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Abstract: Falls by the elderly pose considerable health hazards, leading not only to physical harm
but a number of other related problems. A timely alert about a deteriorating gait, as an indication of
an impending fall, can assist in fall prevention. In this investigation, a comprehensive comparative
analysis was conducted between a commercially available mobile phone system and two wristband
systems: one commercially available and another representing a novel approach. Each system
was equipped with a singular three-axis accelerometer. The walk suggestive of a potential fall
was induced by special glasses worn by the participants. The same standard machine-learning
techniques were employed for the classification with all three systems based on a single three-axis
accelerometer, yielding a best average accuracy of 86%, a specificity of 88%, and a sensitivity of
86% via the support vector machine (SVM) method using a wristband. A smartphone, on the
other hand, achieved a best average accuracy of 73% also with an SVM using only a three-axis
accelerometer sensor. The significance analysis of the mean accuracy, sensitivity, and specificity
between the innovative wristband and the smartphone yielded a p-value of 0.000. Furthermore,
the study applied unsupervised and semi-supervised learning methods, incorporating principal
component analysis and t-distributed stochastic neighbor embedding. To sum up, both wristbands
demonstrated the usability of wearable sensors in the early detection and mitigation of falls in the
elderly, outperforming the smartphone.

Keywords: personalized; supervised learning; three-axis accelerometer; ambient intelligence; elderly
people; gait abnormalities; predicting falls; accelerometer features; PCA; t-SNE

1. Introduction and Related Work

Falls are a major health concern as well as a significant cause of injury among the older
population, with an estimated one in four individuals aged 65 and above experiencing
a fall each year [1]. The consequences of falling can extend beyond physical injury in
the form of reduced mobility, a decreased ability to perform daily activities, an increased
burden on caregivers, or even mortality [2,3]. A fall can precipitate a range of psychological
consequences, such as post-fall anxiety syndromes, a fear of falling, a diminution in self-
efficacy, a reduction in mobility, and decreased levels of social engagement, leading to a
lower quality of life [4]. This highlights the urgency of developing affordable systems that
can reliably predict falls and thus provide warning and assistance prior to the actual fall.

Research has indicated that falls involving older adults result from the complex inter-
actions between intrinsic and extrinsic factors, including cognitive impairment, sensory
deficits, mobility limitations, medication use, and environmental risks [5]. Among these
factors, balance deficit and gait impairment are frequently identified as key contributors to
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the risk of a fall. Gait abnormalities can often serve as an early indicator of underlying med-
ical conditions, making them a potentially valuable diagnostic tool for predicting future
disease progression, as well as future falls [6]. Furthermore, a gait analysis can be used to
evaluate the seriousness and extent of medical conditions, to track intervention outcomes,
and to forecast the intervention’s effectiveness. This is particularly important when seeking
relevant information about the progression of various illnesses, including neurological
diseases like multiple sclerosis or Parkinson’s, systemic disorders such as cardiac condi-
tions that affect gait, orthopedic diseases, and age-related diseases [7]. Consequently, fall
prevention has become an important area of research in healthcare [8].

Several systems have been developed to address this issue by focusing on detecting
falls and notifying the person’s contacts once a fall occurs. An alternative is developing
fall prediction and fall prevention systems that can predict and prevent falls by using
wearable sensors to gather gait data. The data are then analyzed with machine-learning
(ML) algorithms to predict the risk of a fall in the future. Both fall prediction and fall
prevention systems can be very important because they evaluate fall risk and enable
recovery mechanisms to be implemented before the fall actually occurs [9].

There are two primary approaches to examining human gait using technology: non-
wearable and wearable systems. Non-wearable systems take place in controlled research
facilities where the sensors capture the gait data while the person walks on a designated
walkway. Wearable sensors, on the other hand, allow for the analysis of gait data outside
of laboratory settings. Inertial sensors like accelerometers are used in wearable devices
to measure an object’s velocity, acceleration, orientation, and the gravitational forces.
Accelerometers use Newton’s Law of Motion to calculate the acceleration by factoring in
a known mass and the measured forces. The development of miniaturized sensors and
wireless communication systems has made it possible to obtain real-time measurements of
gait during everyday activities by attaching devices to different parts of the body [7].

Wrist-worn accelerometers have the potential to provide important information that
could predict and detect falls in real time [10]. Recent technological advancements, includ-
ing larger memory capacities, wider acceleration ranges, smaller sizes, and lower cost, have
made accelerometers a popular alternative for use in fall detection and prevention over
other body-mounted sensors. The convenience of wrist-worn accelerometers further adds
to their popularity, as they could lead to higher levels of adherence in users during periods
of extended use [11]. These sensors offer a non-invasive, non-intrusive, and continuous
method for monitoring movement patterns, allowing the detection of subtle changes in gait
that could indicate an increased risk of falling. Some recent methods have been developed
to estimate gait patterns based on a single wrist-worn sensor by extracting features from the
raw sensor data based on time, frequency, and statistics [12]. This includes features based
on intensity, posture, periodicity, and non-gait dynamicity, as well as statistical features,
such as the mean, standard deviation, and median of the acceleration norm [13]. However,
wrist-worn sensors present challenges when it comes to accurately detecting gait changes
due to the lack of a fixed position relative to the user’s center of mass [14]. Moreover, due
to manual dexterity and frequent arm swings, the wrist habitually has movements that are
independent of the gait, which represents a problem for accurate gait detection. Research
has shown that wrist-accelerometer data produce somewhat worse classification results
than chest- and hip-accelerometer data [15].

Advancements in multimodal (multi-sensor) wearable technologies have significantly
impacted the domains of human activity recognition (HAR), fall detection (FD), and fall
recognition (FR). These systems are often characterized by their simplicity, practicality,
high recognition accuracy, and real-time performance capabilities. It is important to note
that multimodal-based FD research is essentially a subset of HAR/FR studies, particularly
when gait analysis is incorporated. However, FD focuses on a more specialized task and
does not necessitate the recognition of various fall types. Recent publications illustrate
the versatility of multimodal approaches in these areas. For instance, a study released
this year, titled “On a Real Real-Time Wearable Human Activity Recognition System”,
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offers a robust solution that employs multimodal data for real-time HAR, a methodology
that is directly applicable to FD as well [16]. Another recent contribution focuses on
high-level feature extraction for multimodal HAR and FR, further elaborating on the state-
of-the-art techniques [17]. Moreover, the constant evolution of sensing and recognition
technologies necessitates ongoing attention to emerging methodologies. This is highlighted
in publications such as “Sensor-Based Human Activity and Behavior Research: Where
Advanced Sensing and Recognition Technologies Meet,” which underscores the importance
of integrating advanced sensing capabilities into current recognition frameworks [18].

Contemporary mobile phones frequently incorporate an extensive suite of up to
20 sensors. However, it is observed that these devices are not often carried by individuals
in residential settings. More importantly, our primary comparative analysis is concentrated
on the functionality of a single accelerometer across diverse devices, enabling a precise
evaluation of the efficacy and constraints in the context of fall prediction.

The power consumption of wearable devices is a crucial aspect to consider in the
design of wearable sensor technologies. Continuous monitoring and data collecting require
significant amounts of energy, which can shorten the battery life of the device. This can
lead to reduced use of the wearable devices. Accelerometers are the most energy-efficient
inertial sensors and they can be used to continuously record activity without the need for a
battery charge. This makes them the logical choice for wrist-based sensors that can be used
for long-term activity monitoring [19].

The potential for bias in the data and models used for fall detection and gait analysis
is also to be examined. Bias can arise from various sources, such as differences in sensor
placement, data collection methods, or the demographic characteristics of the study popu-
lation. It is of great importance to neutralize the sources of bias to ensure that the models
are accurate and applicable to diverse populations. Additionally, extracting single-time
discrete variables from time-continuous gait data discards a lot of information and may
not accurately represent the complexity of the human gait. Pre-selected variables can
introduce bias and overlook important interactions between the gait characteristics and
the conditions that affect the gait. To address these issues, multivariate statistical analysis
and machine-learning techniques such as artificial neural networks, decision trees, and
support vector machines (SVMs) have been used to objectively identify different types of
gaits [20]. Also, other researchers focus on improving human activity recognition through
HMM-based sequential modeling, and, e.g., in Hui Liu’s dissertation, a novel activity
modeling method called Motion Units (MUs) to enhance performance is proposed. It also
contributes by developing an HAR research pipeline, creating the Activity Signal Kit (ASK)
software for data collection, and implementing both offline and real-time HAR systems
based on multimodal biosignal datasets from over 25 subjects [21–24]. His paper on the
activity modeling method for human activity recognition, utilizing Motion Units to create
an operable, universal, and scalable human activity dictionary, demonstrates comparable
accuracy with fewer parameters [24].

Among the methods applied to fall detection and prediction, the Hidden Markov
Model (HMM) is very suitable for fall detection/recognition and reaches deep learning’s
performance in many publications. This is due to its inherent sequential modeling capabili-
ties for time series, in relation to wearable multidimensional signals [21,24,25].

Furthermore, the research indicates that normalizing spatial–temporal gait data by tak-
ing into account leg length and the subject’s age when using the SVM approach improves
the accuracy from 83.3% to 96.8% [22]. In addition to normalization, the need for standard-
ization of the methods and metrics used for fall detection and gait analysis is shown in the
differences in the results from various studies. Standardization can ease the comparability
of findings across different studies, as well as being useful for identifying the best practices
and areas for improvement in the development of wearable sensor technologies.

To better predict the risk of falling, it is important to use optimized prediction models
that take into account the type and placement of wearable sensors. Several studies explore
various approaches to determine the optimal protocol for assessing gait quality. Moreover,
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the analysis of a dual-task gait has been proposed as a potentially valuable tool for assessing
the risk of falls in older adults, as it can uncover deficits in cognitive function and mobility
control that may not be evident during normal walking. This approach involves evaluating
a person’s gait while they perform a secondary cognitive task, such as counting backward or
reciting the alphabet, and comparing the results to those obtained during normal walking.
However, there is no consensus on whether a dual-task assessment is better at predicting a
fall risk than assessing a gait during single-task activities [23].

An alternative approach could be to expand the evaluation of gait quality beyond
straight walking and include assessments of turning. Most studies of fall-risk prediction
only focus on straight-line walking, so it might also be useful to study gait during turning
movements, as turns require additional coordination and control compared to walking in a
straight line. Elderly individuals at high risk of falling tend to perform turns differently from
those at low risk of falling, making it possible to distinguish between what is considered a
normal gait and a gait that shows signs of potential falls using turn-based data. Researchers
have developed a method for classifying high-fall-risk gaits based on wearable sensor
data collected during walking turns. The findings suggest that turn data contain valuable
information that can improve fall-risk classification, although combining straight and
turn-based features did not improve the classification models [26].

Another challenge in gait analysis is the unsoundness of the current methods under
unsupervised or real-world conditions. Clinical fall-risk assessments are typically per-
formed in controlled laboratory settings and are limited by testing locations, frequency,
cost, and professional supervision [2]. Most methods have only been tested in super-
vised or semi-supervised settings, which do not accurately reflect the self-initiated and
purposeful nature of a gait [19]. Studies have shown that there are notable differences in
gait speed when comparing measurements taken in laboratory environments versus those
taken during daily activities. Gait speed is said to be slower during real-world activities
than during laboratory testing, according to the research [27,28]. Wearable devices offer
an alternative for fall-risk assessments, as they allow the real-time monitoring of a gait
in real-life conditions, at a lower cost and with minimal discomfort to the user. However,
developing a method for wrist-worn devices is challenging and has not yet been validated
for fall-risk assessments [2].

The objective of this paper is to compare a commercial device with a novel wristband,
and both primarily with a mobile phone that has the same fall-predicting method in the task
of recognizing abnormal gait patterns using a single, three-axis, wrist-worn accelerometer.
Raw accelerometer data features are extracted and inputted into different types of machine-
learning models. The approach used involves gathering data, extracting meaningful
features, selecting the most relevant characteristics, and training a classification model to
differentiate a normal from an abnormal gait. The performance of this approach is assessed
using a dataset that includes parameters of the normal and abnormal walking patterns of
17 test subjects.

2. Dataset
Performing the Experiment and Data Collection

In light of the unavailability of adequate datasets featuring inertial sensors for wrist-
worn devices, a novel dataset was created for public use. The dataset was generated
using an experiment conducted within a confined room, where the participants traversed a
predefined loop. Two wristbands, namely, the Caretronic wristband and the Empatica E4
wristband, were worn by each participant during the experiment. The Caretronic wristband
utilized the Hometab device, connected to the internet via a Bluetooth connection, to stream
data to a Firebase server. On the other hand, the Empatica E4 wristband employed a
smartphone application to transmit data to its dedicated cloud service.

The designated walking route encompassed a level surface with no inclinations,
primarily straight with the exception of a concluding semi-circular section used for turning
around. The obstacle of the path can be seen in Figure 1, whereas the walk around the angle
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was substantially more curved. This setup facilitated the acquisition of uninterrupted gait
data over extended periods, akin to real-world scenarios encountered during daily walks.
To emulate the walking pattern of elderly individuals, each participant wore weighted leg
attachments, amounting to 3 kg per leg. In the context of our study, we utilized vision
impairment goggles [29] (illustrated in Figure 2b) as a means to simulate a deteriorated
gait. These specialized goggles were engineered to induce a visual perception mimicking
the experiential semblance of an individual under the influence of alcohol when peering
through these devices. At the onset of the experimental protocol, a significant proportion
of the subjects displayed marked challenges in their ability to walk. However, following a
period of persistent goggle usage, the subjects demonstrated an adaptation to their visually
altered environment, seen as an improvement in their locomotion over the course of the
experiment. Despite the observed acclimation to the conditions imposed by the goggles,
the majority of the subjects’ locomotive patterns continued to show signs of abnormality,
indicating that their gait remained not entirely normal.

The experiment for each of the participants was split into 8 sessions. Initially, the
participants walked without impaired vision for a period of 8 min, following a clockwise
direction for the initial 4 min and subsequently an anti-clockwise direction for the remain-
ing 4 min. Subsequently, the position of the wristbands was altered, and the procedure
was repeated. Lastly, all the aforementioned steps were replicated while the participants
wore the impairment goggles. The described experiment sessions are shown in Table 1.
Discrepancies observed in the signals recorded by the Caretronic wristband and the Em-
patica E4 wristband can be attributed to the different positions and the coordinate system
orientations of the micro-electromechanical system (MEMS) chip housing the accelerometer
on the wristbands (Figure 3). On the other hand, the differences in the signals with and
without goggles are not visually detectable to humans, while the differences in an actual
walk usually can be differentiated when observing the same person.

In the conducted study, we selected the Xiaomi Redmi 7 Smartphone as the experimen-
tal apparatus. It is postulated that any device from the same manufacturer, or equivalently
sophisticated models produced within the preceding decade, would likely yield analogous
outcomes. During the experimental process, the smartphone was housed within a compact
pouch that the participants wore around their midsections. Consequently, the motion of the
pouch did not resemble that of a bag oscillating in hand, analogous to wristband movement,
but rather dangled from a shoulder, exhibiting greater movement than if fastened directly
to a belt.

The Caretronic wristband (Figure 4a) is equipped with an ARM Nordic NRF52840
microcontroller. This microcontroller interfaces with both the gyroscope and accelerometer
sensors through the Two-Wire Interface (TWI). Designed as an affordable solution, the
Caretronic wristband is aimed at achieving global reach, including in countries with a
lower GDP. In our study, we compared the performance of the Caretronic wristband with
that of the Empatica E4 (Figure 4b). The latter, while more costly, also features pulse and
temperature sensors. We configured the sampling rate of the Caretronic wristband at
52 Hz, though it possesses the capability for higher rates. Conversely, the Empatica E4
maintains a fixed sampling rate of 32 Hz for its accelerometer sensor. The primary objective
of this analysis is to contrast the performance metrics of the Empatica E4 and Caretronic
wristbands and the smartphone using only the accelerometer sensor.

Table 1. Sessions of experiment per participant.

Session Impairment
Goggles Left Hand Right Hand Clockwise

Walking Direction

1 No Caretronic Empatica Yes

2 No Caretronic Empatica No

3 No Empatica Caretronic Yes
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Table 1. Cont.

Session Impairment
Goggles Left Hand Right Hand Clockwise

Walking Direction

4 No Empatica Caretronic No

5 Yes Caretronic Empatica Yes

6 Yes Caretronic Empatica No

7 Yes Empatica Caretronic Yes

8 Yes Empatica Caretronic No

Figure 1. Performed predefined path simulating walk.

Figure 2. Equipment for simulating elderly people with an abnormal walk. (a) Leg weights—3 kg
each. (b) Impairment glasses.
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Figure 3. Caretronic and Empatica E4 raw accelerometer signals for x, y, and z axes.

Figure 4. Equipment for data collection: (a) Caretronic wristband, (b) Empatica wristband.

3. Methodology
3.1. CR-Features Library for Python

In our study, we employed the cr-features Python library, which was developed by the
Department of Intelligent Systems at the “Jožef Stefan” Institute. This library is specifically
designed for the computation of diverse accelerometer features that are well suited for
context recognition applications [30].

To ensure a focused analysis, we conducted a feature selection process due to the
library’s capacity to calculate a substantial number of features, specifically 169 in our
case. Through this process, we carefully selected a subset of 87 features that demon-
strated the highest relevance and discriminative power for our research objectives. This
feature selection procedure was used to enhance the interpretability and efficiency of the
subsequent analyses.

3.2. Semi-Supervised Learning

Dimensionality reduction is a machine-learning technique that is widely used in
data analysis. The idea is the elimination of irrelevant or redundant variables while
simultaneously conserving valuable information from the original dataset. It focuses on
transforming high-dimensional data into a lower-dimensional representation that aligns
with the intrinsic dimensionality of the data, or the minimum number of parameters needed
to capture the essential characteristics of the data [31].

Having high-dimensional data can often be computationally expensive to process and
analyze. Dimensionality reduction can be helpful in improving computational efficiency
by identifying and eliminating redundant features, as well as features that can cause the
over-fitting of the models. By doing this, an acceptable generalization capability can be
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achieved. High-dimensional datasets often contain noise or measurement errors, which can
be filtered out by using different dimensionality reduction techniques. This can improve
the overall data quality and analysis [32]. These techniques are broadly used in fields,
such as machine learning and statistics. They can be categorized into feature selection,
which aims to identify and obtain the most relevant variables from the original dataset,
and dimensionality reduction, which creates a smaller set of new variables while keeping
the same base information as the original data [33]. In the following subsections, we will
briefly describe the two most important and used algorithms for dimensionality reduction.

We divided the signals obtained from the Empatica wristband and Caretronic wrist-
band separately into 10 s, non-overlapping windows. Each window was used to cal-
culate 169 features using the cr-features library. Following the feature calculation, we
employed principal component analysis (PCA) to transform the 169-dimensional space
into a 17-dimensional space. We opted for using PCA (principal component analysis) over
LDA (Linear Discriminant Analysis) due to the nature of our classification problem, which
is binary. According to the scikit-learn library documentation, LDA is primarily intended
for multiclass problems, stating that “The dimension of the output is necessarily less than
the number of classes, so this is in general a rather strong dimensionality reduction, and
only makes sense in a multiclass setting.” Source: Scikit-learn LDA/QDA Documentation.
Seventeen components were selected because the explained variance of the PCA was 0.95,
which means that the reduced dimensional space contains a 95% variance of the original
dimensional space. On the PCA-transformed data, t-SNE was applied to generate a two-
dimensional scatter plot. The complete process, starting from the initial step of generating
signal windows to the final step of constructing a 2D abstract scatter plot, is illustrated in
the flowchart in Figure 5.

Signal windowing (10 s each without
overlaping)

Calculating 169 features on each window
(169-dimensional space)

Reducing to 17-dimensional space with PCA
algorithm

Reducing to 2-dimensional space with t-SNE

Creating scatter plot

Figure 5. Flowchart of the proposed algorithm.

3.2.1. Principal Component Analysis

Principal component analysis (PCA), dating back to 1901, is a popular linear technique
for dimensionality reduction [33] in pattern recognition and compression schemes. The
general idea that PCA represents is finding a new, smaller set of the most relevant variables,
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called principal components, that capture the maximum variance of the data [34]. By
projecting the original dataset onto this principal component, PCA aims to reduce the
dimensionality while keeping the most important information. It does this by creating a
linear subspace of lower dimensionality that captures the essential variability in the data. A
part of the process is finding a set of orthogonal directions that explain the most variance of
the data and project the data onto these directions [35], as well as finding a linear mapping
that maximizes the variance of the data, which is achieved by computing the eigenvalues
and eigenvectors of the covariance matrix of the data. The eigenvectors represent the
principal directions and the eigenvalues reveal the variance of each principal component.
By selecting the top principal components with the largest eigenvalues, dimensionality
reduction can be attained [31].

Additionally, PCA has the ability to convert correlated features into an uncorrelated
feature vector by selecting the principal components that correspond to the highest eigen-
values [36]. Because the reduced-dimensional representation can be easily visualized, PCA
can also be used for data visualization.

However, PCA does have some disadvantages. Data standardization is recommended
when using PCA, because it is otherwise unable to find the optimal principal components
due to the sensitivity of the feature scales. Furthermore, its ability is limited to only finding
a linear subspace and generally it does not perform well on nonlinear data.

3.2.2. t-Distributed Stochastic Neighbor Embedding

The t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimensionality
reduction technique that works toward preserving the local and global structure of the data.
While PCA operates in a linear subspace, t-SNE implements different transformations in
different regions with the idea of keeping similar data points in a low-dimensional space
closer together [37,38].

t-SNE uses Gaussian (normal) distributions to measure and model the similarities
between high-dimensional data points as conditional probabilities. It then creates a low-
dimensional map where another set of probabilities represents the similarities. The newly
created map aims to match the pairwise similarities from the high-dimensional space [39].

t-SNE can capture complex nonlinear relationships, which makes it a good choice for
nonlinear data visualization. Additionally, it is able to consider and represent both local
and global structures in the data during the dimensionality reduction process, as well as to
predict the number of each point’s close neighbors [38].

However, t-SNE is a computationally expensive algorithm, especially for large datasets,
and its results can be sensitive to the choice of hyperparameters. While t-SNE is appropriate
for capturing local structures and keeping pairwise similarities, it is not yet clear how it
performs on general dimensionality reduction tasks. Furthermore, because t-SNE is a local-
neighborhood-based method, it assumes that local similarities in the high-dimensional
space can be truthfully represented in the low-dimensional space. It may not give satisfac-
tory results in cases where the intrinsic dimensionality of the data is high or variable across
the dataset. It is also important to note that t-SNE is not guaranteed to converge to a global
optimum of its cost function [38].

These weaknesses highlight the importance of carefully considering the applicability
and limitations of dimensionality reduction techniques in different scenarios. In terms of
applications, PCA is widely used for feature extraction, data compression, noise reduction,
and speeding up machine-learning algorithms. It is especially useful when the linear
relationships in the data are relevant for the analysis. On the other hand, t-SNE is commonly
employed for data visualization, clustering analysis, and identifying hidden patterns in
the data. Its ability to capture complex structures and reveal local relationships makes it
particularly valuable in exploratory data analysis.
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3.3. Supervised Learning

Supervised learning is a sub-field of machine learning that involves labeling data
and constructing a model with the guidance of a supervisor. In this study, we employed
classical models, namely, K-Nearest Neighbors, support vector machine, and AdaBoost.
These models were applied to the calculated 169 features, after the feature selection process.
Additionally, the hyperparameters were optimized for each classifier. Within the realm of
supervised learning, we assume prior knowledge of the normal and abnormal gait patterns
of each individual. This approach enables us to quantitatively evaluate the performance
of classical methods without preprocessing the accelerometer signals. Notably, signal
preprocessing was omitted in this research to avoid impeding operations on the microcon-
troller, as our aim in the future is to utilize the algorithm on a low-speed microcontroller to
reduce costs.

The subsequent subsections will provide concise descriptions of the machine-learning
methods employed in this study.

3.3.1. K-Nearest Neighbours

The K-Nearest Neighbors (K-NN) algorithm [40] is a nonparametric approach predom-
inantly employed for classification and regression tasks. Being nonparametric, it avoids
assumptions about the underlying data distribution. This algorithm utilizes the entire
training dataset during prediction, making it a memory-based learning method that does
not require a dedicated learning phase.

When presented with a new instance, the K-NN algorithm classifies it by identifying
the “k” training instances that are the most similar to it in the feature space. The similarity
is typically determined using distance measures, such as Euclidean (2) and Manhattan (1).
The choice of the distance metric depends on the characteristics of the data. Selecting an
appropriate number of nearest neighbors (“k”) is a critical factor in the K-NN algorithm. A
small “k” value can lead to sensitivity to noise, while a large “k” value may result in an
overly generalized model.

dmanhattan(P, Q) =
n

∑
i=1
|pi − qi| (1)

deuclidean(P, Q) =

√
n

∑
i=1

(pi − qi)2 (2)

where P = (p1, p2, . . ., pn) and Q = (q1, q2, . . ., qn) are the two points in n-dimensional
space.

3.3.2. Support Vector Machine

Support vector machines (SVMs) [41] are highly effective supervised learning algo-
rithms primarily utilized for classification tasks, but they can also be applied to regression
and outlier detection tasks. The core principle behind SVMs is the creation of a hyperplane
that optimally separates the data points belonging to different classes. This separation aims
to maximize the margin between the closest points to the hyperplane, known as support
vectors, from each class.

Given a training set (x1, y1), . . ., (xn, yn), where xi ∈ Rp and yi ∈ {−1, 1}, SVMs seek
to minimize the value of ||w||22. The parameters w and b are involved in the minimization
process and are subject to the constraint described in Equation (3).

yi(wTxi − b) ≤ 1 (3)

In scenarios where the data are not linearly separable, the SVM employs the kernel
trick to map the original feature space into a higher-dimensional space where a separating
hyperplane can be identified. This approach enables SVMs to effectively handle nonlinearly
separable data. Rather than explicitly performing the transformation, a kernel function
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K(xi, xj) is used to compute the dot product in the higher-dimensional space. By utilizing
the kernel function, the computational efficiency of the SVM algorithm is improved. Com-
monly employed kernel functions include the linear, polynomial, and radial basis function
(RBF) options.

3.3.3. AdaBoost

AdaBoost, short for Adaptive Boosting, is an ensemble machine-learning algorithm
primarily designed to enhance the performance of classification tasks by amalgamating the
outputs of multiple weak learners [42].

Initially, each instance in the training set is assigned an equivalent weight. In each iter-
ative step, a weak learner is trained. This learner prioritizes minimizing errors, particularly
emphasizing instances that were misclassified in previous iterations.

Subsequent to each iteration, the algorithm computes the weight for the current weak
learner’s output, based on its performance. Concurrently, it modifies the weights of training
instances, incrementally augmenting the weights of the previously misclassified examples.

The salient feature of AdaBoost is that the final decision is not solely the output of
an individual weak learner. It is a weighted amalgamation of the predictions from all the
weak learners, where higher weights are attributed to those with superior performance.
This method has gained significant traction in scenarios where the combination of multiple
weak learners results in a more accurate prediction.

However, AdaBoost can encounter difficulties with noisy data or outliers that devi-
ate significantly from the general trend. To ameliorate this, the hyperparameters of the
AdaBoost algorithm should be judiciously optimized.

3.4. Validation and Evaluation Metrics

For evaluating the overall performance measure of the methods, various metrics
were applied in this study. Considering the fairly evenly distributed dataset, the primary
evaluation metric used in this study was accuracy, which is the ratio of the number of
correct predictions over the total number of predictions. Additionally, the sensitivity (true
positive rate) and the specificity (true negative rate) metrics were analyzed to obtain a more
detailed understanding of the performance of the models.

The sensitivity was calculated as the ratio of the true positives to the sum of the true
positives and false negatives, while the specificity was calculated as the ratio of the true
negatives to the sum of the true negatives and false positives. The accuracy was calculated
as the ratio of the true positives plus true negatives to the sum of the true positives, true
negatives, false positives, and false negatives. True positives represented the number of
correct positive predictions, true negatives represented the number of correct negative
predictions, false positives represented the number of incorrect positive predictions, and
false negatives represented the number of incorrect negative predictions.

Other metrics such as the F1-score and FNR were also used to evaluate the performance
of the models. The F1-score is an evaluation metric that combines the precision and recall
scores. The false negative rate (FNR) metric is calculated as 1—true positive rate (TPR), also
known as the sensitivity. A lower FNR signifies improved outcomes. Given the context,
a lower FNR is optimal for our use case as it implies fewer missed identifications of the
individuals with an abnormal gait, as compared to falsely identifying those with a normal
gait as abnormal. We show only the sensitivity in the tables because we can calculate the
FNR using Equation (7).

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Sensitivity =
TP

TP + FN
(5)
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Specificity =
TN

TN + FP
(6)

FNR =
FN

FN + TP
= 1− TPR (7)

F1 score = 2× Precision× Recall
Precision + Recall

(8)

Six configurations of the cross-validation methods were used in our analysis; each
configuration separated the training and testing data into two subsets.

For the first cross-validation configuration, the training subset was the Caretronic
device being on the right hand and the Empatica on the left hand with the person walking
in both clockwise and counterclockwise directions and the Caretronic device on the left
hand and Empatica device on the right hand with a person walking just in the clockwise
direction, both with and without the impairment glasses. The second, third, and fourth
configurations were also carried out in the same sense but with other combinations of
sessions. In the fifth configuration, the train set consisted of all the sessions in which
a person was walking in a clockwise direction and the test set in which the person was
walking in a counterclockwise direction. In the sixth configuration, the train and test subsets
were interchanged. All the configurations are listed in Table 2 for which the sessions are
referenced in Table 1.

Table 2. Cross-validation configurations.

Configuration Train Sessions (in Equation (1)) Test Sessions

1 1, 2, 3, 5, 6 ,7 4, 8

2 1, 2, 4, 5, 6, 8 3, 7

3 1, 3, 4, 5, 7, 8 2, 6

4 2, 3, 4, 6, 7, 8 1, 2

The cr-features were calculated and the Adaboost, SVM, and K-NN methods were
used. Overall, by utilizing different metrics such as the accuracy, sensitivity, specificity, and
F1-score, an in-depth evaluation of the models’ performance was completed.

4. Results

In this section, the results are presented based on two principal methodologies: the
supervised machine-learning approach described in Section 4.1 and the scatter plot repre-
sentations in Section 4.2. Each subsection details the variation observed in the gaits and
their classifications.

Table A1 in Appendix A delineates the demographics and personal data of the partic-
ipants. The inclusion of personal data alongside raw accelerometer data did not lead to
significant improvements in the evaluation metrics of the methods employed.

4.1. Supervised Learning Results

The detailed findings obtained from the personalized supervised learning techniques
are tabulated in Table A2 in Appendix A (column names abbreviated) and are summarized
in Figure 6 for configurations 1–4 and Table 3. The results show that the Caretronic
wristband using only the accelerometer sensor performs better than the Empatica E4
wristband with the SVM model, and both wristbands notably surpassed the smartphone
in their respective performance metrics. This is also confirmed in Tables 4 and 5 by a
two-tailed, paired t-test to evaluate the accuracy, specificity, sensitivity, and F1 of the two
different devices. For the SVM model, the critical t-values consistently undershot their
counterparts from the Student’s distribution, a pattern also mirrored by the computed
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p-values. However, this differential in performance efficacy was not consistent for the
AdaBoost and KNN models, being predominantly evident only in the SVM model. A
granular breakdown, contrasting the Caretronic wristband with the smartphone, evinced
values approximating 0.000.

The reasons why the Caretronic wristband outperformed the Empatica device probably
relate to the design purpose. While the former is engineered for task specificity, the latter
assumes a more generic, multipurpose role. A synergistic deployment of both wristbands
for classification further amplifies the accuracy.

In reference to the smartphone, it should be noted that the experimental setup was
conducted where each participant was given a pouch with a smartphone placed within it.
In some cases, the smartphone demonstrated additional movement within the pouch, as
might be common in real life. The wristbands, on the other hand, were tied to the wrist in a
way no unrestricted movement was permitted. Additionally, accelerometers on wristbands
may provide more information than when loosely attached to a body in a mobile phone.
Both issues need further to be analyzed.

Table 3. Average results of supervised learning methods for Empatica E4, Caretronic, and smartphone.
The best results are marked with bold.

Classifier Device Accuracy (%) Sensitivity (%) Specificity (%) F1

ADA Empatica 75.4 77.9 76.7 76.2
Caretronic 82.9 84 81.7 83

Smartphone 65 78.2 77 70.1

KNN Empatica 77.4 83.8 73.7 78.2
Caretronic 82.5 83.4 83.3 83.3

Smartphone 71.9 76.7 73.5 72

SVM Empatica 79.2 80.7 77.7 79.5
Caretronic 86.7 86.7 88.8 86.1

Smartphone 73.3 72.1 75.9 73.6

Figure 6. Plot shows a comparison of three devices used and a combination of features extracted
from two of them (combined). The x-axis 1–4 corresponds to the type of cross validation from Table 2,
based on the accuracy averaged over every subject in the study for the model (SVM), sorted by the
descending order of the y-axis.

Table A3 shows the time complexity of each method for each dataset.
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Table 4. p-Values for each method, comparing between Caretronic and Empatica E4 wristbands. The
best results are marked with bold.

Method p-Value for
Accuracy

p-Value for
Sensitivity

p-Value for
Specificity

p-Value for
F1-Score

ADA 0.06 0.15 0.18 0.06

KNN 0.08 0.92 0.03 0.07

SVM 0.01 0.04 0.03 0.02

Table 5. p-Values for each method comparing between Caretronic and smartphone Xiaomi Redmi 7.
The best results are marked with bold.

Method p-Value for
Accuracy

p-Value for
Sensitivity

p-Value for
Specificity

p-Value for
F1-Score

ADA 0.000 0.3 0.3 0.000

KNN 0.01 0.01 0.16 0.01

SVM 0.000 0.000 0.01 0.000

4.2. Semi-Supervised Learning Results

Two scatter plots are presented in Figures 7 and 8 illustrating the gait data for subjects
16 and 11 constructed from 2D t-SNE-transformed data, following the PCA transformation
to 17 dimensions from 169. These graphical representations provide a visual differentiation
of the gait classes, demonstrating our semi-supervised learning approach. This segregation
of classes suggests the viability of a semi-supervised learning approach. The clustering
could also provide a tool for classification as in ML. However, it should be noted that
Figure 7 is an example of distinctive visual separation, and Figure 8 represents an average
one. There is no point in presenting most similar walks with and without goggles as there
is no relevant difference.

The performance of individual test subjects varied significantly. Some were disoriented
when wearing the goggles, while others remained unaffected, walking as they normally
would without goggles.

In real life, the new data points incorporated enable a re-calculation of the t-SNE and
the median center. This could be carried out in the 2D t-SNE space, using the Euclidean
distance measure as an evaluation metric. If these newer data points begin to diverge from
the calculated center, it might indicate abnormal gait classes.

Figure 7. This scatter plot is a two-dimensional TSNE representation of data for subject 16.
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Figure 8. This scatter plot is a two-dimensional TSNE representation of data for subject 11.

5. Conclusions

The primary focus of this research is to contrast the accelerometer positioning on
wristbands with that of a mobile phone in a pouch, with the aim of detecting degradation
in gait. All approaches used the same conventional machine-learning techniques and
relied on a sole 3D accelerometer. The selection of the two wristbands was informed
by our familiarity with their operation and to elucidate variations inherent within the
wristband methodology.

A new dataset with 17 test subjects was obtained and can be used by other researchers
for benchmarking (see Data Availability Statement).

In a prior investigation [2], it was demonstrated that employing multimodal sensors in
devices yielded sufficient accuracy when detecting gait abnormalities. However, our study
demonstrated that even single-sensor devices can deliver commendable performance by
implementing an altered algorithm comprising classical computational machine-learning
methods. Our previous study differs in several ways from [2]: We developed a personalized
model, while they developed a generalized model that identifies gait abnormalities in a
chosen population. Second, the comparison between two wristbands and a smartphone was
performed. Next, the adoption of a lone accelerometer not only reduces the costs associated
with buying the device but also lowers the energy consumption, thereby enabling its
utilization in low-power applications. Furthermore, the compact, light form and ease of
attachment of such a device is an added advantage. Along the way, it was established
that Caretronic’s affordable wristband, available at a modest price of only a few tens of
EUR, achieves better accuracy than the more expensive Empatica E4 wristband in our
specific scenario. However, it should be noted that the novel wristband is focused on
specific purposes, while Empatica E4 is a rather general-purpose wristband. In these tests,
the SVM model gave similar results to those reported in [2] with a computationally more
demanding convolution neural network (CNN). Also, we noticed that combining two
quality wristbands produces better results.

Several published studies report high accuracy levels exceeding 99% for tasks compara-
ble to ours. Specifically, Thakur et al. documented a performance accuracy of 99.87% while
Lee et al. reported an accuracy of 99.38% [43,44]. Nonetheless, it is crucial to acknowledge
that the experimental conditions in these studies diverged from ours. For instance, even
upon detailed visual analysis, it was evident that certain participants exhibited minimal
gait alterations when wearing the goggles, especially as the experiment progressed. In
predicting future falls, it is a well-acknowledged premise that achieving absolute perfection
is unattainable; consequently, experimental designs should aim to facilitate only proba-
bilistic predictions. Moreover, the experiment should enable differentiation and ranking of
the methods.

The limitations of this study are centered around the issue of the mobile phone not
being firmly attached to an individual, which the wristbands were. This was the chosen
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scenario, while it is assumed that the 3D accelerometer in a mobile phone when firmly
attached to the wrist would achieve similar results than those of the wristbands. Therefore,
a mobile phone in a pouch or a bag is one of the real-life scenarios and therefore the study
represents a valid comparison under those circumstances. Also, wristbands can be loosely
placed on a wrist, causing additional movement, which was not allowed in this experiment.

The second limitation is that the clustering algorithms were used only for the visual
analysis, whereas they could be used for classification as well. This is also one of our
future projects.

Future work should encapsulate several placements of mobile phones, applying
classification procedures for clustering and combining several sensors. One of the inter-
esting ideas is to include two accelerometers in the same wristband, because the measure-
ments in our scenarios indicate significant improvements while ensuring low costs and
energy consumption.
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Appendix A

Table A1. Personal data of test subjects.

Total Number of Test
Subjects Age Weight Height Female Right-Handed

17 27.5± 6.7 78.8± 17.3 181± 9.8 3 16

Table A2. All results (for each person, device, and method) gathered in one massive table.

Test Subject Classifier Device ACC (%) SENS (%) SPEC (%) F1

1

ADA
Empatica 78.4 83.3 73.7 78.9
Caretronic 89.2 86.1 92.1 88.6
Smartphone 51.6 53.3 50 51.6

KNN
Empatica 77 77.8 76.3 76.7
Caretronic 83.8 86.1 81.6 83.8
Smartphone 74.2 66.7 81.2 71.4

SVM
Empatica 72.2 86.4 58.7 75.2
Caretronic 72.2 64.7 78.9 68.8
Smartphone 71 73.3 68.8 71

https://portal.ijs.si/nextcloud/s/NdJKXpT8WrqTqZj
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Table A2. Cont.

Test Subject Classifier Device ACC (%) SENS (%) SPEC (%) F1

2

ADA
Empatica 72.4 71.8 73 72.7
Caretronic 80.3 92.3 67.6 82.8
Smartphone 62.5 100 75 72.7

KNN
Empatica 63.2 61.5 64.9 63.2
Caretronic 72.4 74.4 70.3 73.4
Smartphone 93.8 100 87.5 94.1

SVM
Empatica 59.1 63.8 54.3 61.2
Caretronic 86.8 84.2 89.5 86.5
Smartphone 100 100 100 100

3

ADA
Empatica 61.8 63.2 60.5 62.3
Caretronic 77.6 94.7 60.5 80.9
Smartphone 54.5 100 92.4 69.4

KNN
Empatica 57.9 60.5 55.3 59
Caretronic 76.3 68.4 84.2 74.3
Smartphone 69.7 64.7 75 75.7

SVM
Empatica 69.9 57.4 82.6 65.9
Caretronic 78.9 78.9 76.3 76.7
Smartphone 59.7 70.6 68.8 69.7

4

ADA
Empatica 76 75.7 76.3 75.7
Caretronic 74.7 81.1 68.4 75.9
Smartphone 90 88.2 92.3 90.9

KNN
Empatica 92 89.2 94.7 91.7
Caretronic 77 77.8 76.3 76.7
Smartphone 66.6 52.9 84.6 53.6

SVM
Empatica 96.8 93.5 100 96.6
Caretronic 100 100 100 100
Smartphone 56.7 52.9 69.2 68.8

5

ADA
Empatica 65.8 71.1 60.5 67.5
Caretronic 81.6 78.9 84.2 81.1
Smartphone 57.6 94.1 91.2 69.6

KNN
Empatica 71.1 84.2 57.9 74.4
Caretronic 78.9 65.8 92.1 75.8
Smartphone 61.6 58.8 62.5 58.8

SVM
Empatica 70.5 72.3 68.8 70.8
Caretronic 73.7 78.9 68.4 75
Smartphone 57.6 58.8 75 51.3

6

ADA
Empatica 81.6 81.6 80.7 83.2
Caretronic 69.7 60.5 78.9 66.7
Smartphone 50 56.4 56.2 51.5

KNN
Empatica 60.5 70.6 86.8 54.4
Caretronic 82.9 86.8 78.9 83.5
Smartphone 73.5 83.3 62.5 81.6

SVM
Empatica 77.2 80.4 73.9 77.9
Caretronic 88.6 77.8 100 87.5
Smartphone 82.4 77.8 87.5 77.8
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Table A2. Cont.

Test Subject Classifier Device ACC (%) SENS (%) SPEC (%) F1

7

ADA
Empatica 69.9 61.1 78.4 66.7
Caretronic 84.9 91.7 78.4 85.7
Smartphone 69.7 52.9 87.5 64.3

KNN
Empatica 76.7 97.2 56.8 80.5
Caretronic 76.7 58.3 94.6 71.2
Smartphone 66.7 52.9 81.2 62.1

SVM
Empatica 64.1 63 65.2 63.7
Caretronic 68.4 77.8 76.3 66.7
Smartphone 66.7 58.8 75 64.5

8

ADA
Empatica 68.4 55.3 81.6 63.6
Caretronic 77.6 76.3 78.9 77.3
Smartphone 56.2 94.1 86.7 90

KNN
Empatica 71.1 84.2 57.9 74.4
Caretronic 93.4 100 86.8 93.8
Smartphone 62.5 52.9 73.3 60

SVM
Empatica 65.4 84.4 52.2 66.7
Caretronic 97.1 100 94.4 97.1
Smartphone 62.5 58.8 66.7 62.6

9

ADA
Empatica 69.9 75.7 63.9 71.8
Caretronic 72.6 78.4 66.7 74.4
Smartphone 55.9 72.2 87.5 60

KNN
Empatica 75.3 70.3 80.6 74.3
Caretronic 89 94.6 83.3 89.7
Smartphone 52.9 72.2 68.8 61.9

SVM
Empatica 75 78.3 71.7 75.8
Caretronic 63.2 73.7 52.6 66.7
Smartphone 70.6 55.6 57.5 66.7

10

ADA
Empatica 81.3 81.6 81.1 81.6
Caretronic 86.7 92.1 81.1 87.5
Smartphone 57.6 52.9 68.8 51.4

KNN
Empatica 81.3 78.9 83.8 81.1
Caretronic 80 73.7 86.5 78.9
Smartphone 90.9 94.1 87.5 91.4

SVM
Empatica 82.4 73.9 91.1 81
Caretronic 77.8 72.2 83.3 76.5
Smartphone 72.7 70.6 75 72.7

11

ADA
Empatica 90.7 84.2 97.3 90.1
Caretronic 84 84.2 83.8 84.2
Smartphone 64.7 100 70.6 73.9

KNN
Empatica 80 89.5 70.3 81.9
Caretronic 77 77.8 76.3 76.7
Smartphone 61.8 58.8 64.7 60.6

SVM
Empatica 80.4 76.1 84.8 79.5
Caretronic 100 100 100 100
Smartphone 64.7 64.7 64.7 64.7

12

ADA
Empatica 93.4 86.8 100 93
Caretronic 75 71.1 78.9 74
Smartphone 63.6 70.6 56.2 66.7

KNN
Empatica 90.8 92.1 89.5 90.9
Caretronic 98.7 97.4 100 98.7
Smartphone 72.7 70.6 75 72.7
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Table A2. Cont.

Test Subject Classifier Device ACC (%) SENS (%) SPEC (%) F1

SVM
Empatica 92.4 97.8 87 92.8
Caretronic 100 100 100 100
Smartphone 66.7 76.5 56.2 70.3

13

ADA
Empatica 54.2 91.4 81.1 66
Caretronic 95.8 97.1 94.6 95.8
Smartphone 87.9 100 76.5 88.9

KNN
Empatica 87.5 92.9 91.9 86.6
Caretronic 93.1 88.6 97.3 92.5
Smartphone 54.5 62.5 52.9 60

SVM
Empatica 92.4 89.1 95.7 92.1
Caretronic 97.4 100 94.7 97.4
Smartphone 63.6 62.5 64.6 64.7

14

ADA
Empatica 78.1 88.9 67.6 80
Caretronic 84.9 77.8 91.9 83.6
Smartphone 78.8 100 58.8 82.1

KNN
Empatica 80.8 97.2 64.9 83.3
Caretronic 94.5 94.4 94.6 94.4
Smartphone 93.9 93.8 94.1 93.8

SVM
Empatica 93.5 89.1 97.8 93.2
Caretronic 97.1 94.1 100 97
Smartphone 97 100 94.1 97

15

ADA
Empatica 71.1 86.8 55.3 75
Caretronic 96.1 100 92.1 96.2
Smartphone 70 50 92.9 56.8

KNN
Empatica 67.1 81.6 52.6 71.3
Caretronic 72.4 84.2 60.5 75.3
Smartphone 60 62.5 67.1 60

SVM
Empatica 84.8 83.4 81.7 84.9
Caretronic 94.3 100 88.9 94.4
Smartphone 76.4 68.8 86.7 69.7

16

ADA
Empatica 100 100 100 100
Caretronic 88.3 76.3 100 86.6
Smartphone 81.2 62.5 100 76.9

KNN
Empatica 100 100 100 100
Caretronic 83 98.7 97.4 100
Smartphone 82.2 82.2 82.2 82.2

SVM
Empatica 70.7 83.8 56.5 74.3
Caretronic 78.9 84.2 73.7 80
Smartphone 84.4 87.5 81.2 87.1

17

ADA
Empatica 69.3 65.8 73 68.5
Caretronic 90.7 89.5 91.9 90.7
Smartphone 54.3 83.3 76.5 76

KNN
Empatica 84 97.4 70.3 86
Caretronic 74.7 92.1 56.8 78.7
Smartphone 85.7 77.8 94.1 84.8

SVM
Empatica 100 100 100 100
Caretronic 100 88.9 100 95
Smartphone 94.3 88.9 100 94.1
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Table A3. Results of computation time of each method and for each dataset.

Classifier Device Time (s)

ADA Empatica 1.2454
Caretronic 1.1669

Smartphone 0.8609

KNN Empatica 0.4867
Caretronic 0.4775

Smartphone 0.5057

SVM Empatica 0.3892
Caretronic 0.3801

Smartphone 0.3953

The experimental protocol was conducted as follows:

1. Three-kilogram weights were affixed to each of the participant’s legs to simulate an
elderly gait.

2. The participant affixed the Caretronic wristband to their left wrist and the Empatica
E4 wristband to their right wrist.

3. The participant proceeded to walk in a predefined loop for a duration of 4 min in one
direction. Following this, they reversed their direction and continued walking for
another 4 min.

4. The participant interchanged the positions of the Caretronic wristband and Empatica
E4 on their wrists.

5. The participant repeated step 3.
6. Finally, all the aforementioned steps were repeated, but the participant wore impair-

ment glasses.

Due to the limited size of our participant group, we did not observe any discernible
effects attributable to their individual characteristics within the context of the experiment.
Furthermore, none of the participants exhibited any notable health conditions that would
significantly impact their gait.
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