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Abstract: The impedance change in an induction coil surrounding a metal tube adapter is investigated
using the truncated region eigenfunction expansion (TREE) method. The conventional TREE method
is inapplicable to this problem as a consequence of the numerical overflow of the eigenfunctions of
the air–metal multi-subdomain regions. The difficulty is surmounted by a normalization procedure
for the numerical eigenfunctions obtained from the 1D finite element method (FEM). An efficient
algorithm is devised by the Clenshaw–Curtis quadrature rule for integrals involving the numerical
eigenfunctions. The numerical results of the TREE and FEM simulation coincide very well in all cases,
and the efficiency of the proposed method is also confirmed.
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1. Introduction

A tube adapter is a component connecting two tubes of different diameters. The
standard analytical method of Dodd and Deeds [1] is unable to investigate the interaction
of an induction coil with a metal tube adapter due to the end effects involved in this problem.
The truncated region eigenfunction expansion (TREE) method, pioneered by Hannakam
and Tepe [2], and developed by Theodoulidis, Kriezis, and Bowler [3–9] for the modeling of
the eddy current nondestructive testing (EC NDT), is capable of analyzing the end effects
and establishing analytical models. However, the successful implementation of TREE for
the model of end effects depends on the solution of relevant eigenvalue equations, which
are transcendental, and complex roots should be determined. Conventionally, the Newton–
Raphson algorithm [10–13] or contour integral based on the Cauchy’s theorem [14–17] are
applied to solve the eigenvalue equations. A novel method based on the Sturm–Liouville
theory and Galerkin approach has been proposed recently [18–20], which greatly simplifies
the process of locating the complex eigenvalues.

However, the TREE method has hitherto been available only for problem of the
air–metal region of two subdomains. For a problem involving the region of three air–metal
subdomains, the source should be decomposed into the odd and even parts, if possible,
to reduce the problem to the two subdomains [6,8,21–23]. No solutions for the problem
involving regions of more subdomains have yet been found in the literature. The difficulty
lies in the fact that the symbolic piecewise eigenfunctions for regions of three or more
subdomains will become extremely clumsy, and more seriously, they are very prone to
numerical overflow with the complex argument, especially when the argument has a
relatively large imaginary part. Nevertheless, the issue of numerical overflow should not be
superficially ascribed to the multi-subdomain regions but rather to the formally constructed
eigenfunctions. By a proper normalization of the eigenfunctions, the overflow could be
evaded, and the TREE method should become applicable to problems of multi-subdomain
regions. In this work, the normalization of complex eigenfunctions is achieved based on
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the approach of [19], and a problem including regions of three subdomains (See Figure 1) is
solved with TREE.
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Figure 1. Side view of a metal tube adapter encircled by a coaxial coil.

In Section 2, the TREE solution is given for a metal tube adapter surrounded by a
coaxial coil. The permeability of the metal is not restricted to µ0. In Section 3, a method
successful in dealing with the overflow issue is devised. The numerical eigenfunctions are
obtained by the 1D FEM solution of the Sturm–Liouville equations and normalized, and
the Clenshaw–Curtis quadrature is applied to the computation of the integrals involving
the numerical eigenfunctions. By this strategy, efficient computation of the matrix ele-
ments can be contrived. In Section 4, the TREE results are compared with those from the
FEM simulation.

2. Formulation

A metal tube adapter of conductivity σ and permeability µ = µrµ0 (µr is supposed to
be constant) is encircled by a coaxial induction coil excited by a time harmonic current of
frequency ω and amplitude I (See Figure 2). The geometry of the coil and tube adapter is
shown in Figure 1. A perfect electric boundary is imposed at z = 0 and z = b to discretize
the eigenvalues of this boundary value problem (BVP).
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The solution domain is divided into five regions along the r-axis (See Figure 1). The vector
potentials A1 to A5 satisfy the Laplace or Helmholtz equations in the corresponding regions:

∇2A1,5 = 0 (1)

∇2A2,3,4 = k2A2,3,4 (2)

where k =
√

iωσµ0µr is the wavenumber of the metal.
Only the ϕ-component of the vector potential exists due to the axisymmetry of the

BVP, i.e., A = Aeϕ, and the vector Laplacian of Equations (1) and (2) is reduced to

∇2
ϕ =

∂2

∂r2 +
1
r

∂

∂r
− 1

r2 +
∂2

∂z2 (3)

2.1. Vector Potential of the Source Coil

The formulation of the source vector potential can be obtained by the source expansion
of the Poisson equation [24,25]. The vector potential of the coil can be written in the form
outlined in Figure 3,

AI(r, z) = ST(z)I1(αr)C(e)
1 (4a)

AI I(r, z) = ST(z)
[
I1(αr)C(e)

2 + K1(αr)D(e)
2 + V(r)

]
(4b)

AI I I(r, z) = ST(z)K1(αr)D(e)
3 (4c)
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Where the source vector V(r) is

V(r) =

v1(r)
v2(r)

...


with the elements

vi(r) = κiL1(αir) (5)
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where αi = iπ/b, and Ln(x) is the modified Struve function of order n, and

κi =
2µ0 J
iα2

i
sin
[αi

2
(z1 − z2)

]
sin
[αi

2
(z1 + z2)

]
(6)

Other matrices and vectors in (4a)–(4c) are

α =

α1 0 · · ·
0 α2 · · ·
...

...
. . .

, I1(αr) =

I1(α1r) 0 · · ·
0 I1(α2r) · · ·
...

...
. . .

, K1(αr) =

K1(α1r) 0 · · ·
0 K1(α2r) · · ·
...

...
. . .

, S(z) =

sin(α1z)
sin(α2z)

...

,

where In(x) and Kn(x) are the modified Bessel functions of the first and second kinds of
order n, respectively, and C(e)

1 , C(e)
2 , D(e)

2 , D(e)
3 are the coefficients to be determined. With

the interface conditions of Br and Hz at r = r1 and r = r2, the coefficients can be found:

C(e)
1,i = κi[χ(αir1)− χ(αir2)] (7a)

C(e)
2,i = −κiχ(αir2) (7b)

D(e)
2,i = κiη(αir1) (7c)

D(e)
3,i = κi[η(αir1)− η(αir2)] (7d)

where
χ(x) = x[K1(x)L0(x) + K0(x)L1(x)] (8a)

η(x) = x[I1(x)L0(x)− I0(x)L1(x)] (8b)

For the function χ(x) used for the subsequent analysis, it is advisable to adopt an
alternative form for the practical evaluations, namely

χ(x) =


x2

2

m0
∑

m=0

(x/2)2m

Γ(m+3/2)

[
K1(x)

Γ(m+3/2) +
xK0(x)

2Γ(m+5/2)

]
, x < 15

1 + x
π2

m1
∑

m=0

Γ2(m+1/2)
(x/2)2m

[
K0(x)

m−1/2 −
K1(x)
x/2

]
, x ≥ 15

(9)

Expression (9) is obtained by the Maclaurin and asymptotic expansions of Ln(x) [26],
and high accuracy can be achieved by setting m0 = 23 and m1 = 10, respectively.

2.2. Impedance Change in the Coil Encircling the Metal Tube Adapter

The vector potentials in the five regions of Figure 2 are expansible by the separation
of variables

A1(r, z) = ST(z)I1(αr)C1 (10a)

A2(r, z) = FT(z)[I1(P1r)C2 + K1(P1r)D2] (10b)

A3(r, z) = GT(z)[I1(P2r)C3 + K1(P2r)D3] (10c)

A4(r, z) = HT(z)[I1(P3r)C4 + K1(P3r)D4] (10d)

A5(r, z) = ST(z)
[
I1(αr)C(e)

1 + K1(αr)D(s)
]

(10e)
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where P1, P2, and P3 are the eigenvalue matrices of regions 2, 3, and 4, respectively,

P1 =

p1,1 0 · · ·
0 p1,2 · · ·
...

...
. . .

, P2 =

p2,1 0 · · ·
0 p2,2 · · ·
...

...
. . .

, P3 =

p3,1 0 · · ·
0 p3,2 · · ·
...

...
. . .

,

and

F(z) =

 f1(p1,1, z)
f2(p1,2, z)

...

, G(z) =

g1(p2,1, z)
g2(p2,2, z)

...

, H(z) =

h1(p3,1, z)
h2(p3,2, z)

...


are the axial eigenfunctions satisfying the relevant Sturm–Liouville equations:

d2 fi(z)
dz2 − k2

1(z) fi(z) = −p2
1,i fi(z), fi(0) = fi(b) = 0 (11a)

d2gi(z)
dz2 − k2

2(z)gi(z) = −p2
2,igi(z), gi(0) = gi(b) = 0 (11b)

and
d2hi(z)

dz2 − k2
3(z)hi(z) = −p2

3,ihi(z), hi(0) = hi(b) = 0 (11c)

with

k1(z) =
{

k, b1 ≤ z ≤ b3
0, others

(12a)

k2(z) =
{

k, b2 ≤ z ≤ b3
0, others

(12b)

and

k3(z) =
{

k, b2 ≤ z ≤ b4
0, others

(12c)

Taking account of the interface conditions of Br and Hz at r = a1, r = a2, r = a3, and
r = a4, the following equations for the coefficients C2, C3, C4, D1, D2, and D3 can be derived

b
2

I1(αa1)C1 = T1[I1(P1a1)C2 + K1(P1a1)D1] (13a)

TT
1αI0(αa1)C1 = P1[I0(P1a1)C2 −K0(P1a1)D2] (13b)

I1(P1a2)C2 + K1(P1a2)D2 = T2[I1(P2a2)C3 + K1(P2a2)D3] (13c)

TT
2 P1[I0(P1a2)C2 −K0(P1a2)D2] = P2[I0(P2a2)C3 −K0(P2a2)D3] (13d)

I1(P2a3)C3 + K1(P2a3)D3 = T3[I1(P3a3)C4 + K1(P3a3)D4] (13e)

TT
3 P2[I0(P2a3)C3 −K0(P2a3)D3] = P3[I0(P3a3)C4 −K0(P3a3)D4] (13f)

T4[I1(P3a4)C4 + K1(P3a4)D4] =
b
2

[
I1(αa4)C

(e)
1 + K1(αa4)D(s)

]
(13g)

P3[I0(P3a4)C4 −K0(P3a4)D4] = TT
4α
[
I0(αa4)C

(e)
1 −K0(αa4)D(s)

]
(13h)
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where

T1 =
∫ b

0
S(z)FT(z)dz (14)

T2 =
∫ b

0

1

µ
(1)
r (z)

F(z)GT(z)dz (15)

T3 =
∫ b

0

1

µ
(2)
r (z)

G(z)HT(z)dz (16)

T4 =
∫ b

0
S(z)HT(z)dz (17)

In (13a)–(13h), the orthogonalities of the eigenfunctions

∫ b

0
S(z)ST(z)dz =

b
2

I (18a)

∫ b

0

1

µ
(1)
r (z)

F(z)FT(z)dz = I (18b)

∫ b

0

1

µ
(2)
r (z)

G(z)GT(z)dz = I (18c)

∫ b

0

1

µ
(3)
r (z)

H(z)HT(z)dz = I (18d)

have been adopted, where I is the identity matrix, and

µ
(1)
r (z) =

{
µr, b1 ≤ z ≤ b3
1, others

(19a)

µ
(2)
r (z) =

{
µr, b2 ≤ z ≤ b3
1, others

(19b)

µ
(3)
r (z) =

{
µr, b2 ≤ z ≤ b4
1, others

(19c)

The orthonormalization relations of (18b)–(18d) will be expounded in Section 3.
The matrix algebra of (13a)–(13h) yields the equation system

A11 A12 0 0
A21 A22 A23 A42
A31 A32 A33 A34

0 0 A43 A44




C2
D2
C4
D4

 =


0
0
0
E

 (20)

where
A11 = U1I1(P1a1)− P1I0(P1a1) (21a)

A12 = U1K1(P1a1) + P1K0(P1a1) (21b)

A21 = I1(P2a3)M3 + K1(P2a3)M1 (21c)

A22 = I1(P2a3)M4 + K1(P2a3)M2 (21d)
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A23 = −T3I1(P3a3) (21e)

A24 = −T3K1(P3a3) (21f)

A31 = TT
3 P2[I0(P2a3)M3 −K0(P2a3)M1] (21g)

A32 = TT
3 P2[I0(P2a3)M4 −K0(P2a3)M2] (21h)

A33 = −P3I0(P3a3) (21i)

A34 = P3K0(P3a3) (21j)

A43 = U2I1(P3a4) + P3I0(P3a4) (21k)

A44 = U2K1(P3a4)− P3K0(P3a4) (21l)

E = TT
4α
[
I0(αa4) + K0(αa4)K−1

1 (αa4)I1(αa4)
]
C(e)

1 (21m)

with
U1 =

2
b

TT
1αI0(αa1)I−1

1 (αa1)T1 (22a)

U2 =
2
b

TT
4αK0(αa4)K−1

1 (αa4)T4 (22b)

M1 = a2[X1I1(P1a2)− X2I0(P1a2)] (22c)

M2 = a2[X1K1(P1a2) + X2K0(P1a2)] (22d)

M3 = a2[X3I1(P1a2) + X4I0(P1a2)] (22e)

M4 = a2[X3K1(P1a2)− X4K0(P1a2)] (22f)

X1 = P2I0(P2a2)T−1
2 (22g)

X2 = I1(P2a2)TT
2 P1 (22h)

X3 = P2K0(P2a2)T−1
2 (22i)

X4 = K1(P2a2)TT
2 P1 (22j)

Solving Equation (20) will give the coefficients C2, D2, C4, and D4, and other coeffi-
cients can be found by

C1 =
2
b

I−1
1 (αa1)T1[I1(P1a1)C2 + K1(P1a1)D2] (23)



Sensors 2023, 23, 8302 8 of 14

C3 = M3C2 + M4D2 (24)

D3 = M1C2 + M2D2 (25)

The coefficient required for the calculation of ∆Z is

D(s) = K−1
1 (αa4)

{
−I1(αa4)C

(e)
1 +

2
b

T4[I1(P3a4)C4 + K1(P3a4)D4]

}
(26)

Accordingly, the coil impedance variation is given by

∆Z = iω
I2

∫
V A(s) · JdV

= π2iωN2

(r2−r1)
2(z2−z1)

2

∞
∑

n=1

cos(αnz1)−cos(αnz2)

α3
n

[χ(αnr2)− χ(αnr1)]d
(s)
n

(27)

where the current density J has been omitted (letting J = 1) to simplify the expression.

3. Eigenfunctions and the Associated Integrals of the Multi-Subdomain Regions

In the conventional TREE models, symbolic piecewise eigenfunctions are used for the
air–metal multi-subdomain regions. With this approach, the TREE method is restricted
to the two-subdomain problems (apart from certain problems of three subdomains). For
problems involving air–metal regions of more subdomains, the overflow of the explicit
eigenfunctions is inevitable, which raises serious difficulties in the numerical evaluations.
Therefore, the eigenfunctions of (11a)–(11c) cannot be treated by the conventional TREE
method.

In [18–20], the eigenvalue problem of (11a)–(11c) is reformulated in terms of a Sturm–
Liouville problem. In accordance with [18–20], the eigenvalues of (11a) can be obtained by
the solution of a generalized eigenvalue equation

KUi = p2
1,iWUi (28)

where K is the stiffness matrix with the elements

Kmn =

b∫
0

1

µ
(1)
r (z)

[
dϕm(z)

dz
dϕn(z)

dz
+k2

1(z)ϕm(z)ϕn(z)
]
dz (29)

and W is the damping matrix of the elements

Wmn =

b∫
0

ϕm(z)ϕn(z)

µ
(1)
r (z)

dz (30)

where ϕm and ϕn are the FEM functions consisting of the Lagrange polynomials defined on
the reference interval −1 ≤ ξ ≤ 1 (the shape functions).

A sparse matrix K will be generated from the FEM basis. Hence, Equation (28) can be
solved by an efficient algorithm, such as Arnoldi iteration [27]. This solution provides both
the eigenvalues p1,i and the eigenvectors Ui, which are the discrete eigenfunctions fi(z).
Moreover, denoting

U = [U1, U2, . . .]T (31)

and by virtue of the vector normalization

U′ =
U√

diag
(
UWUT) (32)
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the eigenfunction normalization

b∫
0

1

µ
(1)
r

f 2
i (z)dz = 1 (33)

can be established automatically. Equations (32) and (33) can be validated by inspecting
the diagonal entries of UWUT and taking Equation (30) into account. Consequently, the
orthonormality of (18b)–(18d) can be established.

The requirement of the accurate and efficient algorithm leads to the choice of high order
Lagrange polynomials for the FEM basis. Here, we choose the cubic Lagrange polynomials

N0(ξ) = − 1
16 (ξ − 1)(3ξ − 1)(3ξ + 1)

N1(ξ) =
9

16 (ξ − 1)(ξ + 1)(3ξ − 1)
N2(ξ) = − 9

16 (ξ − 1)(ξ + 1)(3ξ + 1)
N3(ξ) =

1
16 (ξ + 1)(3ξ − 1)(3ξ + 1)

(34)

The cubic interpolation of the eigenfunction is

fi(z) =
3

∑
e=0

u′l+eNe(z) (35)

where u′l+e is the successive four entries of U′i , and Ne(z) is obtained by (34) with the change
in the variable

ξ =
2z− za − zb

zb − za
(36)

where za and zb are the mesh nodes corresponding to the reference interval. The numerical
overflow of fi(z) is eliminated by this procedure. They are consequently well adapted
for the subsequent integral computation. Furthermore, it appears to be very effective to
evaluate directly the integrals (14)–(17) with the Clenshaw–Curtis quadrature, which is
quoted here for completeness [28–30]

∫ 1

−1
f (x)dx =

n

∑
k=0

wk f (xk) (37)

where the weights wk are given by

wk =
gk
n

(
1−

bn/2c

∑
j=1

bj

4j2 − 1
cos(2jkπ/n)

)
(38)

and the quadrature nodes are

xk = cos
(

kπ

n

)
, k = 0, 1, . . . , n (39)

with

gk =

{
1 , k = 0, n
2 , otherwise

(40)

bj =

{
1 , j = 1

2 n
2 , otherwise

(41)
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It follows from Equations (37)–(41) that the matrix elements of T1 can be computed by

T1,ij =
b∫

0
sin(αiz) f j(z)dz

= b
2

∫ 1
−1 sin

[
b
2 αi(1 + x)

]
f j

[
b
2 (1 + x)

]
dx

= b
2

n
∑

k=0
wk sin(αizk) f j(zk)

(42)

where
zk =

b
2
(1 + xk) (43)

The matrix elements of T2 are likewise given by

T2,ij =
b∫

0

1
µ
(1)
r

fi(z)gj(z)dz

=
b1∫
0

fi(z)gj(z)dz + 1
µr

b3∫
b1

fi(z)gj(z)dz +
b∫

b3

fi(z)gj(z)dz

= b1
2

n
∑

k=0
wk fi

(
z(1)k

)
gj

(
z(1)k

)
+ b3−b1

2

n
∑

k=0
wk fi

(
z(2)k

)
gj

(
z(2)k

)
+ b−b3

2

n
∑

k=0
wk fi

(
z(3)k

)
gj

(
z(3)k

) (44)

where

z(1)k =
b1

2
(1 + xk), z(2)k =

b3 + b1

2
+

b3 − b1

2
xk, z(3)k =

b + b3

2
+

b− b3

2
xk (45)

The same analysis is also applicable to the matrix elements of T3 and T4. A flowchart
is provided in Figure 4 to present the process of the novel approach.
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4. Numerical Validation

The proposed method will be verified with the parameters of the metal tube adapter
and the induction coil given in Tables 1–3. The nonmagnetic alloy UNS (Unified Num-
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bering System) C96400 (70-30 Copper-Nickel) and the magnetic stainless steels S31600
(austenitic) and S32760 (super duplex) [31] are used for the numerical validation. The coil
impedance variations are calculated and plotted for these metal materials with different
coil positions. The TREE results are compared with those from the FEM simulation of
Comsol Multiphysics®(COMSOL Inc., Stockholm, Sweden), shown in Figure 5, where the
theoretical and FEM data are denoted by solid lines and circles, respectively. The reactance
of the isolated induction coil is X0 = ωL0, with L0 = 4.104132 mH, which can be found by
the method such as in [32].

Table 1. Metals used for the tube adapter.

Metal (UNS) Conductivity σ (MS/m) Relative Permeability µr

C96400 2.9 1
S31600 1.33 1.02
S32760 1.25 29

Table 2. Geometry of the metal tube adapter.

Parameter Parameter

a1 (mm) 5 b1 (mm) 40
a2 (mm) 8 b2 (mm) 48
a3 (mm) 11 b3 (mm) 51
a4 (mm) 14 b4 (mm) 59
b (mm) 100

Table 3. Parameters of the induction coil.

Parameter

Inner radius r1 (mm) 15
Outer radius r2 (mm) 18

Axial length z2 − z1 (mm) 6
Number of turns 300
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Figure 5. Normalized impedance variations with the abscissa representing the parameter g. (a) The 

resistance variation. (b) The reactance variation. 
Figure 5. Normalized impedance variations with the abscissa representing the parameter g. (a) The
resistance variation. (b) The reactance variation.

Further calculations are carried out for the coil impedance variation with respect to
the frequencies. For the alloys of lower µr (C96400 and S31600), the calculation frequency
ranges from 1 kHz to 100 kHz, for higher µr (S32760), the frequency interval [100 Hz,
10 kHz] is chosen. The results are shown in Figures 6 and 7, where the TREE data are
plotted by solid lines in connection with the circles representing the data of the FEM
simulation. Other parameters are referred to in Tables 2 and 3.
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Very good agreement is obtained between the TREE and FEM results in the numerical
comparisons. The calculations were implemented on a personal computer of a 4.2 GHz
processor (Intel® Core i7-7700K) and 16 GB RAM. Additional algorithm details are shown
in Table 4, where the frequencies, summation terms (matrix size), mesh elements, and
quadrature nodes used in the computation are listed. The execution time of the eigenvalue
and eigenfunction computation and the total execution time of the TREE evaluation are
also provided. No more than 1.5 s (including the time consumed by the calculation
of eigenvalues and eigenfunctions) are needed for a TREE evaluation. The satisfactory
algorithm efficiency provides evidence for this.

Table 4. Computation configuration and execution time of TREE method.

Metal
(UNS) Frequency Summation Terms Quadrature Nodes Mesh

Elements

Execution Time of
Eigenvalue and

Eigenfunction Computation
Total Execution Time

S31600
10 kHz 30 80 510 0.19 s 0.55 s
100 kHz 40 80 510 0.26 s 0.73 s

S32760
1 kHz 55 80 510 0.36 s 1.00 s

10 kHz 70 90 510 0.54 s 1.30 s

C96400
10 kHz 30 80 510 0.19 s 0.56 s
100 kHz 50 80 510 0.34 s 0.90 s
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5. Conclusions

The interaction of an eddy current coil with a metal tube adapter has been investigated
using the TREE method. The numerical overflow for symbolic eigenfunctions of air–metal
multi-subdomain regions has been removed via the normalization of the eigenvectors, and
a satisfactory computational speed was achieved using the Clenshaw–Curtis quadrature
rule applied to the integrals associated with the numerical eigenfunctions. The calculation
accuracy has been verified by the numerical comparisons, and the efficiency of our approach
has also been confirmed. Considerable potential has been shown for the development of
new analytical models with the aid of the proposed approach.
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