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Abstract: The proliferation of physiological sensors opens new opportunities to explore interactions,
conduct experiments and evaluate the user experience with continuous monitoring of bodily func-
tions. Commercial devices, however, can be costly or limit access to raw waveform data, while
low-cost sensors are efforts-intensive to setup. To address these challenges, we introduce PhysioKit,
an open-source, low-cost physiological computing toolkit. PhysioKit provides a one-stop pipeline
consisting of (i) a sensing and data acquisition layer that can be configured in a modular manner per
research needs, and (ii) a software application layer that enables data acquisition, real-time visualiza-
tion and machine learning (ML)-enabled signal quality assessment. This also supports basic visual
biofeedback configurations and synchronized acquisition for co-located or remote multi-user settings.
In a validation study with 16 participants, PhysioKit shows strong agreement with research-grade
sensors on measuring heart rate and heart rate variability metrics data. Furthermore, we report
usability survey results from 10 small-project teams (44 individual members in total) who used
PhysioKit for 4–6 weeks, providing insights into its use cases and research benefits. Lastly, we discuss
the extensibility and potential impact of the toolkit on the research community.

Keywords: physiological computing; data acquisition toolkit; multi-user HCI studies; biofeedback;
signal quality assessment

1. Introduction

Physiological signals have been actively explored in a wide range of research fields,
given their usefulness in tracking health, as well as physical and psychological states.
Particularly in human–computer interaction (HCI), much attention has recently been paid
to physiological computing research, where it focuses on how to evaluate user responses to
interventions, enhance user interactions with technology, or investigate how to support
interpersonal interactions [1]. Physiological computing involves detecting, acquiring, and
processing various physiological signals, such as cardiac rhythm or heart rate (HR), skin
conductance, blood-oxygen saturation, body temperature, blood glucose levels, muscle
activity, and neural activity. Sensors commonly used for acquisition of physiological signals
include: electrocardiogram (ECG), photoplethysmography (PPG), respiratory (RSP), elec-
trodermal activity (EDA), electromyography (EMG) and electroencephalogram (EEG) [2].
The functions of physiological computing systems include acquisition, interpretation, and
facilitation of different schemes of interactions, as well as personalized interventions [3–5].

While the proliferation of low-cost consumer-grade physiological sensing solutions
and fitness trackers (e.g., Apple Watch, https://www.apple.com/uk/watch/, accessed
on 28 September 2023, Fitbit, https://www.fitbit.com/, accessed on 28 September 2023,
Garmin, https://www.garmin.com/, accessed on 28 September 2023) has boosted the
interest in physiological sensing forward, there is a need to pay attention to the challenges
of using such devices, including limitations in robustness associated with sensor misplace-
ment, body movements and ambient noise, reduced flexibility in adapting an acquisition
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interface to the study protocol, and relatively high costs of hardware or software [6–9]. The
majority of these consumer-grade sensors provide limited access to continuous physiologi-
cal signals and metrics (e.g., inter-beat interval time-series), which can yield considerable
insight into our bodily functions and psychological states [8,10–12]. Data acquired from
these devices is processed using the manufacturer’s proprietary algorithms and exported
directly to remote company servers for commercial purposes [13,14], raising ethical con-
cerns about data privacy. Furthermore, the rapid release cycles of new commercial wearable
sensor models pose additional research challenges. While the general public may assume
that newer models can perform better, it is difficult to conduct and publish validation
studies on the same timescale of of new technology releases.

Research-grade physiological sensing devices (e.g., Procomp Infiniti System (https://
thoughttechnology.com/procomp-infiniti-system-w-biograph-infiniti-software-t7500m/
(accessed on 28 September 2023)) from Thought Technology, BIOPAC (https://www.biopac.
com/(accessed on 28 September 2023)), Empatica (https://www.empatica.com/(accessed
on 28 September 2023)), Biofourmis (https://biofourmis.com/(accessed on 28 September
2023)) are often expensive, leading to wide adoption of affordable physiological sens-
ing solutions (e.g., BITalino (https://www.pluxbiosignals.com/collections/bitalino (ac-
cessed on 28 September 2023)), OpenBCI (https://openbci.com/(accessed on 28 Septem-
ber 2023)) by the research community. Owing to the access to raw signal data, the re-
search community has demonstrated several application use-cases of research-grade de-
vices and toolkits, including OpenBCI, https://openbci.com/citations (accessed on 28
September 2023), Empatica E4, https://www.empatica.com/research/publications/ (ac-
cessed on 28 September 2023), BITalino, https://scholar.google.com/scholar?as_sdt=0,
5&q=BITalino&hl=en&as_ylo=2000&as_yhi=2021 (accessed on 28 September 2023) and
Movisens GmbH, https://www.movisens.com/en/resources/publications/ (accessed on
28 September 2023), and has contributed towards their validation. Researchers have also ex-
plored open-source prototyping platforms (e.g., Arduino with physiological sensing nodes
(https://www.arduino.cc/ (accessed on 28 September 2023))) in different contexts [15–18].
Physiological computing with such platforms often requires a range of technical and
computational skills and considerable setup time. Additionally, though few open-source
platforms and affordable toolkits are sufficiently validated across the entire healthy-range
of physiological variations [19], the usability study of the interface for physiological signal
acquisition is often neglected.

Signal quality is another concerning factor both for consumer-grade as well as research-
grade devices, which is affected by environmental and experimental factors. Motion artifact
noise, as well as participant non-compliance from discomfort while wearing such sensors
in different scenarios or physical impairments, may result in a reduced quality of acquired
signals [20,21]. While these challenges cannot be fully addressed, one of the potential ways
to circumvent these issues can be to enable flexibility in sensor placement (e.g., PPG sensors
can be placed on either ear-lobes or fingers). This flexibility also enhances the accessibility
of the sensors to suit users with different physical sensitivities or requirements. The comple-
mentary measure can be a provision for real-time assessment of signal quality to flag noisy
acquisition fragments of signals [22], which would enable researchers to take appropriate
actions during data acquisition or processing. Physiological sensing toolkits often neglect
such a feature. Lastly, due to social distancing needs in recent years, studies have been
conducted in remote settings [23]. While several existing toolkits can support synchro-
nized acquisition from multiple co-located users, provision for synchronized acquisition of
physiological signals for remote multi-user scenarios is yet not addressed.

It is therefore crucial to design a toolkit that considers the above mentioned design
objectives and existing research gaps. These include access to raw data, provision for syn-
chronized data acquisition in remotely located multi-user scenarios, support for real-time
analysis of signal for physiological metrics, as well as signal quality assessment, provision
for configuring experimental protocols, and a provision to transmit real-time analysis data
for adaptive interactions as well as customized interventions. To our best knowledge, there
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is no open-source platform for physiological computing, which encompasses all the design
objectives on a single platform. To address this, we propose PhysioKit, a new open-source
physiological computing toolkit for HCI researchers, hobbyists and practitioners. While be-
ing cost-effective, PhysioKit can facilitate flexible experiment configuration, data collection,
and support real-time analyses of physiological data. Our contribution is two-fold:

1. A novel open-source physiological computing toolkit (GitHub repo link, https://
github.com/PhysiologicAILab/PhysioKit, accessed on 28 September 2023) that of-
fers a one-stop physiological computing pipeline spanning from data collection and
processing to a wide range of analysis functions, including a new machine learning
module for the physiological signal quality assessment;

2. A report on validation study results, as well as user reports on the PhysioKit’s usability
and examples of use cases demonstrating its applicability in diverse applications.

We begin this paper with an overview of related work and identify key challenges. We
then introduce PhysioKit, describing its sensing and software application layers, and how
they are designed to enable high-quality data acquisition, while considering the flexibility
in selecting physiological sensors. We present results from a validation study, an overview
of applications in which PhysioKit is used and outcomes from a usability survey. Finally,
we conclude with discussions on the implications and benefits of PhysioKit for different
contexts and user communities.

2. Related Work

In this section, we first discuss prior work on applications of physiological computing
in HCI research and then review existing physiological computing devices and toolkits
related to the contribution we make in this work.

2.1. Physiological Computing and HCI Applications

The applications of physiological computing in HCI contexts can be broadly catego-
rized into two themes, based on the role physiological computing plays in the interaction:
interventional and passive. This categorization serves as one of the key design considera-
tions for the development of physiological computing toolkits. For interventional studies,
real-time computing of physiological metrics is required, which can further be mapped to
biofeedback design or to adapt the interaction with the self, with others, or with technology.
On the other hand, for passive physiological computing studies, the provision of data ac-
quisition meets the research need, as these studies do not require adapting any interaction
aspects based on real-time computing of physiological metrics from the acquired signals.

Interventional studies have examined how real-time physiological computing can
be used in several contexts, including health monitoring (e.g., stress [24], diabetes [25]),
training healthful practices (e.g., respiration [26]), educating children in anatomy [27],
communicating affective states between people during chats [28] or VR gameplay [29],
sensing passenger comfort in smart cars [30,31], and personalizing content through adaptive
narratives (e.g., interactive storytelling [32], adjustable cultural heritage experiences [33],
synchronized content between multiple users [34]). Illustrative studies with passive use of
physiological computing include assessing user’s mental states (e.g., stress, workload and
attention) [5,10,35,36], exploring user experiences [37–40], or objective comparisons with
subjective reports [41]. The illustrated HCI studies are not exhaustive and are mentioned to
emphasize the two distinct ways in which researchers use physiological computing. While
most commercial research-grade and low-cost devices support data acquisition for passive
studies, they are often not designed considering different needs of interventional studies.

2.2. Physiological Computing Sensors, Devices and Toolkits

PPG, EDA and RSP are among the most prominent physiological sensing channels
used in HCI research [1,42,43]. PPG and EDA signals, for instance, have been explored to
capture physiological and emotional states [44], engagement levels [45,46], for communicat-
ing emotional states [47,48], as well for evoking empathy through shared biofeedback [49].

https://github.com/PhysiologicAILab/PhysioKit
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Respiration cues have been used to help people understand and manage their stress [50,51],
or to feel connected to others through sharing breathing signals [52]. To acquire these
signals, researchers generally consider consumer-grade devices acceptable to use and
prioritize the use of devices based on design and familiarity with the brand, rather than
reliability, as well as comfort or ease of use [53]. Here, we present a brief overview of the
data acquisition devices as well as data analysis toolkits.

2.2.1. Sensing and Data Acquisition Devices
Support for Passive and Interventional HCI Studies

For passive HCI studies (Section 2.1), researchers can choose from broader spec-
trum of devices ranging from expensive research-grade physiological sensing devices,
including Procomp Infiniti, https://thoughttechnology.com/procomp-infiniti-system-w-
biograph-infiniti-software-t7500m/ (accessed on 28 September 2023), BIOPAC, https://
www.biopac.com/ (accessed on 28 September 2023), Shimmer, https://shimmersensing.
com/product/consensys-bundle-development-kit/ (accessed on 28 September 2023), Em-
patica, https://www.empatica.com/ (accessed on 28 September 2023), and Biofourmis,
https://biofourmis.com/ (accessed on 28 September 2023), to more affordable devices
including BITalino, https://www.pluxbiosignals.com/collections/bitalino (accessed on
28 September 2023), OpenBCI, https://openbci.com/ (accessed on 28 September 2023)
and Movisens GmbH, https://www.movisens.com/en/resources/publications/ (accessed
on 28 September 2023), among several others. However, it can be observed that for in-
terventional studies (Section 2.1), researchers often combine open-source or affordable
sensing hardware with their custom developed software [52,54]. While affordable sensing
toolkits offer greater flexibility for using their sensing hardware, they insufficiently support
configuration for experiments, as well as several types of biofeedback modalities with
real-time signal analysis. This requires researchers to spend significant efforts towards
customizing the acquisition pipeline with real-time analysis and bio-feedback presentation.

Real-time Signal Quality Assessment

The signal quality of contact-based physiological sensors get affected in presence of
relative motion between sensor and skin surface. PPG sensors, for instance, are susceptible
to motion that results in interference from natural and artificial light [55], as well as
to varying pressure at the sensor site caused by the activities of daily living affecting
the blood flow [56]. Factors leading to artifacts cannot be controlled, though it is often
possible to perform signal quality assessment and eliminate the noisy segments from the
analysis. While signal quality assessment for physiological signals is an active research
field [22,57–61], existing physiological sensing solutions do not offer provision of assessing
signal quality, which can immensely increase validity of the analysis. Widely used methods
for signal quality assessment include signal-to-noise ratio (SNR), template matching, and
relative power signal quality index (pSQI) [61], along with recent machine learning-based
approaches based on SVM classifier [60], LSTM [59], and 1D-CNN [57]. The state-of-the-art
(SOTA) performance has been demonstrated by 1D-CNN classifier approach [57] achieving
0.978 accuracy on the MIMIC III PPG waveform database. It is noteworthy that stringent
signal quality assessment may lower the signal retention, thereby decreasing the usable
segments of signal for deriving physiological metrics [62] and, therefore, it is crucial to
develop an optimal signal quality measure with an objective to minimize for false positives
and false negatives.

Support for Remote Multi-User Studies

Furthermore, existing toolkits offer limited support for multi-user studies. For scenar-
ios in which multi-user studies are conducted with remotely located users, researchers have
either used time-stamping information [63] or have deployed manual approaches [64] for
synchronizing the time-series data. These approaches of synchronizing the data acquisition
are not suitable for interventional studies and may result in a varied amount of time-lag
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between the physiological signals of different users. One very recent work proposed an
open-source toolkit [19] for synchronized acquisition of multiple physiological signals
using their sensor fusion unit (SFU). However, it remains unclear if signal acquisition can
be synchronized for multiple SFUs that are located at remote locations.

Validation Studies

Research-grade devices undergo rigorous performance tests, as they are required to
adhere to the regulatory standards. In contrast, owing to their intended use, consumer-
grade devices are not required to comply with medical regulatory standards. However,
researchers have contributed to the validation of consumer-grade as well as open-source
devices. We present a non-exhaustive scoping review with few of the these devices, along
with the comparative analysis based on the published validation studies in Appendix A.
For effectively validating the sensing devices, it is essential to induce sufficient variations
in psychophysiological states of participants, such as the deployment of Stroop test [65] for
validating open-source toolkit [19] as well the deployment of light-to-vigorous physical
activity for validating wrist-worn wearables [66,67].

2.2.2. Data Analysis Toolkits

Data analysis software are either bundled with the research-grade physiological sens-
ing solutions, or these are available as add-on packages which are required to purchase
separately for analyzing the physiological data [68–71]. Except for the open-source toolkits
such as [19,70], commercial data analysis toolkits implement proprietary algorithms and
offer limited flexibility in choosing the algorithms for computing metrics from physiological
signals. In spite of advancing research towards analysis of physiological signals, the limited
flexibility restricts the use of the state-of-the-art algorithms for computing physiological
metrics. In past few years, open-source toolkits have emerged enabling researchers to
process raw sensor data in more customized manner. A few notable examples among these
toolkits are NeuroKit2 [72], HeartPy [73], FLIRT [74], and PyPhysio [75]. HeartPy [73]
focuses primarily on PPG signals, while FLIRT [74], NeuroKit2 [72] and PyPhysio [75] sup-
port analyzing multiple physiological signals. Specifically, FLIRT [74] supports analyzing
ECG, EDA and accelerometer signals, PyPhysio [75] adds support for PPG, EEG, EMG and
RSP, while NeuroKit2 [72] further adds support for analyzing EOG, with each latter toolkit
supporting the analysis of signals supported by former toolkits. With growing adoption of
the Python programming language, all above-mentioned data analysis toolkits are avail-
able as Python libraries. Owing to the low computational complexity of the algorithms
implemented by the toolkits, and the increasing availability of computational resources
personal computers, these toolkits can be leveraged both for post-processing of acquired
signals as well as for real-time computing of physiological metrics. Thus, an integrated
solution that can be compatible with existing data analysis packages can immensely benefit
interventional studies, providing simultaneous data acquisition and real-time analysis,
which we address in this work.

3. The Proposed Physiological Computing Toolkit: PhysioKit

Figure 1 details the system architecture of PhysioKit. The toolkit consists of two layers:
(i) the sensing and signal acquisition layer, and (ii) the software application layer. The
former layer enables a modular setup for a wider range of physiological sensors which
can be connected with a widely available micro-controller, thereby offering flexibility
in configuring physiological sensors depending on the research needs. The software
application layer includes a data collection module, a real-time streaming module, signal
quality assessment module and a data analysis module. Our software application is built
with Python, which can support different operating systems (e.g., Windows, Linux).
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Figure 1. PhysioKit is a novel physiological computing toolkit which is open-source and cost-effective.
Its sensing and signal acquisition layer provides flexibility in using low-cost physiological sensors,
and the software application layer enables data acquisition, visualization, and real-time ML-based
signal quality assessment, while supporting passive as well as interventional studies for single and
multi-user settings.

3.1. Sensing and Signal Acquisition Layer

This layer is designed to facilitate the flexibility of sensor placement, and provide
options to configure the toolkit for various single and multi-user study settings. The sens-
ing and signal acquisition layer of PhysioKit supports multiple inexpensive physiological
sensors (e.g., PPG channels) that are compatible with a micro-controller (i.e., Arduino
board as a default). These sensors can be connected to analog inputs of the board (e.g.,
A0–A3 pins in Arduino). Users can easily configure acquisition parameters (e.g., sam-
pling rate and analog-to-digital conversion resolution). The layer transmits the collected
sensor data to a connected computing device (e.g., laptop) via wired (USB) or wireless
(Bluetooth) communication.

Table 1 lists some of the key parameters of the sensing and signal acquisition layer of
PhysioKit, as well as it also mentions quick installation step and links to package contents.
The Arduino board governs the hardware specifications, which can be selected according
to research needs. For instance, some of the most cost-effective microcontroller boards (e.g.,
Arduino Uno, Arduino Nano) can support up to six physiological sensors and a sampling
rate of up to 512 samples per second, whereas Arduino Due and Arduino Mega can support
12 and 16 channels, respectively.

To support flexible placement of physiological sensors, we designed an example
template of a 3D-printable CAD model for a mountable PPG sensor wristband, as shown
in Figure 2. This lets users acquire PPG signals from different body parts simultaneously,
which can possibly help handle motion artifacts. The template model is available in the
PhysioKit repository.

Figure 2. Flexible PPG setups available in PhysioKit to enhance accessibility.
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Table 1. PhysioKit: specifications for sensing and signal acquisition layer along with package description.

Sensing and Signal Acquisition Layer Specifications

Parameter Specifications

Sampling rate 10–10,000 samples per second

ADC 10/12 bit

Vref 3.3V/ 5V

Baudrate 9600–2,000,000

Data transmission mode USB/ Bluetooth

No. of channels 1—Max supported by specific Arduino board

Installation and package contents

Installation of the interface pip install PhysioKit2

GitHub repository Repo link https://github.com/PhysiologicAILab/PhysioKit (accessed on 28 September 2023)

Configuration files Download path https://github.com/PhysiologicAILab/PhysioKit/tree/main/configs
(accessed on 28 September 2023)

Codes to program Arduino Download path https://github.com/PhysiologicAILab/PhysioKit/tree/main/arduino
(accessed on 28 September 2023)

3D-printable model for a wristband case Download path https://github.com/PhysiologicAILab/PhysioKit/tree/main/CAD_Models
(accessed on 28 September 2023)

In this work, we focused on demonstrating the functionality and validation of the
toolkit using two PPG sensors (https://pulsesensor.com/ (accessed on 28 September
2023)) connected to Arduino Due, which is presented in Section 4.1. There, we focus on
validating HR and HRV measurements from PPG signal, as it is the most widely used
physiological sensing channel. However, the interface and toolkit can be easily extended
to other sensing channels, including RSP, EDA, ECG, EMG and EEG. To demonstrate
the readiness of extending other sensors, we also integrated a RSP sensor (https://www.
pluxbiosignals.com/products/respiration-pzt(accessed on 28 September 2023)) and an
EDA sensor (https://seeeddoc.github.io/Grove-GSR_Sensor/(accessed on 28 September
2023)). Though the measurements of these alternative sensing channels were not validated
in the current work, we discuss future plans to implement these in Figure 1.

3.2. Software Application Layer

The software application layer includes the user interface (UI), as depicted in Figure 3A,
a real-time streaming and signal quality assessment module, as well as a data analysis
module. The challenges concerning access to raw, unfiltered physiological signals and
flexible configurations for passive and interventional studies involving both co-located and
remote multi-user settings were carefully considered when developing the UI. The resulting
interface includes features to facilitate data acquisition, signal visualization, and signal
quality assessment, as well as bio-feedback visualization. The data analysis module builds
upon existing data analysis toolkits [72,73] to further streamline analysis of physiological
signals, as per the experimental protocol. The software module is implemented using the
Python programming language, as it is a multi-platform language.

3.2.1. User Interface

To optimize acquisition, plotting and user controls, the PhysioKit UI is implemented
with a multi-threaded design. Figure 3A shows a PhysioKit interface, which was designed
using Qt design tools (https://www.qt.io/product/ui-design-tools (accessed on 28 Septem-
ber 2023)), with controls to configure an experimental study alongside display of real-time
signal visualization. Acquired raw data are stored locally and appropriate signal condi-
tioning is applied for plotting each physiological signal, while the quality of the acquired
signals is assessed in real-time using a novel 1D-CNN-based signal quality assessment
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module (Section 3.2.2). In addition, the UI enables options for different visual presentations
of biofeedback (Section 3.2.4).

Figure 3. (A) User-interface for Physiological Computing Toolkit; (B) configuration file for specifying
experiment protocol; and (C) configuration file for controlling data acquisition.

3.2.2. Signal Quality Assessment Module for PPG

The signal quality assessment (SQA-Phys) module of PhysioKit extends 1D-CNN
approach [57] that demonstrates the use of the 1D-CNN network for classifying the signal
quality of PPG waveforms as “Good” and “Bad”. Contrary to classification, SQA-Phys
introduces a novel task in which the ML model is trained to infer signal quality metrics
for the entire length of the PPG signal segment. For this, we implement encoder–decoder
architecture with 1D-CNN layers that generate high temporal resolution signal quality
vector. Figure 4 compares the commonly used machine learning architecture with the
proposed architecture, and highlights how the inferred outcome of SQA-Phys differs from
the classification task as implemented by existing methods.

Figure 4. SQA-Phys: 1D-CNN-based encoder–decoder architecture for high temporal precision signal
quality assessment.

To train the model, we used in-house collected data acquired using the Infiniti Pro-
comp and Empatica E4 wristband PPG sensors. This dataset, which includes 170 recordings
of PPG signals (5 min) from 17 participants, was manually labeled for the signal quality.
Signal quality labels for training were marked for 0.5 s of segment, without overlap. The
temporal resolution of SQA-Phys inference was maintained as the same as the training
labels (i.e., 0.5 s), as it is an optimal balance between dense temporal resolution (i.e., per
sample inference) and classification. The optimal temporal resolution of 0.5 s can signif-
icantly reduce the computational complexity in comparison to the per sample semantic
segmentation approach as proposed in a recent work [76].

We used a signal segment of 8 s as an input to the model and trained it with the batch
size of 256 along with an Adam optimizer. The training and validation split was made
based on participant IDs, ensuring that the signals of same individual were not represented
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in both the training and validation sets. Our validation on a novel signal quality assessment
task shows 96% classification accuracy with an inference vector having 0.5 s temporal
resolution, whereas the SOTA approach yielded 83% classification accuracy. The SQA-Phys
is integrated with the PhysioKit to present signal quality assessment with optimal temporal
resolution. The same is also stored alongside the data to provide signal quality annotation,
thereby indicating the clean and noisy segments of the signals to researchers. Though
SQA-Phys is currently implemented for PPG signals, it can be easily extended to other
physiological signals.

3.2.3. Configuring the UI for Experimental Studies

Using experiment and software configuration files (Figure 3B,C), the UI adapts to
the sensor configuration as well as researcher’s data collection protocol. The experiment
configuration file (Figure 3B) enables users to set up their study protocol by defining the
experimental conditions, the acquisition duration for each condition, the required physio-
logical sensors, and the directory path where the acquired data will be saved locally. In
contrast to storing data on cloud servers, as most commercial devices do, storing data lo-
cally allows researchers to have complete control over the data. In addition, the experiment
configuration file allows the number of channels to be selected for real-time plotting of
acquired physiological signals. While the maximum number of channels is limited by the
number of analog channels on the microcontroller board, a maximum of four channels
can be selected for real-time plotting. The acquisition duration for each experimental
condition is defined by “max_time_seconds” (see Figure 3B) when “timed_acquisition” is
set to “true”. However, when the “timed_acquisition” field is set to “false”, the UI ignores
“max_time_seconds”, allowing data acquisition to continue until the user manually stops it.

The software configuration file (Figure 3C) allows users to configure acquisition param-
eters, such as sampling rate and baudrate for serial data transfer from the micro-controller
to the computer. In addition, users can acquire physiological signals simultaneously from
multiple users, with each user connected through respective sensing and signal acquisition
unit. Here, different computers running the UI would communicate using TCP/IP messag-
ing in order to synchronize the acquisition from the different sensing and signal acquisition
unit. This setup requires each computer to be accessible with an IP address, either on a
local intranet or remotely using a virtual private network (VPN).

To enable multi-user synchronization, one computer is configured as a TCP server
while the others are TCP clients. Server and client roles are specified using the software
configuration file. While the server is configured to accept requests from any IP address,
the configuration file at the client end is required to specify the server IP address. In these
settings, the live acquisition is initiated on all nodes. The client UIs remain idle until the
server triggers the synchronized recording by broadcasting a TCP message. The TCP/IP-
based messaging can be further extended to the stimulus presentation software (not part
of PhysioKit) for synchronized delivery of the study intervention. Figure 5 provides an
overview of the multi-user setup.

Lastly, HCI studies oftentimes require capturing asynchronous events during experi-
ments for qualitative and quantitative analyses. To address this need, we designed a simple
way for users to mark asynchronous events directly in the PhysioKit UI by activating and
deactivating the marking function. This function is associated with an event code to enable
marking for different types of events during data acquisition. The acquired data, along
with the signal quality assessment and event markings, are stored in a comma-separated
value format (CSV) for easy access and further analysis.

3.2.4. Support for Interventional Studies and Biofeedback

PhysioKit supports real-time computing of physiological metrics, which allows adapt-
ing interaction for interventional studies. One of the most widely researched interventional
study types involves using biofeedback [4,77,78]. Using the experimental configuration file,
researchers can specify a physiological metrics to be used for dynamic biofeedback visual-
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ization. Physiological metrics are computed in real-time with a provision for researchers
to set the window length and step interval (see Figure 3B). PhysioKit currently provides
options for basic biofeedback visualization using geometric shapes that vary in size and
color. However, the mapping implementation can be easily adjusted to include different
biofeedback modalities, such as auditory or haptic, according to the study requirements.

Figure 5. Multi-user setup of PhysioKit for synchronized data acquisition and stimulus presentation.

3.2.5. Data Analysis Helper

The software layer also facilitates visualization and analysis of the data acquired using
the PhysioKit by integrating NeuroKit2 [72] library. Jupyter notebooks are provided with
the repository to illustrate loading, pre-processing and analysis of the acquired PPG, EDA
and RSP signals. PhysioKit further supports batch processing of entire dataset acquired from
multiple participants for a specific study. To offer flexibility for this analysis, a separate
configuration file is provided to specify the key analysis parameters; these include the
sampling rate, window length (seconds), overlap (seconds) and a list of physiological met-
rics to compute for PPG, EDA and RSP signals. Batch processing generates a spreadsheet
as well as a NumPy [79] dictionary consisting of computed physiological metrics for all
participants, and as per the specified analysis parameters. While both the spreadsheet
and the NumPy dictionary comprise the identical analysis data, the former provides an
easily accessible format for researchers with less familiarity with programming, and the
latter immensely benefits researchers who would like to perform customized analysis
in Python environment. The data are organized with participant ID and experimental
conditions, as well as participant groups (if specified). The computed metrics are validated
as per the normal healthy range for respective metrics. However, this can be adjusted by
researchers using the configuration file. Lastly, if the signals were acquired from multiple
sensors (e.g., PPG signal from finger and ear) to mitigate noise artifacts, the analysis can
be configured to inspect and compare the signal quality for each window segment and
ultimately select the one with the highest signal quality.

4. Evaluation
4.1. Study 1: Performance Evaluation

The first study focuses on validating the performance of PhysioKit in extracting heart
rate and heart rate variability (HRV) data from two PPGs on different body parts (finger and
ear), given our primary focus on the most widely available channel. Our data collection pro-
tocol was designed to ensure high variances in physiological patterns for fairer validation
(e.g., a narrowed range of HRV values in a dataset tends to lead to high accuracy). We used
the Procomp Infiniti System (https://thoughttechnology.com/procomp-infiniti-system-w-
biograph-infiniti-software-t7500m/ (accessed on 28 September 2023)) as a reference system
(at 256 Hz), as it has been widely used by researchers in both clinical and non-clinical
studies. In order to assess level of movements that can affect the signal quality, we also
video-recorded each session (at 30 fps).

https://thoughttechnology.com/procomp-infiniti-system-w-biograph-infiniti-software-t7500m/
https://thoughttechnology.com/procomp-infiniti-system-w-biograph-infiniti-software-t7500m/
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4.1.1. Data Collection Protocol

The study followed a methodological assessment protocol with the objective of induc-
ing variations in physiological states, as well as moderating movement. Each participant
experienced four conditions, including (a) a controlled, slow breathing task, (b) an easy
math task, (c) a difficult math task, and (d) a guided head movement task, as depicted in
Figure 6. While a higher agreement between the test device and the reference device could
potentially be achieved in the absence of these variances, it could lead to misleading results.

Figure 6. Data collection protocol for technical evaluation of PhysioKit. Four conditions that comprise
the protocol are (A) baseline, (B) easy math task, (C) difficult math task, and (D) guided head
movement task.

Cognitively challenging math tasks with varying degrees of difficulty levels were
chosen, as these have been reported to alter the physiological responses [80,81]. Further-
more, as wearable sensors are less reliable under significant motion conditions [82], we
added an experimental condition that involved guided head movement. The PPG sensor
on the ear remained relatively stable under all conditions, except during head movement,
which provided us with the opportunity to investigate the impact of movement on signal
quality at different sensor sites under varying motion conditions. Each condition lasted for
3 min, with 1 min of rest after each condition. To randomize the sequence of conditions, we
inter-changed “A” with “D” and “B” with “C”. The study protocol was approved by the
ethics committee of University College London Interaction Centre.

4.1.2. Participants and Study Preparation

Three physiological signals (PPG, EDA, and RSP) were collected from 16 participants
recruited through an online recruitment platform for research. All participants reported
having no known health conditions, provided informed consent ahead of the study, and
were compensated for their time following the study. After being welcomed and briefed,
participants were asked to remove any bulky clothing (e.g., winter coats, jackets) and seated
comfortably in front of a 65 by 37 inch screen, where they were fitted with both Infiniti and
PhysioKit sensors. Respiration belts from both systems were additionally worn just below
the diaphragm, one above the other without overlapping. One PhysioKit PPG sensor was
attached to participants’ left ear with a metal clip, and the second was strapped around the
participant’s middle finger of their non-dominant hand with a velcro strap along with the
Infiniti PPG. Extra EDA sensors from both PhysioKit and Infiniti systems were placed on
the index and ring fingers of the same hand without overlapping. Of the 16 participants,
one was excluded from the analysis due to the incorrect fit of a PPG sensor.

4.1.3. Data Analysis

From 15 participants and four different experimental sessions, 60 pairs of PPG signals
from each system (PhysioKit and Infiniti) were prepared to evaluate the system performance
in extracting heart rate and heart rate variability data. Data analysis was performed using
the data analysis module of PhysioKit, as described in Section 3.2.5. Pre-processing steps and
signal quality analysis were uniformly executed for PPG signals acquired from PhysioKit
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and the reference device. A band-pass filter (0.7–4.0 Hz) of the third order was applied
to PPG signals which were then processed to derive HR and HRV metrics. We applied
windowing with a window size of 30 s [83] and a step interval of 10 s to calculate HR. As
the HRV extracted from the PPG signal is referred to as pulse-rate variability (PRV) [10],
in the following text, we mention it as PRV. For extracting PRV metrics, the window size
was set to 120 s [84], with a step-interval of 10 s. In this work, our goal was to validate PRV
metrics with the reference device, rather than validate PRV with HRV metrics, which are
typically derived from the ECG signal. Among different PRV metrics, we selected pNN50,
which provides a proportion of the successive heartbeat intervals exceeding 50 ms.

For fair evaluation, we used existing relative power signal quality index (pSQI) as
described in [61]. pSQI was computed for each windowed segment from raw signals.
Evaluation was conducted on PPG signal segments not affected by artifacts. For this,
a threshold of 40% pSQI was applied to the PPG signals acquired using the reference
device. For the segments of PPG signals of the reference device with less than 40% pSQI,
corresponding segments from the PhysioKit were also discarded, with the assumption that
the PPG signals from both devices are equally affected by motion artifacts.

4.1.4. Results

Bland–Altman scatter-plots were used to assess the agreement between the PhysioKit
and the reference device (see Figure 7) [85,86]. These plots provide a combined comparison
for all experimental conditions for HR (Figure 7A,C) and HRV metrics (Figure 7B,D).
Since PPG signals were acquired from two different sites—finger and ear—we present the
comparison for these two sensor sites separately.

Figure 7. Bland−Altman scatter plots to compare heart−rate (beats per minute) (A,C), and
pulse−rate variability (pNN50) (B,D) with the reference device.

Table 2 reports a detailed evaluation across each experimental conditions for both
finger and ear sites. Both HR and PRV metrics from PhysioKit show a high correlation, as
measured with Pearson correlation coefficient (r), and lower difference, as measured with
root mean squared error (RMSE), mean absolute error (MAE) and standard deviation of
error (SD). There is a higher correlation for HR (bpm) between PhysioKit and the reference
device (ear: r = 0.97, finger: r = 0.97) than for PRV (pNN50) (ear: r = 0.87, finger: r = 0.89),
which aligns with results from earlier studies listed in Table A1 in Appendix A.

For PRV, however, the agreement with the reference device during the difficult math
task (ear: r = 0.64, finger: r = 0.75) and the face movement task (ear: r = 0.88, finger: r = 0.92)
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is lower than in the baseline. We can attribute this decrease in performance of PRV metrics
for cognitively challenging and movement conditions to motion artifacts. Earlier studies
involving commercial wearable PPG devices have also reported similar decreases in PRV
accuracy [87].

In Figure 8A, we compare the SQI for PPG signals from both PhysioKit and the reference
device under different experimental conditions. PhysioKit demonstrates consistent signal
quality across different experimental conditions, while the reference device shows higher
variance across each experimental condition. For PhysioKit, it can also be observed that the
signal quality of the PPG sensor placed on the ear is higher than that of the finger for all
conditions except face movements. Figure 8B compares the magnitude of facial movements
across different experimental conditions, which is computed as a standard deviation of
change in inter-frame rotation angle. A Wilcoxon Signed-Rank test found that motion
increased significantly during math tasks and face-movement conditions from the baseline
condition. From Figure 8A,B, it can be inferred that, under normal cognitive tasks not
involving voluntary facial movement, the ear is less affected by motion artifacts.

4.2. Study 2: Usability Analysis
4.2.1. Use Cases

To demonstrate how PhysioKit can be applied in practice, PhysioKit was distributed to
10 different small-project teams (N = 44 members in total) from the department to use for
their own research purposes for four to six weeks. In Table 3, we tabulate several examples
of projects that made use of the toolkit for data acquisition as well as data analysis. Group
members from each of these projects received a 1 hour hands-on tutoring and spent four to
six weeks utilizing the toolkit. Below, we summarize these projects by categorizing them
into interventional and passive contexts (Section 2.1).

Table 2. Evaluation of PhysioKit: comparison of heart-rate (beats per minute) and pulse-rate variability
(pNN50) with the reference device. Evaluation metrics include root mean-squared error (RMSE), mean
absolute error (MAE), standard deviation of error (SD) and Pearson correlation coefficient (r), which
are mentioned separately for each experimental condition as well as for all conditions combined.

Metrics PPG Site
Experimental
Condition

RMSE MAE SD Pearson (r)

Heart
Rate

(beats
per minute)

Finger

Baseline 3.63 2.43 3.38 0.96

Math—Easy 2.08 1.44 2.02 0.98

Math—Difficult 2.41 1.75 2.41 0.98

Face Movement 2.17 1.49 2.09 0.98

All sessions
combined

2.65 1.78 2.65 0.97

Ear

Baseline 3.71 2.46 3.41 0.95

Math—Easy 1.0 0.73 0.92 1.0

Math—Difficult 2.08 1.46 2.07 0.98

Face Movement 2.11 1.40 2.05 0.98

All sessions
combined

2.45 1.53 2.43 0.97
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Table 2. Cont.

Metrics PPG Site
Experimental
Condition

RMSE MAE SD Pearson (r)

Pulse
Rate Variability

(pNN50)

Finger

Baseline 4.31 3.46 4.28 0.98

Math—Easy 11.33 6.54 10.6 0.91

Math—Difficult 12.11 9.53 12.09 0.75

Face Movement 8.26 5.66 8.25 0.92

All sessions
combined

9.4 6.26 9.34 0.89

Ear

Baseline 4.36 3.78 4.21 0.99

Math—Easy 9.85 5.75 9.27 0.91

Math—Difficult 15.26 11.13 15.12 0.64

Face Movement 9.38 7.27 9.32 0.88

All sessions
combined

10.42 7.02 10.26 0.87

Figure 8. (A): Comparison of pSQI for PPG signals of PhysioKit and the reference device, under
different experimental conditions; (B): experimental condition-wise comparison of facial movement.

PhysioKit for Interventional Applications

Several groups explored using PhysioKit for developing affect recognition systems.
For instance, some groups developed adaptive games that adjusted the level of gameplay
difficulty by assessing acute stress using a combination of HR, HRV (e.g., pulse rate,
pulse amplitude, interbeat interval), skin conductance and breathing rate. Another group
examined how physiological responses from PPG and EDA could be mapped to a valence-
arousal model to assess reactions to music. Other projects also examined the effects of
biofeedback and social biofeedback visualizations of HR to overcome stressful scenarios
(e.g., oral presentations) and promote mindfulness [4].

PhysioKit for Passive Applications

Project groups took advantage of PhysioKit’s diverse hardware and software functions
to develop passive applications. For instance, a project that mapped stress during a virtual
task assessed from an ear PPG showed that signals from this location were less subject to
motion artifacts. Team members from a different group used PhysioKit’s event-marking
function to generate a dataset for an affective music recommender system. Lastly, another
research project team used the provision of synchronized acquisition for multi-user scenario
to examine similarities in physiological responses during remote virtual reality experience.
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Table 3. Project teams specific application cases of PhysioKit.

Application
Application
Type †

No. of
Members

Project
Duration

Using physiological reactions
as emotional responses to music Interventional 6 4 weeks

Emotion recognition during
watching of videos Interventional 6 4 weeks

Using artistic biofeedback
to encourage mindfulness Interventional 1 6 weeks

Using acute stress response to
determine game difficulty Interventional 7 4 weeks

Generating a dataset for an affective
music recommendation system Passive 7 4 weeks

Adapting an endless runner
game to player stress levels Interventional 8

7 4 weeks

Influencing presentation experience
with social biofeedback Interventional 1 6 weeks

Mapping stress in virtual reality Passive 1 6 weeks

Assessing synchronous heartbeats
during a virtual reality game Passive 2 6 weeks

† see Section 2.1.

4.2.2. Data Collection

To gain insights on the usability of PhysioKit, we designed a questionnaire in Qualtrics
that included three parts. The first section focused on obtaining demographic data and
information on participants’ prior experience with physiological sensing and toolkits.
For the second part of the survey, we designed a modified version of the Usefulness,
Satisfaction and Ease of Use questionnaire (USE; [88,89]) to gather insights on usability. For
each question in this part of the survey, participants had five choices as follows: 1 (Strongly
Disagree), 2 (Somewhat Disagree), 3 (Neither Agree Nor Disagree), 4 (Somewhat Agree)
and 5 (Strongly Agree). The final section asked optional open-ended questions regarding
participant’s favorite aspects, and suggestions for improvements and novel features.

One person representing each of the 10 project teams participated in completing the
questionnaire (five female, five male; 18 to 34 years old), which took an average of 22.5 min
to complete. Participation was voluntary, and no identifying information was collected.
All participants had either completed a postgraduate degree in computer science or were
currently in the process of completing one. Seven participants had used consumer-grade
wearables (e.g., Apple Watch, FitBit Sense 2, Garmin, Withings Steel HR, Google Watch)
either daily (N = 5) or occasionally (N = 2), while three had never used one before. In terms
of previous experience with open source micro-controller kits, six participants had used
them for a previous project or class (i.e., Arduino, Raspberry Pi, micro:bit Texas Instruments
device), while four participants had no previous experience with micro-controllers.

4.2.3. Results
Usefulness and Ease of Use

Everyone who completed the survey acknowledged that PhysioKit was useful for their
projects, with most strongly agreeing (N = 7). All participants also agreed that it gave
them full control over their project activities (“Strongly agree”: N = 5) and facilitated easy
completion of their project tasks (“Strongly agree”: N = 4). Several participants with limited
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computing experience (N = 3) considered using other physiological systems (e.g., Empatica,
Apple Watch, fnv.reduce), but ultimately chose PhysioKit because it gave them full control
over data and signals processing and setup.

Nearly all participants found that the provision of raw data were the most useful
aspect of PhysioKit (N = 9), while almost all (N = 8) found that the ability to extract features,
control data acquisition, and access supported data analysis was important. Also, having
the flexibility to adapt PhysioKit to different experimental protocols was highly valued
(N = 7). Participants found PhysioKit easy to use (M = 4.30, SD = 0.675) and quick to set
up (M = 4.00, SD = 0.943). They also appreciated that it enabled flexible configurations
(M = 4.40, SD = 0.699).

Learning Process

Most participants learned to use PhysioKit quickly (M = 3.90, SD = 0.568) and with
different sensor configurations for a diverse range of study designs (M = 3.90, SD = 0.568).
Once they learned how to use the toolkit, everyone found it easy to remember how to use
(M = 4.20, SD = 0.422), regardless of computing their prior experience.

Satisfaction

All participants were satisfied with the way PhysioKit worked (M = 4.20, SD = 0.422)
and would recommend it to colleagues (M = 4.10, SD = 0.316). Many also found it essential
for the completion of their projects (M = 4.60, SD = 0.699) and most would prefer to use it
over other physiological systems for future projects (M = 3.50, SD = 0.527).

Open-Ended Questions

When participants were asked what they appreciated about PhysioKit, one person with
limited programming experience responded: “It’s easy to understand and user-friendly for
people without a coding foundation” (P3). People with high computing proficiency also found
PhysioKit quick to setup, well-organized, simple and flexible to use. Lastly, participants
left comments encouraging the further distribution of PhysioKit: “Promote it, make it acces-
sible to more people, [help them] understand the difference between using this product and using
physiological sensors directly.” (P3).

5. Discussion

In this section, we discuss our main findings and show how PhysioKit relates to and
builds upon existing research.

5.1. Unique Propositions of PhysioKit

PhysioKit is a fully open source toolkit for physiological computing that implements
an Arduino-based sensing and signal acquisition layer, offering researchers flexibility to
configure one or more Arduino-compatible physiological sensors (PPG, EDA and RSP).
The simple and user-friendly interface of the software application layer is effective in
streamlining the physiological data acquisition for a variety of applications, including
those involving biofeedback. Its provision to synchronize data acquisition for remotely
located users is enabler for conducting remote studies that require acquiring physiological
signals. Furthermore, it is cumbersome to manually inspect segments of acquired signals,
specifically in case of long acquisition duration and high number of participants. SQA-Phys
introduced in this work can be applied both in real-time and as a post-processing step to
automate the quality assessment of PPG signals, significantly reducing efforts of researchers.
Furthermore, access to raw data not only gives HCI researchers ownership and control over
the data, but also enables computational research to develop robust algorithms for handling
real-world environments. Taken together, these aspects all contribute to enhancing the
usability of the toolkit for researchers.

The overall hardware cost of the PhysioKit is well below the least expensive of the
commercial sensors mentioned in Table A1. For instance, with a setup of one Arduino Uno
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and one PPG sensor, the cost is less than USD 50. For the collection of sensors used in this
work (i.e., two PPG sensors, one EDA sensor and a one RSP sensor), it amounts to less
than USD 200, which is still less than the average cost of commercially available sensors
in Table A1. The number of sensors that can be connected simultaneously is only limited
by the number of analog input channels of the chosen Arduino board. The repository
provides Arduino programs of up to four simultaneous sensors, though researchers can
easily extend it to support higher numbers of sensors. The corresponding changes to
configure the software application layer are limited to specifying the number and types of
sensors in the experiment configuration file, making it a highly efficient and cost-effective
solution to address different research needs.

5.2. Evaluating the Validation of PhysioKit

The validation study in Section 4.1 highlights very good agreement between PhysioKit
and the gold standard for HR. The PRV metrics also show good agreement during the
baseline condition, while there is acceptable agreement during experimental conditions
involving significant movement. This difference between performance related to HR and
PRV can be explained by the findings of a recent study that assessed the validity and
reliability of PPG derived HRV metrics, and found that PPG sensors are less reliable for
HRV measurements [90]. However, it is worth mentioning that the same study found PPG
sensors to be accurate for measuring HR. It is also noteworthy that the overall performance
of PhysioKit shows better agreement with the gold standard compared to the performance
of existing PPG-based commercial devices mentioned in Table A1. The performance of
PhysioKit can be largely attributed to its sensing and signal acquisition layer, as well as
the processing pipeline that includes signal quality assessment, filtering, and extraction of
physiological metrics.

Regarding flexible configuration, the validation study results show similar perfor-
mance of the finger PPG sensor and ear PPG sensor, suggesting that alternative sensor sites
for PPG can be explored to achieve different research objectives and support accessibility.
The slightly low signal quality (pSQI) observed for finger PPG sensor can be attributed
to the possible voluntarily movement of finger leading to more frequent motion artifacts,
whereas inability to ambulate ear lobe makes it more promising site for acquiring PPG
signals. This interpretation is further supported by the lower pSQI of ear-PPG signals for
an experimental condition involving guided face movement (Figure 8A).

5.3. Assessing the Usability of PhysioKit

Projects with both interventional and passive application types utilized PhysioKit,
demonstrating its versatility in supporting data acquisition in different settings. The
usability survey results (see Section 4.2) highlight the usefulness, learning experience and
favorable aspects of PhysioKit. Participants agreed that PhysioKit was essential for their
projects because it provided them with control and flexibility over tasks and allowed them
to accomplish what they wanted to do. While access to raw data were valued as the most
important aspect of the toolkit, they also appreciated having control over data acquisition,
feature extraction and data analysis. Participants felt PhysioKit was easy to use and seemed
enthusiastic about using PhysioKit for future projects, as well as sharing it with colleagues
and friends because of its open-source features.

5.4. Limitations and Future Work

In this work, we implemented PPG, EDA and RSP sensors. However, future work
could explore integrating other contact-based physiological sensors commonly used in HCI
research (e.g., EMG, ECG and EEG) [1,91]. The validation study [92–94] and signal quality
assessment module (SQA-Phys) mentioned in this work currently only apply to data from
PPG sensors. However, these can also be extended to other contact-based physiological
sensors, such as the ones previously mentioned. While PhysioKit offers flexibility in choos-
ing any physiological sensor compatible with Arduino, it does not introduce new sensor
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hardware. Therefore, in-the-wild scenarios such as physical activity were not evaluated
in this work, since the challenges offered by such scenarios are associated with the sensor
hardware and fitment.

The objectives of making PhysioKit an open-source toolkit are two-fold: (i) offering a
flexible and cost-effective solution for research community, and (ii) leveraging the contribu-
tions from research community in addressing the existing limitations of PhysioKit towards
introducing support for additional physiological sensors and biofeedback modalities, as
well as extending the validation study for range of applications, sensor modalities and
higher numbers of participants. The latter objective is expected to be achieved as a future
work. Currently, the signal quality assessment module (SQA-Phys) mentioned in this work
is limited to assess the quality of PPG signals, which could be extended to signals acquired
using other sensors. Additionally, although the existing implementation of SQA-Phys
provides high temporal resolution, its outcome is restricted binary classification at a given
time-point. By using an appropriate activation function (e.g., ReLU) at the final layer of the
1D-CNN architecture, as well as replacing the classification loss with the regression loss
function, it is possible to obtain a continuous score from 0 to 1 to gain better insights into
the signal quality, which will be addressed as a future work.

While one project used event-marking function of PhysioKit to build a dataset to
train affective music recommender system, no projects required performing data analysis
based on the event-marking labels. In future work, this aspect of the toolkit can be further
explored and validated. The hands-on training for groups participating in the usability
study was provided owing to unavailability of elaborate installation and usage instructions
for the toolkit at early development stage. The published repository of PhysioKit offers easy
installation steps, along with detailed usage instructions. Furthermore, as a future work,
tutorials for different application types will be made available at the repository homepage.

Our future implementation plan further considers implementing a processing pipeline
for contact-less sensing methods, such as an RGB camera-based remote PPG [95,96] and
a thermal infrared sensing pipeline, including optimal quantization [9] and semantic
segmentation [97] for extraction of breathing [9] and blood volume pulse signals [56,98,99].
We also aim to further enhance the accessibility of the sensor interface (hardware) of
PhysioKit for its use in real-world scenarios.

6. Conclusions

This paper introduced PhysioKit, an open-source and cost effective physiological
computing toolkit that streamlines physiological signal acquisition and analysis for various
HCI studies and applications. Uniquely, PhysioKit can synchronize signal collection in
multi-user studies with both co-located as well as remote users. The evaluation study
on heart rate and pulse rate variability measurements demonstrated the performance of
PhysioKit compared to the reference system. The comparable signal reliability from the
finger and ear PPG channels further indicates the possibility of enhancing accessibility to
support participants with certain physical impairments (e.g., wheelchair users). Further,
the usability study highlighted the usefulness, satisfaction and ease of use associated
with PhysioKit, emphasizing its positive impact in various application scenarios. PhysioKit
provides further useful features for researchers and practitioners: visual biofeedback, which
can be extended to other forms of biofeedback such as audio and haptics; and machine-
learning-driven signal quality assessment that can significantly reduce efforts and time on
manual signal inspection (for discarding noisy signal segments). Also, raw physiological
data are stored in an accessible format, which can be organized as per the study protocol
and participant ID and can foster opportunities for researchers to easily apply state-of-
the-art analysis. PhysioKit thus provides a one-stop approach that supports physiological
sensing, data acquisition and computing supporting for a broad spectrum of studies and
HCI applications.
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Abbreviations
The following abbreviations are used in this manuscript:

1D-CNN 1-dimensional convolutional neural network
ADC Analog-to-digital converter
API Application programming interface
BPM Beats per minute
BVP Blood volume pulse
CAD Computer-aided design
ECG Electrocardiogram
EDA Electrodermal activity
EMG Electromyography
GSR Galvanic skin response
HCI Human–computer interface
HR Heart rate
HRV Heart rate variability
LSTM Long short-term memory
PPG Photoplethysmography
PRV Pulse rate variability
RGB Color images with red, green an blue frames
RSP Respiration or breathing
SOTA State-of-the-art
SQI Signal quality index
SVM Support vector machine
TCP/IP Transmission control protocol/Internet protocol
UI User interface

Appendix A. Validation Studies of Physiological Computing Systems

In Table A1, we highlight validation studies of commercially available physiological
computing systems, and include studies that support analyzing heart-rate signals from
PPG as well as ECG and provide validation results for the same. It is to be noted that this
table is not exhaustive, and is presented for scoping purposes.

Most studies reported results as mean absolute error (MAE), interclass correlation (ICC)
κ, or Pearson’s correlation coefficient (r) for HR (bpm). Where applicable, we also listed
results of HRV validation, which were primarily reported as ICC κ for RMSSD. To illustrate
how affordable, readily available, and useful the devices were, the table also includes
the price (USD) and availability of the device, as well as whether raw signal data (e.g.,
BVP, ECG, EEG signals) is accessible. On average, consumer-grade commercial HR/HRV
devices cost USD 291.77 (SD: USD 158.77), and had limited access to the mentioned raw
signals. Also, by the time validation studies were published, most manufacturers had
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already discontinued the tested versions of the device. Low-cost research-grade devices
range from USD 459.78 to USD 1690, and often provide access to raw physiological signals.
However, existing low-cost research-grade devices and toolkits are not designed to readily
support interventional studies as well as co-located or remote multi-user studies.

Of the physiological sensing devices included in validation studies (e.g., Xiaomi
Miband 3, Apple Watch 4, Fitbit Charge 2, Garmin Vivosmart 3), consumer-grade wearables
were significantly more accurate HR measurements at rest compared to research-grade
wearables (i.e., Empatica E4, Biofotion Everion) when compared with a reference device
(MAE: 7.2 ± 5.4 bpm compared to 13.9 ± 7.8 bpm [67]). The Apple Watch showed highest
accuracy in several studies (Apple Watch 4 MAE: 4.4 ± 2.7 bpm [67]; Apple Watch 6 ICC:
0.96 [14,53]) compared to other commercial devices. Despite this, we could not find any
studies that confirmed it was in good agreement with a gold standard reference device.
Research-grade consumer devices showed the highest MAEs (Empatica: 11.3 ± 8.0 bpm,
Bioevotion: 16.5 ± 6.4 bpm [67]) in a list of commercially available wearables.

In terms of results from validation studies, the RR interval signal quality of the Polar
H10 HR chest belt was considered in good agreement with the gold standard (error rate 0.16
during rest), i.e., medilog AR12plus ECG Holter monitor [100]. Similarly, Garmin 920XT
was in good agreement with the gold standard (i.e., ADInstruments Bio Amps) during
rest conditions [101]. While validation studies involving physical activity conditions
have shown moderate-to-strong agreement for devices, they have consistently revealed
a decrease in accuracy as activity levels increase [102,103]. One common explanation for
this discrepancy are motion artifacts from movement. Some devices (e.g., Polar H10),
have designed elastic chest straps with multiple embedded electrodes to protect against
measurement noise. The problem with elastic electrode straps is, however, the reduction in
contact between skin and elastic electrode straps [100].
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Table A1. Validation studies of commercially available consumer-grade devices as well as low-cost research-grade devices and toolkits with participants at rest.

Device
Device

Category
Cost (USD)

Access to Raw

Physiological Signals

Support for

Interventional Studies

Support for

Multi-User Studies

Validation Results

for HR (bpm)

Validation Results

for HRV

AliveCor KardiaMobile C 79.00 No No No κ = 0.96 [53] N.A.

Apple Watch 4 C 399.00 * No No No MAE = 4.4 ± 2.7 [67]; r = 0.99 [66] N.A.

Apple Watch 6 C 399.99 * No No No κ = 0.96 [14,53] RMSSD: κ = 0.67 [14]

Fitbit Charge 2 Fitbit C 149.95 * No No No MAE = 7.3 ± 4.2 [67] N.A.

Fitbit Sense C 159.99 * No No No κ = 0.88 [53] N.A.

Garmin Vivosmart 3 C 139.99 * No No No MAE = 7.0 ± 5.0 [67] N.A.

Garmin Fenix 5 C 599.00 * No No No r = 0.89 [66] N.A.

Garmin Forerunner 245 Music C 349.00 * No No No κ = 0.41 RMSSD: κ = 0.24 [14]

Garmin Vivosmart HR+ C 219.99 * No No No MAE = 2.98, κ = 0.90 [102] N.A.

Oura Gen 2 C 299.00 No No No κ = 0.85 RMSSD: κ = 0.63 [14]

Polar H10 † C 89.95 No No No N.A. HRV (RR, ms) Spearman r = 1.00 [100]

Polar Vantage V C 499.95 No No No κ = 0.93; r = 0.99 [66] RMSSD: κ = 0.65 [14]

Samsung Galaxy Watch3 C 399.99 * No No No κ = 0.96 [53] N.A.

Withings Scanwatch C 299.95 No No No κ = 0.95 [53] N.A.

Empatica E4 R 1690.00 *
Yes (filtered signals

obtained from company servers)
No No MAE = 11.3 ± 8.0 [67] N.A.

BITalino (PsychoBIT) R 459.78 Yes
Using third party

software

Yes,

only co-located

Morphology-based validation

with ECG signals: R2 = 0.83 [104]
N.A.

OpenBCI (EmotiBit) R 499.97 Yes
Using third party

software
No N.A. N.A.

* Discontinued device: devices which are no longer being manufactured and sold; † ECG device; C: consumer device; R: research-grade device.
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