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Abstract: Infrared sensors capture thermal radiation emitted by objects. They can operate in all
weather conditions and are thus employed in fields such as military surveillance, autonomous driving,
and medical diagnostics. However, infrared imagery poses challenges such as low contrast and
indistinct textures due to the long wavelength of infrared radiation and susceptibility to interference.
In addition, complex enhancement algorithms make real-time processing challenging. To address
these problems and improve visual quality, in this paper, we propose a multi-scale FPGA-based
method for real-time enhancement of infrared images by using rolling guidance filter (RGF) and
contrast-limited adaptive histogram equalization (CLAHE). Specifically, the original image is first
decomposed into various scales of detail layers and a base layer using RGF. Secondly, we fuse
detail layers of diverse scales, then enhance the detail information by using gain coefficients and
employ CLAHE to improve the contrast of the base layer. Thirdly, we fuse the detail layers and base
layer to obtain the image with global details of the input image. Finally, the proposed algorithm is
implemented on an FPGA using advanced high-level synthesis tools. Comprehensive testing of our
proposed method on the AXU15EG board demonstrates its effectiveness in significantly improving
image contrast and enhancing detail information. At the same time, real-time enhancement at a speed
of 147 FPS is achieved for infrared images with a resolution of 640 × 480.

Keywords: infrared image enhancement; multi-scale decomposition; real-time; FPGA

1. Introduction

Visible light sensors can capture high-resolution images with rich textures and detailed
information. However, the image quality captured by visible light sensors is greatly affected
by the light environment. Poor illumination can degrade the visual image’s quality, leading
to issues such as glare, smoke, and overexposure. In contrast, infrared imaging technology
utilizes differences in infrared radiation intensity for object detection, thereby making it
less susceptible to varying lighting and weather conditions [1]. Therefore, infrared image
enhancement has become a hot topic in current research and has the potential to bring
significant benefits to the field of multi-modal information fusion [2–5]. Simultaneously, it is
extensively employed in fields such as target detection [6–8] and medical diagnostics [9,10].
However, atmospheric attenuation, scattering, and refraction can introduce noise in infrared
images, resulting in low contrast, reduced signal-to-noise ratio, and blurred details, which
greatly affect the detection, recognition, and infrared tracking of targets [11,12]. To satisfy
the requirements for practical applications, effective image enhancement algorithms that
improve contrast, reduce noise, and address the problem of detail blurring caused by
interference must be employed. Infrared image enhancement algorithms can be broadly
categorized into three main domains: spatial domain, frequency domain, and convolutional
neural networks (CNNs).
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Spatial domain enhancement algorithms are primarily based on histogram equaliza-
tion (HE). HE [13] is widely employed to enhance the contrast of infrared images. It alters
the distribution of gray values in the original image according to the frequency of each gray
level in the image histogram to achieve a uniform distribution. However, because HE is ap-
plied to the entire image globally, it may result in noise enhancement and the weakening of
image details, thus affecting image quality [14]. In recent years, some improved HE-based
algorithms have been proposed, such as brightness-preserving bi-histogram equalization
(BPBHE) [15], dualistic sub-image histogram equalization (DSIHE) [16], and minimum
mean brightness error bi-histogram equalization (MMBEBHE) [17]. BPBHE divides the
histogram of the image into two sub-histograms around the average gray value of the
image and then independently equalizes each part to preserve brightness, thus overcoming
the challenge of maintaining the same level of brightness throughout the image. DSIHE
employs a similar process as BPBHE, although it separates the histogram by median in-
stead of mean. However, DSIHE is suitable only for images that exhibit uniform intensity
distribution and has limited effectiveness in preserving the original brightness. MMBEBHE
is a variant of BPBHE. It first separates the histogram by using a designated threshold that
maintains the minimum mean brightness error between the input and output images. Next,
it independently equalizes the two parts. MMBEBHE is an improvement over BPBHE
and DSIHE; however, it has limitations in terms of preserving contrast and brightness.
Recursive mean-separate histogram equalization [18] and recursive sub-image histogram
equalization [19] are the recursive versions of BPBHE and DSIHE, respectively. They pro-
vide a flexible way of monitoring the degree of over-enhancement but overly emphasize the
mean brightness. Adaptive histogram equalization (AHE) [20] is based on HE; it processes
the image in blocks to address the problem of excessive enhancement. However, due to the
independent processing of each pixel block, AHE lacks smooth transitions between blocks,
resulting in suboptimal visual effects. CLAHE [21], a generalization of AHE, incorporates a
threshold to constrain the contrast, thereby mitigating the problem of noise amplification.
In addition, CLAHE utilizes bilinear interpolation to optimize the transitions between
blocks, thus resulting in a more harmonious appearance. Although HE-based methods can
effectively enhance image contrast, they neglect crucial details, resulting in a diminished
portrayal of features such as contours and edge textures within the image.

The frequency domain algorithm is primarily based on multi-scale decomposition
(MSD). The methods based on MSD represent various types of spatial and frequency
domain information of the source image by decomposing it into different layers. Specific
fusion rules are then applied to these different layers to obtain the fused layer. This method
is widely applied in the fields of image processing and image quality assessment [22–24].
To enhance image details, some state-of-the-art technologies have been proposed. For
example, in 2009, Branchitta et al. [25] proposed the bilateral filter and dynamic range
partitioning (BF&DRP) algorithm, which utilizes a bilateral filter to decompose raw images
into two independent components: the base layer (containing the background) and the
detail layer (containing the texture). These two components are processed separately and
then combined to reconstruct the final output image. As a result, BF&DRP can retain
image details while improving the contrast. However, due to the unstable weight of the
bilateral filter kernel near strong edges, gradient reversal artifacts appear in the output
image. In 2011, Zuo et al. [26] proposed the bilateral filter and digital detail enhancement
(BF&DDE) algorithm, which uses an adaptive Gaussian filter to refine the base and detail
layer. However, BF&DDE can only diminish the possibility of gradient reversal artifacts
rather than avoiding them completely. In 2014, to achieve detail enhancement, Liu et al.
proposed GF&DDE [27], which uses a guided image filter to separate the raw image.
However, like BF&DDE, GF&DDE cannot completely eliminate gradient reversal artifacts
when the image contains strong edges. In 2016, inspired by the joint bilateral filter, Liu et al.
proposed an algorithm called JBF&DDE, which calculates the kernel function by using two
adjacent images to distinguish detail information from the raw image. This kernel function
is sensitive to the gradient structure within the image, which better enables the elimination
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of gradient reversal artifacts. In 2020, Xie et al. [28] studied infrared thermal imagers and
discovered that their overall response model can be described by a double-exponential
statistical fitting model. Consequently, they proposed an algorithm called bi-exponential
edge-preserving filtering (BEEPS) to enhance the details of infrared images.

With the rapid development of artificial intelligence, image-processing-method-based
CNNs have exhibited outstanding performance. Dong [29] first proposed a convolutional
neural network for image super-resolution (SRCNN), which can directly learn an end-to-
end mapping between the low- and high-resolution images. Kim [30] found that increasing
network depth can significantly improve accuracy and proposed LLCNN based on SRCNN.
Zhang [31] developed a skip-connection-based residual channel attention network (RCAN)
for image super-resolution, enabling adaptive learning of crucial channel features and
enhancing its expressive capabilities. Kuang [32] incorporated a generative adversarial
network (GAN) into the conventional CNN framework and introducing IE-CGAN for en-
hancing single infrared images. This innovative approach effectively mitigates background
noise while simultaneously enhancing image contrast and fine details. Wang [33] proposed
an innovative target attention deep neural network (TADNN) to achieve discriminative
enhancement in an end-to-end manner. However, in practical applications, the calculation
of these methods is complex and time consuming. Therefore, the implementation of the
aforementioned algorithm is not very hardware friendly.

Due to their parallel computing capabilities, FPGAs have emerged as a promising
platform for accelerating computational tasks. Numerous researchers have achieved sig-
nificant advancements in infrared image enhancement by using FPGAs. For instance,
various FPGA-based methods based on CLAHE have been extensively employed to meet
real-time processing requirements. Kokufuta et al. [34] processed the image as a whole
instead of dividing it into smaller blocks, thereby avoiding interpolation. Unal et al. [35]
proposed a look-ahead mechanism for redistribution and redefined the interpolation step to
address issues related to image segmentation and correlation interpolation. Chen et al. [36]
proposed the use of a fast guided filter and plateau equalization for accelerated enhance-
ment processing. However, this approach introduces gradient reversal artifacts in regions
with strong edges. Although the aforementioned methods can achieve fast infrared image
enhancement by using FPGAs, the constraints of the enhancement algorithm affect the
performance of the enhanced images.

2. Proposed Method
2.1. Rolling Guidance Filter

Multi-scale image decomposition has been extensively employed in the field of in-
frared image enhancement. The choice of an appropriate decomposition method consider-
ably affects the performance of the enhanced images. Multi-scale image decomposition
involves obtaining images with different levels of blurring through filtering. Commonly
used decomposition methods include Gaussian filtering, bilateral filtering [37], guided
filtering [38], and WLS filtering [39]. However, these filters do not fully address issues
related to noise and gradient reversal. The rolling guidance filter employs a rapidly converg-
ing iterative approach to achieve rolling guidance and can produce artifact-free results when
separating different scale structures [40]. As a result, it does not rely on local denoising
methods but controls the level of detail by controlling the number of iterations. As shown
in Figure 1, RGF comprises two main steps: small-structure removal and edge recovery.
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Figure 1. Rolling guidance filter.

2.1.1. Removal of Small Structures

First, the small-structure information in the input image is removed using a Gaussian
filter. Assuming that p and q are the pixel coordinates of an image, I is the input image,
and G is the output image, the result of Gaussian filtering applied to the input image at the
central pixel p can be as follows:

G(p) =
1

Kp
∑

q∈N(p)
exp(−‖p− q‖2

2σ2
s

)I(q), (1)

where Kp = ∑
q∈N(p)

exp(− ‖p−q‖2

2σ2
s

) is used for normalization, and N(p) is the set of neighbor-

ing pixels of p. The structural scale parameter σs is the standard deviation of the Gaussian
filter, and the structures whose scale is smaller than σs are removed completely.

2.1.2. Edge Recovery

Edge recovery involves an iterative approach using joint bilateral filtering (JBF) [41] to
iteratively recover the blurred large-scale edge structures. During the iterative processing,
let J1 = G. In each iteration, a modified guidance image is obtained from the previous
output. All input images are set as I. This iterative processing can be defined as follows:

Jt+1(p) =
1

Kp
∑

q∈N(p)
exp(−‖p− q‖2

2σ2
s
− ‖Jt(p)− Jt(q)‖2

2σ2
r

)I(q), (2)

where Kp = ∑
q∈N(p)

exp(− ‖p−q‖2

2σ2
s
− ‖Jt(p)−Jt(q)‖2

2σ2
r

) is used for normalization, σs and σr respec-

tively control the spatial and range weights, p and q denote the central pixel and neighbor
pixels, and Jt+1 denotes the result of the t-th iteration.

In this paper, we defined the RGF operation as follows:

Iout = fRGF(Iin, σs, σr, n), (3)

where Iout is the result of the input image Iin after undergoing the RGF operation for n
iterations. We found that when the number of iterations n reached a large value, the
enhanced image exhibited gradient reversal artifacts. However, setting n = 3 resulted in
the algorithm achieving the best performance.
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2.2. Image Enhancement Strategy

The proposed algorithm framework is illustrated in Figure 2. First, the detail layers
of the input image are extracted at different scales by using three consecutive rounds of
RGF. The output of the third filtering round serves as the base layer. Next, the detail
layers from the three scales are merged, and the base layer and detail layers are enhanced.
Finally, the enhanced detail layers are combined with the base layer to create an improved
infrared image.
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2.2.1. Image Decomposition

The smoothing process realized using the RGF can be described as follows:

Ii
B = fRGF(Iin, σi

s, σi
r, n), i = 1, 2, . . . , K− 1, (4)

where Ii
B represents the result of the i-th filtering. If σi+1

s > σs, σi+1
r > σr then the smooth-

ing degree is Ii+1
B > Ii

B. As a result, Ii
B contains more structural information than Ii+1

B .
Subsequently, by setting I0

B = Iin, the detailed layers can be extracted using the following
relationships:

Ii
D = Ii

B − Ii+1
B , i = 1, 2, . . . , K− 1, (5)

where Ii
D represents the detail layers obtained after the i-th decomposition, K denotes the

decomposition level (in this paper, K = 4), and IK−1
B is the smoothest version of the original

image and serves as base layer IB.

2.2.2. Detail Layer Enhancement

IDout =
K−1

∑
i=1

Ii
D × coe, i = 1, 2, . . . , K− 1, (6)

where coe is the enhancement coefficient (coe = 3 in this implementation).

2.2.3. Base Layer Enhancement

CLAHE enhances an image by dividing it into multiple sub-blocks and then per-
forming HE on each sub-block. It restricts the degree of contrast enhancement in each
sub-block, thereby avoiding excessive enhancement and effectively improving image con-
trast. CLAHE comprises four main steps: image block division and sub-block histogram
statistics, sub-block histogram clipping and redistribution, histogram equalization, and
pixel interpolation reconstruction.



Sensors 2023, 23, 8101 6 of 24

For reliable statistical estimation, the size of each sub-block is set as W (W = 64 in
this implementation) × H (H = 64 in this implementation). Next, the histogram of each
sub-block is computed using the following formulas:

h(n) =
W−1

∑
i=0

H−1

∑
j=0

g(n, i, j), n = 0, 1, . . . , N − 1, (7)

g(n, i, j) =
{

1 if I(i, j) = n
0 otherwise

, (8)

where n is the gray level, histogram bin, (i, j) are the coordinates of a pixel, h(n) is the
histogram value for the n-th bin, and g(n, i, j) is the function that determines whether the
value of a pixel I(i, j) is equal to n.

A common challenge with standard HE is its tendency to increase the contrast of
the sub-regions to the maximum value, resulting in noise amplification. To constrain the
contrast of the sub-regions within a certain range and suppress noise, a limiting threshold
is introduced, expressed as follows:

β =
M
N
(1 +

α

100
(Smax − 1)), (9)

Smax =
U
Q

, (10)

where β represents the clip limit for each sub-block’s histogram, M represents the number
of pixels in each sub-block, N represents the number of gray levels in each sub-block, α is
the clip factor, S is a parameter used to control the degree of contrast amplification during
the contrast limiting process, U and Q respectively represent the mean and variance of each
sub-block. These parameters are used in the calculations to determine the suitable limiting
threshold β for each sub-block’s histogram to achieve effective contrast enhancement while
suppressing noise. As shown in Figure 3, the portion above β is clipped and redistributed
to the bottom of the histogram.
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The redistribution algorithm can be represented in the form of pseudocode, as shown
in Algorithm 1.
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Algorithm 1: Redistribution process

Input: the histogram value h(n), the clip limit β

Output: the histogram value after redistributing h(n)

1. excess = 0;
2. for (n = 0; n < N; ++ n) {
3. if (h[n] > β) {
4. excess += h [n] − β;}}
5. m = excess/N;
6. for (n = 0; n < N; ++ n) {
7. if (h[n] < β −m) {
8. h [n] += m;
9. excess −= m;}
10. else if (h[n] < β) {
11. excess += h [n] − β;
12. h[n] = β;}}
13. while (excess > 0) {
14. for (n = 0; n < N; ++ n) {
15. if (excess > 0) {
16. if (h[n] < β) {
17. h [n] += 1;
18. excess −= 1;}}}}
excess: the value above the threshold

After performing the contrast limiting process to ensure that the sub-blocks of the
histogram do not exceed the clip limit, the cumulative distribution function is computed
and pixel value equalization is performed to obtain the new pixel values as follows:

fi,j(n) =
N − 1

M

n−1

∑
k=0

hi,j(k), n = 1, 2, 3, . . . , N − 1, (11)

where (i, j) are the coordinates of the sub-block, M is the number of pixels in each sub-block,
N is the number of gray levels in each sub-block, and hi,j(k) is the histogram of the image
window with coordinates (i, j).

To achieve smoother transitions at block boundaries, interpolation is performed using
different methods based on the sub-block’s position. As shown in Figure 4, sub-blocks are
categorized into three regions: (1) CR represents sub-blocks that have no connections to
others and retain the original pixel mapping function; (2) BR sub-blocks, which undergo lin-
ear interpolation for mapping; and (3) IR sub-blocks, which undergo bilinear interpolation
based on their four nearest neighboring sub-blocks. The final expression is as follows:

IBout =


fi,j(n),

LT( fi,j(n)),

BT( fi,j(n)),

n ∈ CR

n ∈ BR

n ∈ IR

, (12)

where IBout represents the result obtained after enhancing the base layer, LT represents
linear interpolation, and BT represents bilinear interpolation. The detailed formulas for
these two interpolation methods are explained in the Section 4.
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2.2.4. Image Reconstruction

To merge the enhanced detail layer and enhanced base layer, the fused image is
obtained through inverse transformation as follows:

IEN = IDout + IBout , (13)

In summary, the decomposition process is accelerated, the details are enhanced, and
the noise is suppressed using the RGF. Finally, the base and the detail components are
merged, and an output image with excellent performance is generated.

3. Algorithm Experiment and Analysis

To assess the effect and efficiency of the proposed method, we selected a set of infrared
images from the TNO Image Fusion Dataset [42] and the M3FD Dataset [43] for experimen-
tation. These selected test datasets comprised diverse scenes, thus offering a comprehensive
challenge for the proposed algorithm. We compared the proposed method with five existing
infrared image enhancement methods: traditional infrared image enhancement algorithms
HE and CLAHE, guided filter-based infrared image enhancement algorithm GF&DDE,
the bi-exponential edge-preserving filter-based infrared image enhancement algorithm
BEEPS&DDE, and the CNN-based method IE-CGAN. For these methods, we selected the
parameters as advised by the authors or through our experience.

3.1. Subjective Analysis

Subjective analysis involves assessing the quality of the enhanced image based on an
individual’s subjective perception and visual experience. We selected three representative
infrared images for a subjective visual evaluation. A high-contrast scene with abundant
texture information on rooftops and trees is shown in Figure 5. A scene with strong edges
between the person and the surrounding background, which includes mountain peaks
with rich textures, is shown in Figure 6. A scene of urban architecture, with tall buildings
and towering cranes at great heights, all displaying intricate details, is shown in Figure 7.

The enhancement results obtained using five methods in a high-contrast scene are
shown in Figure 5, with the focused areas highlighted by red boxes. In this scene, the
HE-based enhancement method improved the contrast of the infrared image but produced
overexposure artifacts at the car engine. The CLAHE method effectively enhanced the
contrast; however, the details of the houses and trees were not sufficiently prominent.
The GF&DDE method performed well in smoothing background noise and enhancing
contrast; however, the presence of gain masks caused the smoothing out of some details
in the regions of interest. The IE-CGAN method performs well in image denoising but
loses some information of the fine details. Compared with the other four enhancement
methods, the images processed using the BEEPS&DDE method and the proposed method
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exhibited rich texture details, such as the abundant leaf details on trees. However, in
terms of overall image performance, the proposed method exhibited higher contrast and
better representation.

The enhancement effects of the enhancement algorithms on the “thermal” image
are shown in Figure 6. The HE algorithm yielded higher overall contrast among all the
enhancement algorithms; however, it produced overexposure artifacts on the thermal
target, resulting in a considerable loss of fine-grained details in the target (e.g., the person
enclosed within the red box lacks discernible details). Although the CLAHE algorithm
effectively mitigated overexposure caused by HE and yielded relatively favorable results
in terms of contrast enhancement, it struggled in preserving intricate details, consequently
resulting in a somewhat blurred perception. The IE-CGAN method enhances the contrast
of image but the visual improvement is not very pronounced. In contrast, GF&DDE and
BEEPS&DDE effectively improved the overall brightness. GF&DDE slightly outperformed
BEEPS&DDE in handling thermal targets, whereas the latter excelled in enhancing texture
information, such as shrubs and mountains in the background. The proposed algorithm
greatly improved image contrast and exhibited a better effect on detail enhancement
and maintenance (e.g., the details of the mountain peaks and the person in the image).
Furthermore, the outline of the infrared target was visible without gradient reversal artifacts,
thereby demonstrating its excellent visual effect.
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The enhancement results obtained using the enhancement algorithms on urban scenes
are shown in Figure 7. Image processing using HE yielded a very bright image, and a lot of
the detailed information about the target scene was lost. CLAHE yielded visually pleasing
results but failed to improve the perceptibility of the small details in the image. GF&DDE
performed well in noise suppression, whereas BEEPS&DDE excelled in highlighting texture
details. Although both algorithms improved the overall brightness to a certain extent, the
overall contrast of the image was not high, and the detailed information was not sufficiently
prominent, such as the details of the bushes in the lower right corner. In this scenario, the
performance of the IE-CGAN method was not satisfactory, which may be attributed to the
insufficiency of the training dataset. The proposed algorithm improved the contrast and
clarity of different areas of the image to different degrees, such as the edge outline of the
tower crane being more explicit and the contrast of the building part being improved. The
proposed algorithm yielded an image wherein the details of the scene were highlighted
and the visual effect was more realistic.

To validate the applicability of the proposed enhancement algorithm across various
scenarios, we performed a comparative analysis by evaluating six methods in seven dif-
ferent scenes, such as texture-rich wire fences, streets with numerous thermal targets, and
dense forests with intricate texture details. As can be seen from the enhancement results
of these methods applied to the seven scenes shown in Figure 8, the proposed method
outperformed the other five methods in terms of enhancement performance.
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3.2. Objective Analysis

Currently, the field of image processing has become a research hotspot, and assessing
the quality of processed images remains a challenge. Quality image assessment (IQA)
methods can be categorized into subjective and objective ones [44]. Since the fact that the
human visual system is the ultimate recipient of visual signals, subjective evaluation is
usually the most accurate and reliable method. However, because subjective test consumes
significant resources, it is typically not employed as an optimization metric in practice.
Objective quality assessment methods are usually designed or trained using subjective
evaluation data. They serve as an ideal approach for timely image performance assessment
and optimizing. Objective quality assessment can be divided into traditional metrics
such as PSNR, SSIM, MSE, and so on, and emerging metrics such as UCA [45], BPRI [46],
BMPRI [47], and so on.
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To objectively evaluate the enhancement effects of the different methods in the ten
aforementioned infrared scenes, five traditional image evaluation metrics were employed,
such as average gradient (AG) [48] and edge intensity (EI) [49], which are based on image
features; figure definition (FD), which quantifies the level of detail and distinctness present
in the visual content of the image; and root mean square contrast (RMSC) [50], which
quantifies the contrast level of the image. These metrics are widely used for evaluating
the quality of an image. The evaluation results are presented in Tables 1–4. The average
values of all evaluation parameters are presented in Table 5, and the optimal value of each
parameter is marked in bold.

Table 1. The AG values of images.

HE CLAHE GF&DDE BEEPS&DDE IE-CGAN Proposed

Scene1 3.3064 5.75 4.7207 6.162 3.0171 9.4747
Scene2 4.7369 7.7667 8.6033 9.9665 2.3355 10.6338
Scene3 5.1166 5.515 4.7766 6.1097 4.8409 6.807
Scene4 6.591 9.8609 9.1665 11.1179 3.1194 11.2412
Scene5 4.6784 8.901 7.4432 9.2324 5.2663 9.6896
Scene6 6.7287 8.808 8.0154 9.7518 4.1704 10.0586
Scene7 6.7745 7.5473 6.5898 8.4726 4.6242 8.1753
Scene8 6.2241 8.6474 7.5217 9.2147 3.8121 9.4747
Scene9 8.0002 13.6018 12.2886 13.8019 4.071 14.7438

Scene10 3.9875 5.8685 4.7549 6.7469 6.1466 6.351

Table 2. The EI values of images.

HE CLAHE GF&DDE BEEPS&DDE IE-CGAN Proposed

Scene1 34.7727 60.3802 49.837 63.9985 32.1226 97.3956
Scene2 48.8454 81.3168 91.5198 104.4826 24.3485 112.2565
Scene3 51.934 55.893 49.5355 62.0235 52.3518 67.612
Scene4 62.5707 92.6684 86.2605 103.9665 32.9632 105.8907
Scene5 45.44 86.6194 72.4972 88.771 52.4775 94.9481
Scene6 65.1722 85.4135 79.2866 95.0336 43.7175 98.7767
Scene7 66.2712 72.4612 64.925 82.1765 47.7164 79.061
Scene8 63.9582 88.6129 77.6044 93.9924 39.005 97.3956
Scene9 84.0962 143.5655 129.0542 144.5164 42.2968 155.592

Scene10 40.2207 59.1701 48.294 67.3686 65.662 64.0221

Table 3. The FD values of images.

HE CLAHE GF&DDE BEEPS&DDE IE-CGAN Proposed

Scene1 3.7445 6.4858 5.3914 7.0231 3.5633 11.0912
Scene2 5.8501 9.3404 10.0945 11.9584 2.8753 12.5943
Scene3 6.3087 6.7871 5.6667 7.4641 5.5845 8.7062
Scene4 9.4174 14.0102 12.7917 15.6909 3.6518 15.8017
Scene5 6.7108 12.6621 10.5362 13.1964 6.7881 13.6354
Scene6 9.5789 12.4054 10.907 13.5917 5.373 13.8656
Scene7 9.6476 10.888 9.0738 11.8983 5.939 11.6588
Scene8 7.3154 10.1447 8.8202 10.8575 5.0632 11.0912
Scene9 9.1861 15.4576 14.0613 15.8 4.927 16.7094

Scene10 4.8271 7.0696 5.7111 7.9857 7.0285 7.65
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Table 4. The RMSC values of images.

HE CLAHE GF&DDE BEEPS&DDE IE-CGAN Proposed

Scene1 74.5077 58.695 78.034 82.9624 83.5156 58.9593
Scene2 74.9025 62.5509 81.5486 85.7531 95.0626 75.8319
Scene3 74.6886 46.0226 77.7295 80.7774 82.7147 50.6077
Scene4 74.9016 49.5487 79.2614 83.9679 49.5168 58.9766
Scene5 74.8368 54.0383 78.8685 83.7585 75.446 62.5467
Scene6 74.6253 46.9971 79.7722 83.2655 90.9194 57.3257
Scene7 74.7973 46.8248 78.2011 83.1262 63.522 53.9331
Scene8 74.6965 51.6546 79.214 83.8128 70.1383 58.9593
Scene9 74.787 56.3033 81.8486 85.9174 60.9261 65.8268

Scene10 72.1822 68.7966 75.1887 84.2537 71.5311 74.834

Table 5. Objective analysis for different methods.

Algorithm AG EI FD RMSC

HE 5.6144 56.3281 7.2587 74.4926
CLAHE 8.2267 82.6101 10.5251 54.1432

GF&DDE 7.3881 74.8814 9.3054 78.9667
BEEPS&DDE 9.0576 90.6330 11.5466 83.7595

IE-CGAN 4.1403 43.2661 5.0793 74.3293
Proposed 9.6650 97.2950 12.2804 61.7801

AG represents the average magnitude of variations in pixel values across the image.
A higher AG value indicates that the enhancement effect of this algorithm contains richer
gradient information and detailed textures. The AG calculation results are presented in
Table 1. The formula for calculating AG is as follows:

AG =

√
2

2(M− 1)(N − 1)

M−1

∑
i=1

N−1

∑
j=1

√
(

∂I(i, j)
∂i

)
2

+ (
∂I(i, j)

∂j
)

2

, (14)

where (i, j) is a coordinate of the image, and ∂I(i,j)
∂i and ∂I(i,j)

∂j are the horizontal and vertical
gradient values, respectively. M and N are the height and width of the image, respectively.

EI refers to the strength or magnitude of the edges in the image. A higher EI value
indicates that the image has higher contrast and more abundant detail information. The
calculation EI results are listed in Table 2. The formula of EI is as follows:

EI =
1

MN

√√√√ M

∑
i=1

N

∑
j=1

(sx(i, j)2 + sy(i, j)2), (15)

where sx(i, j) and sy(i, j) are Sobel operators for the x and y directions, respectively.
FD quantifies the level of detail and distinctness in the image. A higher FD value

indicates that the image contains high levels of sharpness and visual information. The FD
calculation results are presented in Table 3, and the formula for calculating FD is as follows:

FD =
1

MN

M−1

∑
i=1

N−1

∑
j=1

√
(I(i + 1, j)− I(i, j))2 + (I(i, j + 1)− I(i, j))2

2
(16)

RMSC is used to evaluate the degree of image denoising and enhancement. The larger
the value of RMSC, the higher the contrast of the image. The proposed algorithm yielded
a high RMSC value, thus indicating that it effectively increases the contrast of infrared
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images. The RMSC calculation results are presented in Table 4. The formula for calculating
RMSC is as follows:

RMSC =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(I(i, j)− I(i, j))2, (17)

where I is the average intensity of all pixel values of the experiment image.
The average values of the four aforementioned metrics obtained by applying six

different methods to enhance ten infrared images are presented in Table 5. These metrics
were used to objectively evaluate the performance of each method. As can be observed from
the values in Table 5, the proposed method outperformed the others in terms of AG, EI, and
FD values, thus indicating its superiority in enhancing image texture details and improving
image clarity. However, the enhanced images generated by the proposed method did not
have a high RMSC value when compared to other methods. This can be attributed to the
adoption of the CLAHE method in the base layer, which effectively maintains the overall
contrast within an appropriate range. In contrast, the other two decomposition-based
image enhancement methods use the HE method at the base layer, resulting in higher
overall contrast but sometimes causing overexposure in certain images. This overexposure
results in a relatively poor overall visual perception of the enhanced images. Therefore, it
is evident that the proposed method possesses distinct advantages in terms of increasing
the contrast and enhancing the edge details compared to the other methods.

4. Hardware Implementation
4.1. Hardware Architecture

To facilitate swift algorithm functionality validation and optimization, we designed
and implemented the image enhancement module by using the high-level synthesis (HLS)
tool, which can convert high-level programming languages (C/C++) into hardware de-
scription languages (HDL/VHDL), thereby elevating the level of abstraction and offering
advantages such as shorter development cycles, increased development efficiency, and
simplified algorithm hardware implementation.

The hardware architecture of the proposed method is shown in Figure 9. For hardware
implementation, we used AXU15EG as the development platform. The heterogeneous
architecture includes a processing system (PS) and programmable logic (PL). In the PS, an
ARM processor performs system control and scheduling tasks, such as data preprocessing,
IP configuration, and image streaming. The PL includes the RGF module and the CLAHE
module, which are used for enhancing infrared images. The AXI bus facilitates high-speed
communication and data interaction between PS and PL components. Video direct memory
access is used for reading infrared images and storing enhanced images. To achieve
computational optimization, dataflow instructions are used to optimize the processing
flow. These instructions ensure that the intermediate data generated in each processing
stage are stored using FIFO buffers. This approach enables parallel processing between the
modules, thereby facilitating efficient data handling and promoting parallelization among
the processing stages.
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4.2. RGF Unit Design

The RGF process involves two main steps. First, Gaussian filtering is employed to
remove small structures, followed by joint bilateral filtering to restore edges. To achieve a
balance between resource allocation and filtering performance, we selected a 5 × 5 filter
kernel. The architecture of the RGF is shown in Figure 10. The input pixel data are cached
through row buffers. Four row buffers are required to accommodate the 5 × 5 filter kernel,
and the data in these buffers are used for calculations within the processing window.
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Figure 10. Schematic diagram of RGF unit.

In the first step of RGF, the row calculation unit requires only the original pixel values
as the input. The result of Gaussian filtering is then calculated using the 5 × 5 Gaussian
filter. Subsequently, in the joint bilateral filtering process, the row calculation unit takes the
original pixel values of the input image and the pixel values of the previously computed
guidance image. Unlike Gaussian filtering, joint bilateral filtering considers both spatial
and grayscale weights, enabling the removal of small structures while restoring large-scale
edge information. The five row calculation units produce the results for the current window,
which are then sent to Sum2 for accumulation. The normalization coefficient results are sent
to Sum1 for accumulation. Finally, the calculation results are divided by the normalization
coefficient to obtain the filtered output pixel value. This iterative process is continued until
the entire restoration process is completed.
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The spatial weight and range kernel of the guidance image are denoted as Ws and Wr,
respectively, and their formulas are as follows:

Ws = exp(− ‖(i−m)+(j−n)‖2

2σ2
s

)

Wr = exp(− ‖ fguide(i,j)− fguide(m,n)‖2

2σ2
r

)
, (18)

where (m, n) represents the pixel coordinates within a 5 × 5 neighborhood, (i, j) represents
the coordinates of the center pixel, and fguide represents the guide image.

As can be observed from Equation (18), division and exponentiation operations are
required to compute the spatial and range kernel within the processing window. To
reduce computational load, the precomputed results can be stored in a ROM, enabling the
calculation results to be obtained through LUTs. The row calculation unit design is shown
in Figure 11. To ensure high processing speed, we implemented parallel computations for
all five row calculation units and their five corresponding cached pixels.
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Figure 11. Schematic diagram of row calculation unit.

For the LUT implementation of the spatial and range kernel, we set σs = 40, σr = 0.1.
To facilitate computation, we scaled the obtained floating-point results by a factor of 256
and then right-shifted the final output result by eight bits to obtain the desired result.
Because the values of fguide(i, j)− fguide(m, n) lie within the range of [0, 255], we were able
to directly determine the results of Wr and stored them in a ROM. As can be seen from
Figure 12, when the pixel value differences exceeded a certain threshold (in this paper,
86), the corresponding output results tended toward 0. Leveraging this characteristic,
we optimized the LUTs by setting the output to 0 for pixel value differences exceeding
86, thereby reducing the amount of data stored in the table by approximately 66%. This
optimization greatly minimized the hardware resources required for our approach.
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4.3. CLAHE Unit Design

To meet real-time requirements, the CLAHE algorithm has been designed with a focus
on parallel computation and pipelining. The modules are interconnected using hls::stream,
which enables data flow between them. By incorporating dataflow directives, the HLS tool
synthesizes the design to enable overlapping execution, thereby maximizing the utilization
of available resources and improving the overall throughput.

4.3.1. Histogram Calculation

First, the input image is partitioned into sub-block regions, as shown in Figure 13.
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In our implementation, the resolution of the infrared images is 640 × 480 pixels. The
input image is divided into 12 sub-blocks, each measuring 160 × 160 pixels. Subsequently,
histogram statistics are computed for each sub-block. The obtained results are then inputted
to the sub-block histogram clipping and redistribution module.

4.3.2. Histogram Clipping and Redistribution

The sub-block histogram clipping and redistribution module is illustrated in Figure 14.
The caching and histogram statistics of each sub-block are computed before being fed into
the histogram clipping unit, which then calculates the total sum excess of pixel values in
the range of 0–255. This excess sum is evenly redistributed across the intervals, and the
results are stored in a dual-port RAM. This iterative process is continued until the values
within each interval no longer exceed the clipping threshold, indicating the completion of
the computation. To enhance the processing speed, parallel execution is employed for the
sub-blocks, with a dedicated dual-port data cache unit allocated for each one.
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4.3.3. Mapping Function

To enhance the efficiency and optimize on-chip memory usage, a row-based buffering
strategy is employed instead of a frame-based approach for the hardware implementation
of the CLAHE algorithm. This design addresses the problem of uneven enhancements
between adjacent image blocks by introducing interpolation between them.

Bilinear interpolation is employed in the interpolation circuit for most sub-blocks,
necessitating the caching of mapping functions from the four surrounding sub-blocks. To
achieve this, mapping functions of at least two rows of sub-blocks are stored in buffers.
In addition, a dedicated buffer is used to seamlessly receive mapping functions for the
subsequent sub-block.

As shown in Figure 15, the pipeline incorporates three buffers to enable continuous
interpolation operations and thereby enhance the system’s operating frequency. The
caching procedure follows a three-cycle pattern: Cycle N, Cycle N + 1, and Cycle N + 2. In
Cycle N, Line Buffers N and N + 1 store two rows of sub-blocks required for interpolation,
and Line Buffer N + 2 caches the mapping functions of the next sub-block. In Cycle N + 1,
interpolation calculations are performed for Line Buffers N + 1 and N + 2, and Line Buffer
N is cleared to accommodate the data of the next row of sub-blocks. In Cycle N + 2, Line
Buffer N + 2 is cleared for caching Line Buffer N + 4 data, and interpolation results for
Line Buffers N + 2 and N + 3 are computed. This three-cycle loop is continued until the
interpolation process covers the entire image and the final enhanced result is obtained. This
approach makes the interpolation operation highly efficient, resulting in improved system
performance in terms of operating frequency and optimal utilization of on-chip storage
resources in hardware implementations of the CLAHE algorithm.
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4.3.4. Interpolation

The pixel interpolation reconstruction module involves two steps. First, the weights
are calculated. Next, the interpolation calculations are performed. As shown in Figure 16,
different interpolation methods are employed based on the sub-block’s position.
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For sub-blocks situated in the corners of the image (CR), interpolation is performed
using the sub-block’s mapping function. For sub-blocks situated along the image edges
(BR), linear interpolation is performed using the mapping functions of the two surrounding
sub-blocks. For the majority of sub-blocks (IR), bilinear interpolation is performed.

First, interpolation is performed in the x-direction by using the following formula:{
f (R1) =

x2−x
x2−x1

f (Q11) +
x−x1
x2−x1

f (Q21)

f (R2) =
x2−x
x2−x1

f (Q12) +
x−x1
x2−x1

f (Q22)
, (19)

where R1 = (x, y1) and R2 = (x, y2).
Next, interpolation is performed in the y-direction by using the following formula:

f (P) =
y2 − y
y2 − y1

f (R1) +
y− y1

y2 − y1
f (R2), (20)

Finally, the interpolation result is obtained using the following formula:

f (x, y) = f (Q11)
(x2−x1)(y2−y1)

(x2 − x)(y2 − y) + f (Q21)
(x2−x1)(y2−y1)

(x− x1)(y2 − y)

+ f (Q12)
(x2−x1)(y2−y1)

(x2 − x)(y− y1) +
f (Q22)

(x2−x1)(y2−y1)
(x− x1)(y− y1)

(21)

In the absence of optimization, the interpolation process requires a considerable
number of multiplier resources. To enhance the efficiency of the interpolation process
and make it more suitable for implementation, the bilinear interpolation formula must be
revised. Let the weights in the horizontal and vertical directions be denoted as α and β,
respectively: {

α = y−y1
y2−y1

β = x2−x
x2−x1

(22)

Equation (21) can be transformed as follows:

f (x, y) = α(β f (Q12) + (1− β) f (Q22) + (1− α)(β f (Q11) + (1− β) f (Q21))

= αβ f (Q12)− αβ f (Q22) + α f (Q22)− αβ f (Q11)
+αβ f (Q21)− α f (Q21) + β f (Q11)− β f (Q21) + f (Q21)(Q21)

= α(β( f (Q12)− f (Q22)) + f (Q22))− α(β( f (Q11)− f (Q21)) + f (Q21))

+β( f (Q11)− f (Q21)) + f (Q21)

(23)

{
P1 = β( f (Q12)− f (Q22)) + f (Q22)

P2 = β( f (Q11)− f (Q21)) + f (Q21)
(24)

Substituting Equation (23) into Equation (24), the final formula can be simplified
as follows:

f (P) = α(P1 − P2) + P2 (25)

The optimized interpolation unit is illustrated in Figure 17. After optimization, the
interpolation unit requires only three multipliers, three subtractors, and three adders.
Variables f (Q11) and f (Q12) are obtained from the cached mapping function values of
the previous row in the Line Buffer, whereas variables f (Q21) and f (Q22) are obtained
from the current row in the Line Buffer. After the completion of computation for each
row of sub-blocks, the Line Buffer is updated according to the pattern shown in Figure 15,
finalizing the computations for the entire image. The “Weights” component in Figure 15 is
a division unit that is used to generate the weights for rows and columns according to the
input pixel address, representing the parameters α and β, respectively, in Equation (25).
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4.4. FPGA Implementation Results

The proposed algorithm is implemented on the AXU15EG development board with
AMD Xilinx Zynq UltraScale+ XCZU15EG-FFVB1156–2-I MPSoC device. Throughout the
design process, the utmost care is taken to preserve data accuracy to prevent any significant
loss in data precision and ensure that the integrity of the enhanced images remains intact.
Resource utilization details of the developed image enhancement module implemented on
the FPGA are presented in Table 6.

Table 6. FPGA resource requirements.

Resource Used Available % of All

BRAM_18K 408 1488 27
DSP48E 126 3528 3

FF 374,600 682,560 5
LUT 97,685 341,480 28

From Table 6, it can be observed that the utilization percentages of BRAM_18K and
LUT are relatively higher compared to DSP48E and FF resources. This is attributed to the
consideration of real-time applications during the architecture design process. To enhance
processing speed, on-chip caching of image data was implemented, resulting in a higher
utilization of BRAM_18K resources. As illustrated in Figure 12, weight data was preloaded
into the LUT, thereby eliminating a portion of nonlinear operations, leading to higher LUT
resource utilization while reducing the utilization of DSP48E resources. Additionally, we
simplified the bilinear interpolation algorithm, which can reduce the utilization of DSP48E
and FF resources.

As can be observed from the processing speeds achieved using FPGA and PC platforms
(Table 7), the image enhancement module exhibited a processing speed of approximately
6.86 ms (147 fps) when operating under a 114 MHz reference clock. In comparison to the
processing speed achieved on a PC, the FPGA-based processing speed was approximately
29.4 times faster, thereby enabling nearly real-time output of the enhanced image.

Table 7. Speed performance compared to PC implementation.

FPGA Maximum Clock Frequency 114 MHz
FPGA Maximum Frame Rate 147 fps

PC/MATLAB R2021a (i7-12700H @ 2.30 GHz) 5 fps
Speedup 29.4×
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The enhanced infrared images of three scenes on the PC and FPGA platforms are
shown in Figure 18. Overall, the enhanced images obtained from both platforms exhibited
good visual representation. However, due to hardware limitations, there were some
differences in the results. Compared to the enhancement results on the PC, the FPGA-
enhanced images exhibited poorer contrast and detail processing. For instance, in the first
scene, the house appeared darker, and the targets within the red boxes in the second and
third scenes appeared blurry. Despite a minor precision loss in the FPGA enhancement
results, the overall visual representation and enhancement speed of the processed images
were within acceptable ranges.
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The average metrics of the enhanced images obtained using different platforms in
the three aforementioned test datasets are presented in Table 8. FPGA’s enhancement
results were inferior to those of PC in terms of all four metrics: AG, EI, FD, and RMSC.
The objective analysis results were consistent with the subjective analysis results, thus
indicating that FPGA’s enhancement results suffer only minor losses in texture and detail
information along with a decrease in contrast, thereby resulting in an overall performance
reduction in the enhanced images. From the results, it can be concluded that FPGA
achieves a good balance between enhancement effectiveness, resource consumption, and
enhancement speed.

Table 8. Average metrics compared to PC implementation.

AG EI FD RMSC

PC 8.9718 92.4214 10.7972 61.8020
FPGA 8.0301 83.4944 9.5328 54.7012

5. Discussion

In the field of infrared image enhancement, enhancement quality and speed are of the
utmost importance. Many advanced algorithms have been proposed for improving the
performance of infrared images. However, their high computational complexity results in
decreased enhancement speed. Thus, achieving a balance between image enhancement
quality and speed to meet real-time application requirements remains a challenge. Our
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research has a very broad range of applications, such as military security, medical diag-
nostics, and autonomous driving, making it highly meaningful. Furthermore, in future
research, we can apply this technology to multimodal image fusion techniques and other
areas within the field of image processing.

6. Conclusions

In this paper, we proposed a novel method for infrared image enhancement and
implemented it on an FPGA. Compared with other enhancement methods, the proposed
method exhibits superior performance in enhancing details, improving contrast, and
reducing gradient reversal artifacts. In the proposed method, first, the image is decomposed
into a base layer and multiple detail layers of different scales by using the RGF. Detail
enhancement factors are used for the detail layers, whereas CLAHE is used for the base layer.
Finally, the enhanced images from each layer are fused, yielding an image with globally
enhanced details from the input image. For deploying the proposed algorithm on an FPGA,
we adopted a parallel dataflow approach for image processing and strived to minimize
the utilization of hardware resources. The proposed method yielded enhanced images
with excellent expressiveness, with each image having a resolution of 640 × 480 pixels,
achieving a processing speed of 147 fps. Due to its real-time processing capability, the
proposed method offers a feasible solution for real-time scenarios.
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