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Abstract: In orthopedics, the evaluation of footbed pressure distribution maps is a valuable gait
analysis technique that aids physicians in diagnosing musculoskeletal and gait disorders. Recently,
the use of pressure-sensing insoles to collect pressure distributions has become more popular due
to the passive collection of natural gait data during daily activities and the reduction in physical
strain experienced by patients. However, current pressure-sensing insoles face the limitations of
low customizability and high cost. Previous works have shown the ability to construct customiz-
able pressure-sensing insoles with capacitive sensors using fused-deposition modeling (FDM) 3D
printing. This work explores the feasibility of low-cost fully and continuously 3D printed pressure
sensors for pressure-sensing insoles using three sensor designs, which use flexible thermoplastic
polyurethane (TPU) as the dielectric layer and either conductive TPU or conductive polylactic acid
(PLA) for the conductive plates. The sensors are paired with a commercial capacitance-to-voltage
converter board to form the sensing system. Dynamic sensor performance is evaluated via sinusoidal
compressive tests at frequencies of 1, 3, 5, and 7 Hz, with pressure levels varying from 14.33 to
23.88, 33.43, 52.54, and 71.65 N/cm2 at each frequency. Five sensors of each type are tested. Results
show that all sensors display significant hysteresis and nonlinearity. The PLA-TPU sensor with
10% infill is the best-performing sensor with the highest average sensitivity and lowest average
hysteresis and linearity errors. The range of average sensitivities, hysteresis, and linearity errors
across the entire span of tested pressures and frequencies for the PLA-TPU sensor with 10% infill is
11.61–20.11·10−4 V/(N/cm2), 11.9–31.8%, and 9.0–22.3%, respectively. The significant hysteresis and
linearity error are due to the viscoelastic properties of TPU, and some additional nonlinear effects
may be due to buckling of the infill walls of the dielectric.

Keywords: orthopedics; 3D printing; flexible capacitive pressure sensor; plantar pressure measurement;
dynamic sensor characterization

1. Introduction

Gait analysis is a well-established field of study that explores human locomotion as it
relates to patient health, which is helpful for rehabilitation after surgery and the diagnosis
of various orthopedic conditions. The desire to reduce recovery time and improve the
diagnosis of musculoskeletal disorders has driven the study of human locomotion and
the development of measurement instruments such as multidirectional piezoelectric force
plates, which give information about vertical and shear components of ground reaction
forces of a patient during gait testing [1]. Pressure measurement floor systems have im-
proved upon force plates by allowing for the collection of pressure distribution data for a
patient’s foot during a gait test [2]. Plantar pressure distributions can provide important
information on foot and ankle function and assist in determining musculoskeletal and neu-
rological disorders [3–5]. A simple example of pressure distribution information assisting
in diagnosis is demonstrated by Hsu et al., who used information on plantar pressure to
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determine whether a patient requires treatment for flat feet, which, left untreated, can lead
to a greater risk of developing more severe conditions such as osteoarthritis [6,7]. Addi-
tionally, gait analysis data show the potential to diagnose other non-orthopedic diseases,
such as Parkinson’s or Alzheimer’s [8]. However, floor-based pressure-sensing systems
are limited because patients must travel to a facility capable of performing gait analysis.
Typical gait tests are also time-consuming and occasionally strenuous for elderly patients
or patients suffering from an orthopedic disease. Therefore, there has been a shift toward
wearable pressure-sensing insoles rather than floor-based pressure-sensing systems for di-
agnosing movement disorders and assessing outcomes of surgical procedures [9]. Portable
pressure-sensing insoles are commercially available and can be used at home by a patient
to record and transmit gait data to a physician as daily activities are performed [10]. Using
portable pressure-sensing insoles not only allows for footbed pressure distribution data
to be captured but also prevents patients from having to undergo lengthy and expensive
gait examinations, which results in reduced strain on patients. Additionally, portable
pressure-sensing insoles allow more natural gait data to be collected for longer time periods
than possible in a gait laboratory [11,12]. Previous groups have developed novel, portable
footbed pressure-sensing systems. One particular sensor system of interest was created
by Xu et al., who combined a pressure-sensing insole, a three-axis accelerometer, and a
three-axis gyroscope and compass to record patient plantar pressure maps and movement
information, which is sent to a smart device [13]. All data recorded on the smart device
can then be uploaded to a cloud-based storage system for statistical analysis. The portable
system by Xu et al. demonstrates the possibility of a multipurpose portable system that
may be used to monitor a patient for both diagnosis and preventative purposes.

Many portable pressure-sensing insoles use specialized capacitive sensor arrays to
determine plantar pressure due to the simple design and implementation of capacitive
sensors [14–17]. However, existing insoles lack customizability or require high costs and/or
fabrication times for the limited customizability offered. For instance, the system developed
by De Guzman et al. is designed to be used as a low-cost system to monitor plantar pressure
and collect data from children, but to change the size or shape of the insole, it is necessary
to build and calibrate a new insole, requiring extra time and resources [18]. Similarly, Ho
et al. developed a pressure-sensing insole system using capacitive sensors and conductive
textiles that requires new models to be fabricated and calibrated for different sizes [19].
Further work has been done to improve the customizability of insoles by developing
pressure-sensing insoles that can be adjusted to fit a patient’s shoe size through a trimming
process [20]. Varoto et al. showed how a trimmable pressure-sensing insole could be
integrated into a wireless system to monitor plantar pressure [21]. However, to keep the
circuit intact, these insoles can only be adjusted to specific shoe sizes, thus limiting their
use. Additionally, the shape of these insoles cannot be altered, which prevents patients
with foot deformities, such as club feet, from using them.

Recently, 3D printing and the development of conductive and flexible filaments have
presented the possibility of fabricating patient-specific pressure-sensing insoles with fully
3D printed capacitive sensors. Capacitive sensors are designed to compress when pressure
is applied, which results in a decrease in the distance between the conductive plates. When
the distance between the conductive plates decreases, the capacitance of the sensor increases,
which can be measured and correlated to the pressure change via calibration. Other types
of 3D printed pressure sensors exist, such as piezoelectric and piezoresistive sensors. This
work chooses to focus on 3D printed capacitive sensors because they benefit from the
broad availability of dual-extrusion commercial 3D printers and filaments that can be used
to print capacitive sensors, which gives the potential for 3D printed capacitive sensors
to be easily integrated into clinical settings. Previous work by Leigh et al. developed
a novel conductive filament called “carbomorph” from which preliminary capacitive
pressure sensors were printed to sense when a material flexed [22]. This study showed
the possibility of using a conductive filament to sense pressure changes by measuring
capacitance changes. Other work has also demonstrated various hybrid 3D printing
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methods (i.e., 3D printing in combination with other non-3D printing techniques) to create
capacitive pressure-sensing systems [23–28]. Ntagios et al. used multiple filament types and
printable inks to create tactile pressure-sensing systems for a robotic hand [25]. Their work
demonstrated the customizability of the shape and material of 3D printed pressure sensors.
Jia et al. created a method to fabricate capacitive pressure sensors that combined fused-
deposition modeling (FDM) 3D printing and digital light processing (DLP) 3D printing [23].
Saari et al. developed pressure sensors by encapsulating wire in a tight spiral pattern within
3D printed thermoplastic elastomers [27]. Another work by Valentine et al. developed
a hybrid method that printed a thermoplastic polyurethane (TPU) matrix on an insole
material and used a pick-and-place machine to place commercial capacitive sensors in the
TPU matrix [28]. Their work demonstrated a flexible pressure-sensing insole that could
be printed to patient-specific sizes and used in biomedical applications. This work shows
the potential for utilizing 3D printing to customize the size and pattern of the pressure
sensor array for footbed pressure-sensing insoles. However, the method is limited by a pick-
and-place machine, which would increase cost and decrease accessibility. Furthermore,
the shape of the insole body was not customized to each patient’s foot. Ntagios et al.
demonstrated a method to create a hybrid 3D printed capacitive pressure sensor through a
print-pause-print method, which involved printing a base electrode, pouring a dielectric,
and printing the top electrode [26].

A fully 3D printed, capacitive-sensing insole would provide a cost-effective means to
create insoles that could be customized to fit the shape and size of a patient’s foot while
also controlling the sensor placement within the insole. Previous work by Voronov and
Dovgolevskiy demonstrated a method to design a customized insole based on a 3D scan
of a patient’s foot and an adversarial neural network [29]. A similar approach could be
used to customize the shape of a pressure-sensing insole to match a patient’s footbed by
scanning the patient’s plantar surface into a point cloud, converting it into an STL file,
inserting a 3D printed sensor, and developing wire geometry in the insole. The geometry
could then be converted into a G-code and printed in a dual-extrusion printer. Since each
sensor would be printed simultaneously with the insole, other hybrid methods would not
be needed to build the sensor network. Currently, there are no fully developed methods
for creating, testing, and validating fully 3D printed sensors that are seamlessly integrated
into a printed insole. Past work performed by Schouten et al. developed a novel 3D
printed capacitive pressure sensor design using flexible filament for both the dielectric
and conductive plate materials [30]. While these sensors showed an acceptable change
in capacitance for pressure-sensing applications, the sensors also showed considerable
drift, likely caused by creep. Additionally, the sensors were not characterized dynamically.
Schouten et al. later developed a fully 3D printed sensor to measure both shear and normal
forces, but the sensor requires additional assembly after printing [31]. A recent study by
Samarentsis et al. designed a highly customizable, fully 3D printed insole that can be
customized to a specific patient and printed quickly and cost-effectively [32]. Samarentsis
et al.’s design comprises three parts that are printed separately. The parts are assembled
and connected to an Arduino microcontroller to monitor plantar pressure. While this is a
significant step forward for customizable 3D printed pressure-sensing insoles, the insole
design requires manual assembly. Additionally, the sensors were only tested at frequencies
up to approximately 1.16 Hz. Another work by Ntagios and Dahiya created a fully 3D
printed insole, but this design also required several assembly steps to place wire within the
system [33].

The current work aims to address some of these limitations through the development
and dynamic characterization of low-cost fully and continuously 3D printed capacitive
sensors at frequencies and load levels typical for adult footbed pressure-sensing applica-
tions (approximately 0 to 10 Hz and 0 to 35 N/cm2 respectively) [34–36]. The fully and
continuously 3D printed nature of the sensors allows them to be seamlessly integrated into
pressure-sensing insoles in the future. Three sensor designs are developed and evaluated
in this work: flexible TPU as the dielectric layer and either conductive flexible TPU or
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conductive polylactic acid (PLA) for the conductive plates. The sensors are printed using a
dual-filament FDM 3D printer. Dynamic characterization of sensor performance is then
carried out via a series of experimental tests. Five sensors of each type are tested. A com-
mercial capacitance-to-voltage converter circuit is employed to convert sensor capacitance
to measurable voltage, and an electrodynamic uniaxial load frame is used to excite the
sensor at 1, 3, 5, and 7 Hz, with pressure levels varying from 14.33 to 23.88, 33.43, 52.54,
and 71.65 N/cm2 at each frequency. This excitation range encompasses most of the typical
frequency band observed in daily activity and up to twice the normal maximum pressure
to ensure survivability. Sensor calibration curves are generated for every sensor at each
combination of input frequency and pressure and are used to compute and report average
sensitivity, average linearity error, and average hysteresis error. The main contributions of
this work in the area of 3D printed capacitive sensors include: (1) the sensors are fully and
continuously 3D printed, thus do not require assembly, which is less commonly explored
in the literature compared to hybrid methods; and (2) the sensors are dynamically char-
acterized at higher frequencies than many of the previous works. Additionally, this work
also explores the performance of conductive TPU vs. PLA filaments as sensor electrodes.

2. Sensor Development

Sensors in the current work are designed as parallel-plate capacitive pressure sensors,
which consist of two conductive parallel plates (electrodes) with a dielectric material
separating them. When pressure is applied to the sensor, it compresses, and the capacitance
of the sensor varies according to the following expression:

∆C =
εA
∆x

, (1)

where ∆C is the change in capacitance, ε is the permittivity of the dielectric, A is the
overlapping area of the two conductive plates, and ∆x is the change in distance between the
conductive plates. For the capacitive pressure sensor design to be effective, the sensor must
have a sufficient change in ∆x to develop a measurable capacitance change. Additionally,
the capacitive pressure sensors must be sufficiently slender to fit within a developed insole
while being adequately pliable to maintain comfort and decrease any adverse effects on the
user’s gait cycle. For these reasons, three different 3D printed sensor designs are developed
with a flexible TPU dielectric and either a conductive PLA or TPU for the electrodes.
These three designs are dynamically tested to study the effects of changing the material
used for the electrodes and varying the infill density of the dielectric on both the print
quality and dynamic performance of the sensor. The first two types of sensors are created
with Protopasta conductive PLA filament (ProtoPlant Inc., Vancouver, WA, USA) for the
electrodes and NinjaTek 85A nonconductive TPU filament (Fenner Precision Polymers,
Lititz, PA, USA) for the dielectric. The first developed sensor type has a 10% infill density
for the TPU dielectric, referred to as a PLA-TPU-10 sensor. The second sensor type has a
30% infill density for the TPU dielectric, referred to as a PLA-TPU-30 sensor. The third
sensor type uses NinjaTek Eel, a conductive TPU filament, for the electrodes and NinjaTek
85A TPU for the dielectric. The dielectric infill density for the third sensor type is 30%. The
third sensor type is referred to as an Eel-TPU-30 sensor. The conductive plates for all three
sensor types use an infill of 100%.

The overall sensor design can be seen in Figure 1. The sensor geometry is devel-
oped using SOLIDWORKS (Dassault Systemes SolidWorks Corp., Waltham, MA, USA), a
computer-aided design (CAD) software package, and has an overall radius of 1.25 cm and
a conductive plate radius of 1 cm, which gives an active sensor area of 3.14 cm2. The active
sensor area is selected so that multiple sensors can be placed in an adult-sized insole to
capture the footbed pressure of the anatomical regions of the footbed. The uncompressed
distance between capacitive plates is 0.3 cm. The 0.3 cm thickness is chosen because it
reasonably allows the sensor to be integrated into an insole while being thick enough to
allow the dielectric infill density to be varied. Electrode tabs are included to facilitate the
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attachment of electrical test leads; however, these tabs would be replaced with 3D printed
electrical traces in a fully 3D printed sensing insole. The sensor geometry is exported from
SOLIDWORKS as an STL file and uploaded to CURA Lulzbot Edition (Fargo Additive
Manufacturing Equipment 3D, LLC, Fargo, ND, USA), slicing software used to generate
G-code. The resulting G-code file is then uploaded to a LulzBot TAZ 6 printer (Fargo
Additive Manufacturing Equipment 3D, LLC, Fargo, ND, USA) equipped with a LulzBot
Dual Extruder V2 tool head. The tool head is modified to print flexible filaments. Multiple
trials were performed to find the optimal print parameters for each sensor type. The final
print parameters can be seen in Table 1. Any settings not included in the table are left
at the default setting in CURA. The previously mentioned infill settings for the dielectric
are determined with preliminary prints where the infill is gradually decreased to increase
the sensor’s sensitivity. The initial prints show that the dielectric infill percentage can
be reduced to 10% for sensors constructed with Protopasta conductive PLA plates and
still maintain a usable sensor print quality. However, for the sensors made with NinjaTek
Eel plates, the lowest dielectric infill percentage achieved is 30%. PLA-TPU-30 sensors
are created to compare with the PLA-TPU-10 and Eel-TPU-30 sensor types to observe the
effect of both electrode material and infill percentage on performance. An example of the
PLA-TPU-10 sensor design and printed sensor can be seen in Figure 2. It should be noted
that printing temperature and printing speed for TPU filaments are set to remain constant
throughout the print for each sensor type to increase the print quality of the sensors. Ooze
shields are used to minimize filament mixing.
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Table 1. Chosen print parameters for each filament used.

Setting NinjaTek
NinjaFlex TPU NinjaTek Eel TPU Protopasta

Conductive PLA

Layer Height 0.125 mm 0.125 mm 0.125 mm
Initial Layer Height 0.3 mm 0.3 mm 0.3 mm

Infill Pattern Grid Lines Lines
Infill Density 10% or 30% 100% 100%

Infill Overlap Percent 15% 15% 75%
Skin Overlap Percent 15% 15% 75%
Printing Temperature 230 ◦C 230 ◦C 215 ◦C

Build Plate Temperature 41 ◦C 41 ◦C 41 ◦C
Flow 150% 150% 130%

Initial Layer Flow 150% 150% 130%
Enable Retraction Unchecked Unchecked Unchecked

Standby Temperature 230 ◦C 230 ◦C 230 ◦C
Print Speed 9 mm/s 9 mm/s 9 mm/s
Infill Speed 9 mm/s 9 mm/s 35 mm/s
Wall Speed 9 mm/s 9 mm/s 9 mm/s

Outer Wall Speed 9 mm/s 9 mm/s 30 mm/s
Inner Wall Speed 9 mm/s 9 mm/s 9 mm/s

Enable Print Cooling Unchecked Unchecked Unchecked
Enable Prime Tower Unchecked Unchecked Unchecked
Enable Ooze Shield Checked Checked Checked
Ooze Shield Angle 0◦ 0◦ 0◦

Ooze Shield Distance 6 mm 6 mm 6 mm

The cost for each sensor is also estimated. At the time of conducting this research,
the costs for a 1 kg role of Protopasta conductive PLA, NinjaTek 85A, and NinjaTek Eel
filaments are 90, 88, and 150 U.S.dollars (USD), respectively. PLA-TPU sensors require
2 g of Protopasta conductive PLA and 2 g of NinjaTek 85A filament, which gives a total
cost estimate of 0.36 USD/sensor. TPU-TPU sensors require 2 g of NinjaTek Eel and 2 g of
NinjaTek 85A, which gives a total cost estimate of 0.48 USD/sensor. It should be noted that
the CURA software provides filament mass estimates that are used for these calculations.
These cost estimates demonstrate the low cost of the sensors in this work.

3. Experimental Methods
3.1. Test Setup—Dynamic Characterization of the 3D Printed Capacitive Pressure-Sensing System

To quantify the dynamic response of the three sensor types, a controlled cyclic pressure
must be applied to the sensor, and the capacitance change in the sensor (on the order of
picofarads) must be converted to a measurable voltage and sampled. The capacitance
change for each sensor is converted to a voltage signal using a commercial SingleTact
capacitance-to-voltage converter board (PPS UK Limited, Glasgow, UK), which is powered
by 5 V from an Extech Instruments 382213 DC power supply (Extech Instruments, Nashua,
NH, USA). A 220 pF capacitor is wired in parallel with the 3D printed capacitive sensor
in order to bring the baseline capacitance up to a similar value as commercial SingleTact
capacitive sensors, for which the converter board is designed. A TestResources 810E4
electrodynamic load frame (TestResources, Inc., Shakopee, MN, USA) is used to apply
sinusoidal loads at various frequencies to each sensor. Custom compression platens and
a fixture are designed and 3D printed for the load frame. A lower compression platen
is affixed to the frame to hold the sensor in place during the test and facilitate secure
attachment of the electrodes. An upper compression platen is fastened to an Omega
LC105-1k load cell (Omega Engineering Inc., Norwalk, CT, USA) in order to transfer
the compressive load only to the active area of the sensor. The force input is measured
with the Omega load cell that is mounted between the upper compression platen and
load frame. The connection to the load frame is made using a custom 3D printed fixture.
The Omega load cell is oriented in series with a TestResources F2500 load cell with the
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aforementioned fixture and is powered with 10 V from an Agilent E3649A DC power
supply (Agilent Technologies, Inc., Santa Clara, CA, USA). The TestResources load cell is
used by the load frame control software (Newton) to provide closed-loop force control,
whereas the auxiliary Omega load cell is used to provide a force signal that can be time-
synchronized with the sensor output signal (note: the TestResources load cell output is
not accessible outside of the Newton controller). A National Instruments NI-9234 DAQ
card placed in a cDAQ-9171 single slot chassis (National Instruments Corp., Austin, TX,
USA) synchronously records the input force from the Omega load cell and the output
voltage from the SingleTact capacitance-to-voltage converter board at a sampling rate of
1652 Hz. The original signal output from the Omega load cell for the loads investigated in
this work is too small (−0.00674 mV/N, in compression) to be accurately measured by the
NI DAQ; therefore, the signal is scaled by a factor of −50 with an AVC Instrumentation
790 series inverting amplifier (PCB Piezotronics Inc., Depew, NY, USA) and filtered with
a Krohn-Hite Model 3988 filter (Krohn-Hite Corp., Brockton, MA, USA). The Krohn-Hite
filter is configured as a low-pass Butterworth filter with a cutoff frequency of 30 Hz to
eliminate any amplified noise in the signal. The test setup can be seen in Figure 3.
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3.2. Phase-Lag Characterization of the Measurement System

The various signal conditioning components in the measurement system (i.e., amplifier,
filter, capacitance-to-voltage converter) impart a phase delay in the signals as measured
by the data acquisition system. Therefore, before dynamic sensor testing can be carried
out, it is necessary to quantify the phase lag of both the force measurement system and
the capacitance measurement system so that proper alignment of the input pressure and
output voltage signals can be performed in the time domain.

3.2.1. Force Measurement Phase Lag

The force measurement system consists of the Omega load cell, the AVC Instrumenta-
tion inverting amplifier, and the Krohn-Hite filter. The phase lag of the force measurement
system is determined by first generating a voltage that mimics the output voltage signal of
the Omega load cell during a sinusoidal compression test with an Agilent 33220A function
generator. Note that the simulated signal is slightly larger in terms of amplitude (~20 mV)
compared to the load cell’s unaltered output signal due to the amplitude limitations of
the function generator used; however, the phase lag of the force measurement system is
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not expected to change due to the difference in amplitude. The simulated signal is split
into two separate signals: the first signal is unaltered, and the second is routed through the
AVC Instrumentation amplifier and the Krohn-Hite filter. Both signals are then captured
synchronously by the NI-9234 DAQ card at a sampling rate of 1652 Hz. All settings for
the filter and amplifier are specified in Section 3.1. The resulting test setup can be seen in
Figure 4.
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To encompass the frequencies used in the dynamic sensor characterization, several
cycles of the signals are measured within the frequency range of 0.1 to 10 Hz. After testing,
the frequency of the simulated load cell signal is verified at 1, 3, 5, and 7 Hz using a fast
Fourier transform (FFT). Results of the FFT show a maximum error of 0.57% for the targeted
frequencies. The phase lag between the two signals is determined using Lissajous patterns.
Lissajous patterns neglect the time domain of both signals and plot the amplitude of each
signal at a given time point on a 2D plot, thus yielding a graphical means for calculating
the phase difference between two simultaneously sampled signals. Phase lag for a single
random cycle of both signals is calculated with the following expression [37]:

|θ1 − θ2| =
∣∣∣∣sin−1

(
C
A

)∣∣∣∣, (2)

where C is the distance between the signal’s intersections at the signal’s y-axis average, A
is the distance between the maximum and minimum values occurring along the x-axis, and
|θ1 − θ2| is the phase lag between the signals in radians. The Lissajous patterns captured
for the simulated signal at frequencies of 1, 3, 5, and 7 Hz can be seen in Figure 5. The
quantities C and A are also shown graphically in Figure 5a. The resulting phase shift plot
of the force measurement system at all tested frequencies can be seen in Figure 6a. It shows
that significant phase lags, up to a maximum of approximately 80 degrees, are observed;
thus, it is important to correct for the phase lag caused by the force measurement system
during data processing when performing dynamic sensor characterization.

3.2.2. Capacitance Measurement Phase Lag

To determine the phase lag occurring in the capacitance measurement system (i.e., the
SingleTact capacitance-to-voltage converter board), the TestResources load frame is used
to apply a sinusoidal compressive load at frequencies of 1, 3, 5, and 7 Hz at a pressure
level of 75 N/cm2 to a commercial SingleTact capacitive sensor. The sensor has an active
area of 2.512 cm2; thus, a force of 188 N is applied to achieve the desired pressure. The
resulting change in capacitance is then converted into a voltage signal by the SingleTact
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capacitance-to-voltage converter board and is captured by the NI-9234 DAQ card at a
sampling rate of 1652 Samples/s; note that an increase in capacitance (i.e., a capacitive
sensor under compression) results in a positive output voltage. It should be noted that
the SingleTact capacitance-to-voltage converter requires self-calibration each time a new
sensor is connected, which is achieved by ensuring the new sensor is under zero load and
cycling power to the board, and the system uses approximately 0.5 V as its nominal output
voltage. The amplified and filtered voltage signal from the Omega load cell is captured
synchronously by the same DAQ device and used to verify the frequency of the load frame
via an FFT and determine phase lag. The maximum frequency error for tested frequencies
is found to be 0.53%. Once all frequencies have been verified, the Omega load cell voltage
signal is time-shifted according to the previously determined phase lag given in Figure 6a.
The time shift for a particular input frequency ω is found using the following expression:

td(ω) =
|θ1 − θ2|(ω) · T(ω)

360◦
, (3)

where td is the time shift, |θ1 − θ2| is the phase lag in degrees, and T is the period of the
signal. Lissajous patterns are once again utilized to find the phase lag in the capacitance
measurement system per Equation (2). The resulting phase shift plot can be seen in
Figure 6b. It can be observed that significant phase lags, up to a maximum of approximately
55 degrees, are observed; thus, it is important to correct for the phase lag caused by the
capacitance-to-voltage converter board when performing dynamic sensor characterization.
It is worth noting that the uncertainty in the calculated phase lag for the capacitance
measurement system depends on the response time of the commercial SingleTact capacitive
sensor. The SingleTact capacitive sensor has a response time of less than or equal to 1 ms, so
the uncertainty in the performed calculations is expected to be ±0.5 ms. This error bound
has been converted to degrees using Equation (3) and is shown in Figure 6b.
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3.3. Sensitivity Characterization of the Omega Load Cell

As mentioned before, the Omega load cell has a sensitivity of −0.00674 mV/N (when
in compression), which is amplified by a factor of −50; thus, the resulting sensitivity is
approximately 0.337 mV/N. This provides an appropriate voltage level for data acquisition
at the prescribed loads. The manufacturer, however, does not provide an operational
frequency range. Therefore, the sensitivity of the Omega load cell at frequencies of 1, 3,
5, and 7 Hz must be determined to account for the effects of the amplifier, filter, and any
frequency-dependent load cell effects. Characterizing the load cell sensitivity at different
frequencies is performed by utilizing the data previously collected during phase-lag testing
of the capacitance measurement system. Force data from the TestResources load cell
(measured by the load frame controller and considered the ground truth) is first inverted
to match the amplified Omega load cell sign convention (compression is positive). Peaks
from the resulting force signal and the amplified and filtered Omega load cell voltage
signal are found and plotted against each other on a 2D plot with force on the x-axis and
Omega load cell voltage on the y-axis. Linear regression is performed in MATLAB (The
MathWorks, Inc., Natick, MA, USA) to compute the average sensitivity for each frequency
tested. Sensitivities can be seen in Table 2, and the resulting plots can be seen in Figure 7. It
can be observed that the Omega load cell sensitivity varies slightly with frequency; thus,
the frequency-dependent sensitivities are used to scale collected voltage data from the
Omega load cell to units of newtons depending on the excitation frequency of the test.

Table 2. Amplified Omega load cell sensitivity and intercept across the range of frequencies investigated.

Frequency (Hz) Sensitivity (mV/N) Intercept (mV)

1 0.331 −2.48
3 0.332 −2.95
5 0.340 −1.35
7 0.347 −2.34

3.4. Test Procedure—Dynamic Characterization of the 3D Printed Capacitive
Pressure-Sensing System

With the phase lag of both measurement systems and the frequency-dependent sen-
sitivity of the load cell determined, the three sensor types are dynamically tested. Five
sensors of each type are tested. Each sensor is evaluated via sinusoidal compressive pres-
sure tests of varying frequency and peak pressure values. For each test, the pressure is
ramped to a preload of 14.33 N/cm2 and cycles between the preload and the given peak
pressure level. The peak pressure levels tested include: 23.88, 33.43, 52.54, and 71.65 N/cm2,
and frequencies tested include: 1, 3, 5, and 7 Hz. The pressures and frequencies are chosen
to span the typical pressure and frequency range for walking, which are approximately
0 to 10 Hz and 0 to 35 N/cm2, respectively [34–36]. Additionally, the pressure levels are
tested to nearly double the typical maximum pressure value for walking to characterize the
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sensors for ranges reasonable for higher impact activities such as running. The maximum
frequency is 7 Hz due to limitations of the PID force control of the TestResources load
frame used for testing. It should be noted that the minimum measurable pressure value
for commercial footbed pressure sensors is near 0 N/cm2. For instance, the commercial
Pedar footbed pressure-sensing insole has a pressure range of 1.5 to 60 N/cm2 [38]. For
the sensors developed in this work, 14.33 N/cm2 is used as the preload value based on
preliminary testing results, in which 14.33 N/cm2 is found to be the lowest pressure level
reasonably measured by the pressure-sensing system. Additionally, the lowest pressure
range tested is between 14.33 and 23.88 N/cm2 because the sensing system is not sensitive
enough to detect any smaller changes in pressure. In total, there are 16 tests performed for
each sensor. Data collected from the capacitance measurement system are synchronized
with data collected from the force measurement system using the phase lags found in
Sections 3.2.1 and 3.2.2. This is accomplished by subtracting the time shift from the array of
time data and deleting negative time values. Next, the Omega load cell voltage is converted
to newtons according to the frequency-dependent sensitivities reported in Table 2, and
pressure is calculated by dividing the applied force by the area of the compression platen
(3.14 cm2).
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Figure 7. Calibration plots for the amplified Omega load cell at (a) 1, (b) 3, (c) 5, and (d) 7 Hz.

4. Results and Discussion

After data collection and postprocessing, the performance of the sensors is analyzed
and then discussed. It should be noted that only four of the five sensors of the PLA-TPU-10
sensor type are used in the sensor analysis due to a print defect found in one of the sensors
during testing.

4.1. Dynamic Sensor Characterization Results

First, the pressure input and measurement output time histories are plotted and used
to quantify the average output voltage range and signal-to-noise ratio (SNR) of the sensors
when paired with the SingleTact capacitance-to-voltage converter board. Representative
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graphs showing the pressure input and the resulting sensor output time histories for 23.88
and 71.65 N/cm2 tests at 1 Hz for each of the three sensor types can be seen in Figure 8. The
average output voltage range is computed as the difference between the maximum output
voltage value and the minimum output voltage value (which, as previously mentioned,
is around 0.5 V as set by the capacitance-to-voltage converter) at a given pressure and
frequency, averaged across all five sensors for each sensor type. The average SNR is
computed by calculating the SNR in decibels (dBs) at a given pressure and frequency, given
by SNR(dB) = 20log(Vs,RMS/Vn,RMS), where Vs,RMS is root-mean square (RMS) of the
sensor voltage output across all complete cycles in a given test, and Vn,RMS is the RMS of
the first 1.5 s of static noise that occurs during the test, averaged across all five sensors
for each sensor type. The resulting average output voltage range and SNR values can be
seen in Table 3. From the results, it can be observed that the PLA-TPU-10 sensor provides
1.5–3 times greater output voltage range than the PLA-TPU-30 and Eel-TPU-30 sensors,
which perform similarly to one another. The larger output voltage range of the PLA-TPU-10
sensor corresponds to an increase in SNR, which is also observed in the results. Between
the PLA-TPU-30 and Eel-TPU-30 sensors, the Eel electrode layer appears to provide a slight
increase in performance over the PLA electrode layer. Furthermore, it can be observed
that for each sensor the SNR naturally increases with increasing input pressure; what is
interesting to observe is that, generally, the SNR tends to decrease with an increase in input
frequency, particularly at higher pressure levels. This may be due to frequency-dependent
hysteresis effects in the sensors, which are explored next.
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Table 3. Average sensing system output voltage range and SNR.

Frequency
(Hz)

Pressure
(N/cm2) Average Output Voltage Range (V) Average SNR (dB)

PLA-TPU-10 PLA-TPU-30 Eel-TPU-30 PLA-TPU-10 PLA-TPU-30 Eel-TPU-30

1 23.9 0.090 0.055 0.059 9.060 3.844 5.076
1 33.4 0.106 0.055 0.061 13.761 4.982 7.674
1 52.5 0.179 0.057 0.092 18.603 8.004 10.400
1 71.7 0.275 0.071 0.097 22.281 10.749 13.501
3 23.9 0.090 0.049 0.073 9.447 3.332 5.081
3 33.4 0.103 0.051 0.061 12.709 5.641 7.418
3 52.5 0.157 0.076 0.078 15.688 7.322 9.768
3 71.7 0.248 0.070 0.107 21.145 9.239 12.697
5 23.9 0.084 0.051 0.057 7.952 3.262 3.335
5 33.4 0.108 0.062 0.068 12.588 4.427 4.827
5 52.5 0.148 0.059 0.084 16.575 6.817 9.999
5 71.7 0.210 0.066 0.088 19.970 8.491 11.833
7 23.9 0.078 0.051 0.061 8.149 2.519 5.346
7 33.4 0.098 0.057 0.065 11.312 4.612 6.331
7 52.5 0.152 0.053 0.080 13.716 5.942 9.114
7 71.7 0.211 0.072 0.084 19.205 7.961 10.882

Next, further analysis is performed by computing sensitivity, hysteresis, and linearity
error values for each sensor at each pressure and frequency level. This is accomplished
by first extracting 20 single-cycle calibration curves from the first 20 full-loading cycles
(Figure 8) for each sensor at each pressure and frequency level. Representative calibration
curves are shown in Figure 9. Second, sensitivity, hysteresis, and linearity error values
are computed for each of the 20 cycles and then averaged; these values are plotted as
black circles in Figure 10 to help understand any sensor-to-sensor variability present.
Lastly, average values for sensitivity, hysteresis, and linearity error are computed at each
pressure and frequency level by averaging the results from each sensor type; these values
are reported in Table 4 and shown as surface plots in Figure 10 to help understand any
dependence on input pressure and frequency. From the results of sensitivity, the range of
average sensitivities across the entire span of tested pressures and frequencies for the PLA-
TPU-10, PLA-TPU-30, and Eel-TPU-30 sensors is 11.61–20.11 · 10−4, 3.30–4.42 · 10−4, and
4.85–6.40 · 10−4 V/(N/cm2), respectively. It can be observed that the PLA-TPU-10 sensors
have 2–4 times higher average sensitivity compared to the PLA-TPU-30 and Eel-TPU-30
sensor types, while the Eel-TPU-30 sensor has a slightly higher average sensitivity than
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its PLA-TPU-30 counterpart. Moreover, the average sensitivity varies slightly for different
pressure and frequency levels, particularly for the PLA-TPU-10 sensors, which show an
easily observed increase in average sensitivity as pressure increases and as frequency
decreases. Overall, there is significant variability in sensitivity between sensors printed
to the same specifications, particularly for the PLA-TPU-10 sensors. From the results of
hysteresis, significant hysteresis is present for all three sensor types, with averages ranging
from 11.9–31.8, 33.4–60.9, and 24.3–51.7% for the PLA-TPU-10, PLA-TPU-30, and Eel-TPU-
30 sensors, respectively. The average hysteresis is significantly lower for the PLA-TPU-10
sensors compared to the PLA-TPU-30 and Eel-TPU-30 sensor types. Furthermore, the
average hysteresis for all sensor types tends to decrease with an increase in pressure and
shows little dependence on frequency. Overall, there is some sensor-to-sensor variability in
hysteresis for all sensor types. From the results of linearity error, significant linearity error is
present for all three sensor types, with averages ranging 9.0–22.3, 24.6–43.5, and 18.0–36.5%
for the PLA-TPU-10, PLA-TPU-30, and Eel-TPU-30 sensors, respectively. The trends are
similar to those of hysteresis, with the PLA-TPU-10 sensors showing significantly lower
average linearity error compared to the PLA-TPU-30 and Eel-TPU-30 sensor types, the
average linearity error tending to decrease with an increase in pressure and having little
dependence on frequency for all sensor types, and some sensor-to-sensor variability present
for all sensor types.
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sensor types; and linearity error for (g) PLA-TPU-10, (h) PLA-TPU-30, and (i) Eel-TPU-30 sensor
types. Black circles represent individual sensors, and colored surface plots represent averages across
all sensors.

Table 4. Average sensitivity, hysteresis, and linearity error.

Frequency
(Hz)

Pressure
(N/cm2)

Average Sensitivity (V/(N/cm2)) × 10−4 Average Hysteresis (%) Average Linearity Error (%)

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

1 23.9 14.49 4.42 6.30 31.16 60.87 50.00 22.12 43.52 36.54
1 33.4 15.10 4.35 6.40 24.27 51.86 44.95 17.56 36.79 32.67
1 52.5 18.12 4.32 6.29 14.53 40.29 30.89 10.75 29.84 22.19
1 71.7 20.11 4.27 6.15 11.87 33.41 24.26 9.02 24.64 18.01
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Table 4. Cont.

Frequency
(Hz)

Pressure
(N/cm2)

Average Sensitivity (V/(N/cm2)) × 10−4 Average Hysteresis (%) Average Linearity Error (%)

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

PLA-
TPU-10

PLA-
TPU-30

Eel-
TPU-30

3 23.9 13.14 3.94 5.60 31.75 59.56 51.65 22.25 41.53 35.91
3 33.4 13.35 3.87 5.90 25.82 52.44 39.68 18.11 36.37 28.31
3 52.5 15.48 3.82 5.56 19.92 40.05 30.54 14.57 27.79 21.96
3 71.7 16.92 3.75 5.65 17.89 36.84 25.78 13.72 25.59 18.78
5 23.9 12.91 3.59 5.45 29.29 60.08 49.72 21.42 42.07 35.44
5 33.4 12.99 3.47 5.28 23.49 47.52 40.12 19.48 33.99 27.05
5 52.5 14.29 3.38 5.31 20.09 42.07 29.01 17.44 29.67 20.74
5 71.7 14.56 3.60 5.36 18.21 34.02 24.32 15.68 24.74 18.30
7 23.9 12.33 3.69 4.92 30.32 60.29 47.75 22.30 42.17 33.79
7 33.4 11.61 3.33 4.92 25.18 55.55 40.54 20.10 37.96 28.45
7 52.5 13.03 3.31 5.14 23.07 40.69 27.88 17.94 27.94 19.30
7 71.7 14.19 3.30 4.85 22.79 35.41 24.94 17.46 25.13 17.98

4.2. Discussion

Reflecting on the results, several interesting points of discussion arise. First, it is easily
observed that all sensors exhibit significant hysteresis and nonlinearity, together with some
pressure- and frequency-dependent behavior. This is due to the viscoelastic properties
of the soft polymeric materials used to fabricate the sensors. The dielectric portion of all
the sensor types is TPU, and it is well-known that TPU is viscoelastic and demonstrates
hysteresis and nonlinearity under compression [39]. Additionally, the authors hypothesize
that the walls of the infill structure may buckle during compression, which may contribute
to the linearity errors observed. Second, in regard to comparing the performance of the
three sensor types, the PLA-TPU-10 sensor type has the largest sensitivity, voltage output
range, and SNR, and the smallest hysteresis and linearity error, but the largest variability
in sensitivity. The increase in sensitivity, voltage output range, and SNR are likely due to
the decrease in infill percentage resulting in an increase in axial mechanical compliance,
which would result in a larger capacitance change for a given input pressure, per Equation
(1). The decreases in hysteresis and linearity error are likely due to the decrease in volume
of viscoelastic TPU material used in the sensor. The increase in variability may also be
due to the decrease in volume (infill percentage) of the TPU dielectric, which may result
in less consistency in print quality. Comparing the PLA-TPU-30 sensor type to the Eel-
TPU-30 sensor type, performance is generally similar. This is likely due to the fact that
these sensor types both utilize the same dielectric material and infill percentage, and thus
their dielectric layers have similar mechanical compliance. Based on all of the observed
data, we hypothesize that the dielectric layer dominates sensor behavior. In terms of the
conductive layer, the Eel electrode appears to provide a slight increase in sensitivity, voltage
output range, and SNR over the PLA electrode; while the exact cause of this phenomenon
is unknown, it may be attributed to differences in electrode layer properties, including
conductivity, axial compliance, Poisson’s ratio (which could cause differences in radial
compliance), etc., and/or differences in print quality.

In order for the sensors developed in this work to be integrated into footbed pressure
sensing or other orthopedic applications, it is important to first define the requirement
of the measurement system in terms of input parameters (e.g., pressure and frequency
range) and measurement resolution. The SNR of the system dictates a minimum resolvable
dynamic input pressure. To thoroughly characterize overall sensor performance, several
metrics are calculated for each sensor type at various minimum SNR levels. First, minimum
resolvable input pressure and frequency ranges are determined and reported. Second,
ranges for average sensitivity, hysteresis, and linearity error are calculated and reported
across the corresponding resolvable pressure and frequency ranges to help understand any
dependence on input pressure and frequency. Lastly, to help understand any sensor-to-
sensor variability, percent deviations of sensitivity, hysteresis, and linearity error for each
individual sensor are calculated with respect to the mean value at each combination of
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input pressure and frequency. Then, 90% confidence intervals are calculated and reported
for the resulting percent deviation values. Results for all computed metrics are shown in
Table 5. From the results, several observations can be made. First, the resolvable pressure
and frequency ranges decrease as the requirements on minimum SNR increase. Next, the
PLA-TPU-10 performs best in terms of resolvable range due to its higher sensitivity when
compared to the other sensor types. Finally, the maximum hysteresis and linearity error
decrease as the minimum SNR increases. To understand why, consider the fact that at low
pressure levels there is an increase in measurement uncertainty due to noise; inclusion of
such values in the hysteresis and linearity error calculation cause the resulting maximum
hysteresis and linearity error to increase. Overall, the results presented in Table 5 can help
determine appropriate future use of the sensors based on the minimum SNR required by
the particular application.

Finally, it is worthwhile to consider the performance of the sensors developed in the
current work to other 3D printed capacitive pressure/force sensors related to orthopedics;
a comparison can be seen in Table 6, in which sensor performance, evaluation range, and
materials and fabrication methods are presented. A direct comparison of sensitivity values
is difficult because sensitivity values in previous works measure a change in capacitance
directly and normalize it by a base capacitance, giving the units of (∆F/F0)/kPa, which
simplifies to kPa−1. The current work uses a capacitance-to-voltage converting circuit,
which gives a voltage output and therefore sensitivities are given as V/

(
N/cm2). In

regard to quantifying hysteresis, only two of the previous studies reported hysteresis, with
values around 10%. As for linearity error, no other works evaluated this characteristic.
Additionally, the sensors in the current work are characterized over the broadest frequency
range, with other works either only performing quasistatic testing or, at most, testing over
a frequency range of 0.5–1.167 Hz. In terms of tested pressure range, most other works only
explore significantly lower pressure (0–5 N/cm2), with one other work having a broader
pressure range of 4.15–87.24 N/cm2. Finally, the sensors in this work are both continuously
3D printed and fully 3D printed (i.e., do not use hybrid 3D printing methods), which is not
explored in any of the other orthopedic-related research works.
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Table 5. Resolvable pressure and frequency range, along with corresponding sensitivity, hysteresis, and linearity error presented as a range of average values with a
90% confidence interval of deviations about the mean (90% CI), all as a function of minimum SNR.

Minimum
SNR (dB)

Resolvable Pressure and Frequency Range
(N/cm2)/(Hz) Sensitivity (V/(N/cm2)) × 10−4 Hysteresis (%) Linearity Error (%)

PLA-TPU-10 PLA-TPU-30 Eel-TPU-30 PLA-TPU-10 PLA-TPU-30 Eel-TPU-30 PLA-TPU-10 PLA-TPU-30 Eel-TPU-30 PLA-TPU-10 PLA-TPU-30 Eel-TPU-30

0 (23.88–
71.65)/(1–7)

(23.88–
71.65)/(1–7)

(23.88–
71.65)/(1–7)

11.61–20.11
(±20 %)

3.30–4.42
(±17 %)

4.85–6.40
(±14 %)

11.9–31.8
(±17 %)

33.4–60.9
(±12 %)

24.3–51.7
(±13 %)

9.0–22.3
(±20 %)

24.6–43.5
(± 11%)

18.0–36.5
(± 11%)

6 (23.88–
71.65)/(1–7) (71.65)/(1–7) (52.54–

71.65)/(1–7)
11.61–20.11
(±20 %)

3.30–4.27
(±12 %)

4.85–6.29
(±15 %)

11.9–31.8
(±17 %)

33.4–36.8
(±9 %)

24.3–30.9
(±14 %)

9.0–22.3
(±20 %)

24.6–25.6
(±8 %)

18.0–22.2
(± 12%)

8 (33.43–
71.65)/(1–7) (71.65)/(1–5) (52.54–

71.65)/(1–7)
11.61–20.11
(±19 %)

3.60–4.27
(±12 %)

4.85–6.29
(±15 %)

11.9–25.8
(±17 %)

33.4–36.8
(±10 %)

24.3–30.9
(±14 %)

9.0–20.1
(±22 %)

24.6–25.6
(±8 %)

18.0–22.2
(± 12%)

10 (33.43–
71.65)/(1–7) (71.65)/(1) (71.65)/(1–7) 11.61–20.11

(±19 %)
4.27–4.27
(±14 %)

4.85–6.15
(±15 %)

11.9–25.8
(±17 %)

33.4–33.4
(±10 %)

24.3–25.8
(±13% )

9.0–20.1
(±22 %)

24.6–24.6
(±9 %)

18.0–18.8
(± 10%)

Table 6. Comparison of sensors to other 3D printed capacitive pressure/force sensors related to orthopedics.

Sensor Performance Evaluation Range Materials and Fabrication Methods

Source Sensitivity Hysteresis Error Linearity Error Tested
Frequencies Tested Pressures Electrode Dielectric Continuously

3D printed
Fully 3D
Printed

PLA-TPU-10
(this work)

11.61–20.11 · 10−4

V/(N/cmˆ2)
11.9–31.8% 9.0–22.3% 1–7 Hz 23.9–71.7 N/cm2 PLA; FDM Printed TPU; FDM Printed Yes Yes

PLA-TPU-30
(this work)

3.30–4.42 · 10−4

V/(N/cm2)
33.4–60.9% 24.6–43.5% 1–7 Hz 23.9–71.7 N/cm2 PLA; FDM Printed TPU; FDM Printed Yes Yes

Eel-TPU-30
(this work)

4.85–6.40 · 10−4

V/(N/cm2)
24.3–51.7% 18.0–36.5% 1–7 Hz 23.9–71.7 N/cm2 TPU; FDM Printed TPU; FDM Printed Yes Yes

[32] 1190 kPa−1

(11, 900 (N/cm2 )−1 )
9.8% - 0.5–1.167 Hz 41.5–872.4 kPa(

4.15–87.24 N/cm2) PLA; FDM Printed TPU; FDM Printed No Yes

[26] 0.702–7.57 kPa−1

(7.02–75.7 (N/cm2 )−1 )
- - - 0–35 kPa(

0–3.5 N/cm2) TPU; FDM Printed EcoFlex Rubber;
poured No No

[23] 0.0112–0.101 kPa−1

(0.112–1.01 (N/cm2 )−1 )
- - 0.5 Hz 0.3–44 kPa(

0.03–4.4 N/cm2) AgNW and filter
paper; poured and

heated

UV resin/TPU;
DLP/FDM

Printed
No No

[24] 0.08–0.5 kPa−1

(0.8–5 (N/cm2 )−1 )
- - - 0.001–0.5 kPa(

0.01–5 N/cm2) Silver; Ink Jet
Printed

9495MP 3M tape;
placed by hand No No

[33] 854–1065 kPa−1

(8540–10, 650 (N/cm2 )−1 )
9.57% - - 0–300 kPa(

0–30 N/cm2) TPU; FDM Printed EcoFlex Rubber;
poured No No

AgNW = silver nanowires.
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5. Conclusions

This study investigates the development and dynamic characterization of fully and
continuously 3D printed capacitive sensors for use in customizable footbed pressure-
sensing insoles. Three flexible 3D printed capacitive pressure sensor designs are presented
and tested in this work, which include a polylactic acid (PLA)-conductive-plate/thermoplastic
polyurethane (TPU)-dielectric sensor design with 10% dielectric infill (PLA-TPU-10), a
PLA-conductive-plate/TPU-dielectric sensor design with 30% dielectric infill (PLA-TPU-
30), and a TPU-conductive-plate/TPU-dielectric sensor design with 30% dielectric infill
(Eel-TPU-30). The PLA and Eel filaments are made of conductive material and are used
to print the sensor electrodes, while nonconductive TPU filament is used as the dielectric
infill. Five sensors are printed and evaluated for each of the three sensor types. The cost
of each sensor is estimated to be approximately 0.36 USD/sensor for PLA-TPU sensors
and 0.48 USD/sensor for Eel-TPU sensors, demonstrating the low cost of the sensors. The
sensing system consists of the 3D printed sensors paired with a commercial capacitance-to-
voltage converter board. The sensors are evaluated through a series of cyclic compression
tests of varying frequencies and pressures. The pressure cycles have a minimum preload
pressure of 14.33 N/cm2 and the maximum pressure value is varied between 23.88, 33.43,
52.54, and 71.65 N/cm2, thus encompassing roughly twice the maximum normal pressure
experienced during gait. The frequencies tested are 1, 3, 5, and 7 Hz, which are in the
typical range for gait analysis. Results show that average sensitivity varies slightly over
the tested pressure and frequency range. The range of average sensitivities for the PLA-
TPU-10, PLA-TPU-30, and Eel-TPU-30 sensors over the tested pressures and frequencies
are 11.61–20.11 · 10−4, 3.30–4.42 · 10−4, and 4.85–6.40 · 10−4 V/

(
N/cm2), respectively. The

PLA-TPU-10 sensors demonstrated the highest average sensitivities, which are 2–4 times
greater than the average sensitivities of the PLA-TPU-30, and Eel-TPU-30 sensors, but the
PLA-TPU-10 sensitivities also have the greatest variability. Additionally, all sensor types
exhibit significant hysteresis and nonlinearity. The range of average hysteresis values for
PLA-TPU-10, PLA-TPU-30, and Eel-TPU-30 sensors are 11.9–31.8, 33.4–60.9, and 24.3–51.7%,
respectively, and the range of average linearity error for PLA-TPU-10, PLA-TPU-30, and
Eel-TPU-30 sensors are 9.0–22.3, 24.6–43.5, and 18.0–36.5%, respectively. Both hysteresis
and linearity error for all sensor types tend to decrease with an increase in pressure and
have little dependence on frequency. The PLA-TPU-10 sensors showed significantly lower
average hysteresis and linearity error when compared to PLA-TPU-30 and Eel-TPU-30
sensor types. The significant hysteresis and linearity error are due to the viscoelastic
properties of TPU, and some additional nonlinear effects may be due to buckling of the
infill walls of the dielectric. It should be noted that the signal-to-noise ratio (SNR) is low
for the smallest pressure levels tested, thus there is more uncertainty in the quantification
of hysteresis and linearity error at these pressures, which in turn increases the maximum
hysteresis and linearity errors reported above. While the hysteresis and linearity error are
high across the full range of tested frequencies and pressures, these errors reduce over
narrower input ranges, and specific performance limits on hysteresis or linearity error
would be application-driven. Overall, the PLA-TPU-10 sensor showed the most promising
results for application in customizable pressure-sensing insoles due to the highest average
sensitivity value together with the lowest average hysteresis and linearity errors.

This work has several limitations, and there are opportunities for future sensor de-
velopment work. Efforts may be made to increase the sensitivity of the sensors; however,
nonlinearities and hysteresis will still exist due to the inherent viscoelastic nature of the
flexible TPU dielectric. The PLA-TPU-10 sensors, despite performing the best, are not
sensitive enough to measure down to 1.5 N/cm2, which is typical for commercial pressure-
sensing insoles. Therefore, the current sensors are not yet sensitive enough to be used
in footbed pressure-sensing applications. Due to the significant hysteresis and nonlinear-
ity, each sensor would either require a lookup table or a nonlinear and hysteretic model
to be useful for footbed pressure-sensing applications. The variation in sensitivity also
demonstrates that even under the controlled 3D printing environment presented in this
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work, the sensor quality and properties still varied significantly. Therefore, in the current
work, each sensor would need to be characterized individually, which is not practical for
footbed pressure-sensing applications where sensors are printed within an insole. Future
work will focus on improving methods for printing flexible filament consistently, such as
modifying the direct-drive extruder component of the LulzBot TAZ 6 printer so that the
filament would be extruded at a more consistent rate. Improving print consistency would
reduce variability in the sensors and the need for full characterization of each sensor inside
an insole. Additionally, some of the variability in sensor behavior comes from poor print
quality at low infill densities. Future experiments will investigate if a more flexible TPU
filament could be used to print more sensitive sensors with a higher infill percentage having
less variability. Other work will include designing and testing a conductive PLA filament
with a higher conductivity, which could increase the output voltage range of the flexible
sensors in this work. Finally, there is a general lack of documentation for the SingleTact
capacitance-to-voltage converter board concerning (a) its method of measuring capacitance,
(b) its self-calibration process, including how it sets its sensitivity, (c) any potential contri-
butions to nonlinearity and hysteresis, and (d) any susceptibility to noise. Any of these
unknowns could negatively influence the sensor data collected and analyzed in this study.
Future work will focus on the development of a custom-designed and well-characterized
circuit to convert between capacitance and voltage.
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