 5–8 demonstrate moderate positive linear correla-

tions with their respective counterparts. Conversely, Cu position number 9 exhibits a rel-

atively strong positive linear correlation. Meanwhile, based on the SSIM values, all image 

pairs represented by these variables display moderate levels of structural and perceptual 

similarity, with Cu position number 9 showcasing the highest level of similarity. 

 

Figure 10. Comparison of PCC (red) and SSIM (blue) results. 

5.3. Cu Detection Based on GAN-EIT Images Using RGB Analysis 

The evaluation of performance between GAN-EIT and original EIT is performed by 

RGB value analysis. Each image is represented by red, green, and blue (RGB) color values. 

𝜓𝑛
𝛼,𝛽

= |𝑥𝑛
𝛼,𝛽

− �̅�𝛼,𝛽| (22) 

Figure 10. Comparison of PCC (red) and SSIM (blue) results.

5.3. Cu Detection Based on GAN-EIT Images Using RGB Analysis

The evaluation of performance between GAN-EIT and original EIT is performed by
RGB value analysis. Each image is represented by red, green, and blue (RGB) color values.

ψ
α,β
n =

∣∣∣xα,β
n − xα,β

∣∣∣ (22)

ψ
α
n =

1
3

ψα,R
n + ψα,G

n + ψα,B
n (23)

where x is the color intensity value of every pixel in one of RGB channels, x is the average
of x, ψ is the absolute deviation, ψ is the mean absolute deviation, α = {EIT, GAN} is the
method used to generate the image, β = {R, G, B} is the color intensity of every pixel in the
three different red (R), green (G), and blue (B) channels, n = {1, . . . , 17} is the number of
position of the metal in the linear sensor. Figure 11 shows the RGB analysis on the EIT image
reconstruction result with Cu in different positions, while Figure 12 shows the RGB analysis
of the GAN-EIT image reconstruction result with Cu in different positions. The relationship
between ψ and metal position is successfully recognized for Cu position in 5, 7, and 9
for EIT, which is shown by the highest ψ

EIT on each plot. As already discussed in the
previous analysis, in the case of Cu positions 6 and 8, ψ

EIT shows low accuracy as it detects
the adjacent positions as well. The low accuracy of linear sensor EIT is due to several
drawbacks, such as contact impedance [32], stray capacitance [33], and measurement
noise [34]. On the other hand, the GAN-EIT detects all Cu positions, which are shown
by the highest ψ

GAN on each plot. Overall, GAN-EIT successfully reconstructed images
of all Cu positions accurately. In comparison, the RGB analysis on EIT showed the Cu
position with low accuracy, whereas the GAN-EIT image showed the Cu position with
high accuracy.
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Figure 11. The RGB analysis on EIT image reconstruction results for Cu position (a) 5, (b) 6, (c) 7,
(d) 8, and (e) 9.
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(c) 7, (d) 8, and (e) 9.

The limitation of EIT using the adjacent pattern is that in the case electrode 1 acts as the
high-current electrode and electrode 2 acts as the low-current electrode, four metal particles
on top of them are neglected because the voltage measurement, which detects the metal
particle, is done by the other electrodes. Along with the measurement, the optimum metal
particles that are able to be detected are in positions 5–9. In the case of the electrode arrange-
ment being flipped, the metal particles in positions 10–13 are detectable. Copper particles
mostly pass through the center of the mouth’s channel (area shown in Figure 13). Figure 14
shows Cu detection based on absolute deviation for different Cu positions with different
noise signal conditions. In the worst case (Figure 14a), a noise signal with 20 [dB] was not
significant to distinguish different Cu positions. At SNR = 60 [dB] (Figure 14c) shows that
Cu positions 5–9 are distinguishable above the 95% quartile threshold. The linear sensor
designed for the area of interest (ROI) effectively reduces the detection error of copper
(Cu) in conventional electrical impedance tomography (EIT) by 40%. This improvement is
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achieved while ensuring a minimum signal-to-noise ratio (SNR) of 60 [dB] in the presence
of additive white Gaussian noise (AWGN) [8].
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Figure 13. The blue shading shows the location of the copper particles that often passed before
exiting the Al outlet channel. The region of interest (ROI) shows the optimum detected area of the
linear sensor.
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Figure 14. Cu detection based on ψ for Cu position = 5 (blue); 6 (orange); 7 (green); 8 (red); and 9 (pur-
ple) with different noise signals, (a) 20 [dB] (the worst condition), (b) 40 [dB], and (c) 60 [dB]. The black
line shows the 95% quartile threshold.

In summary, GAN-EIT is a promising approach for improving the quality of EIT
reconstructed images. The use of GANs enables the development of high-quality images
which are more similar to ground truth images. The effectiveness of the EIT-GAN technique,
however, is dependent on several aspects, including the quality and amount of EIT data,
the reconstruction algorithm chosen, the GAN architecture and hyperparameters, and the
assessment metrics and criteria. Further research is needed to explore the full potential
and limitations of this approach, as well as to develop novel methods and applications that
benefit from the integration of EIT and GAN.

This study has determined that the proposed GAN-EIT has a low error percentage
in detecting Cu particles among major Al particles. Therefore, it is important to consider
the robustness of our method when applying it to the metal separation process using a
wet gravity separator, as this process involves extreme conditions caused by the machine’s
vibration and mixed particle flow. Hence, we plan to investigate our findings under these
conditions in future research.

6. Conclusions

In this study, we have investigated the integration of electrical impedance tomography
(EIT) with Generative Adversarial Networks (deGAN) for image reconstruction and en-
hancement in order to distinguish minor Cu particles from major Al particles for a wet-type
gravity vibration separator. The results obtained from our experiments have provided
valuable insights into the feasibility of this integration in improving the quality and inter-
pretability of EIT reconstructed images. Our findings indicate EIT has been successfully
utilized to generate images based on simulation/experimental results, but the reconstructed
images were often blurry and lacked clarity, making it difficult to distinguish between
the different Cu positions within Al-Cu mixtures. However, through the integration of
GAN-EIT, we were able to enhance the images obtained from EIT, resulting in images that
exhibited improved visual fidelity and clarity.

The GAN-EIT model effectively improved the quality of the reconstructed images,
making them more feasible to interpret and analyze the different Cu positions within Al–Cu
mixtures. The conclusions are summarized as follows:
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1. GAN-EIT reduces Cu detection error of conventional EIT by 40%.
2. The proposed method is reasonably robust to prevent intervention from the noise sig-

nal condition of a device. An impedance measurement with a minimum SNR = 60 [dB]
is recommended.

3. GAN-EIT is capable of improving the detailed features of the EIT images to detect
Cu effectively.
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