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Abstract: Tea polyphenols, amino acids, soluble sugars, and other ingredients in fresh tea leaves
are the key parameters of tea quality. In this research, a tea leaf ingredient estimation sensor was
developed based on a multi-channel spectral sensor. The experiment showed that the device could
effectively acquire 700–1000 nm spectral data of tea tree leaves and could display the ingredients of
leaf samples in real time through the visual interactive interface. The spectral data of Fuding white
tea tree leaves acquired by the detection device were used to build an ingredient content prediction
model based on the ridge regression model and random forest algorithm. As a result, the prediction
model based on the random forest algorithm with better prediction performance was loaded into
the ingredient detection device. Verification experiment showed that the root mean square error
(RMSE) and determination coefficient (R2) in the prediction were, respectively, as follows: moisture
content (1.61 and 0.35), free amino acid content (0.16 and 0.79), tea polyphenol content (1.35 and 0.28),
sugar content (0.14 and 0.33), nitrogen content (1.15 and 0.91), and chlorophyll content (0.02 and 0.97).
As a result, the device can predict some parameters with high accuracy (nitrogen, chlorophyll, free
amino acid) but some of them with lower accuracy (moisture, polyphenol, sugar) based on the R2

values. The tea leaf ingredient estimation sensor could realize rapid non-destructive detection of key
ingredients affecting tea quality, which is conducive to real-time monitoring of the current quality of
tea leaves, evaluating the status during tea tree growth, and improving the quality of tea production.
The application of this research will be helpful for the automatic management of tea plantations.

Keywords: multi-channel spectral sensor; tea leaf ingredients; nondestructive detection; sensor
design; machine learning; regression model

1. Introduction

Tea (Camellia sinensis (L.) O. Ktze) is one of the most important economic crops in the
world. The world’s top five tea producers are China, India, Kenya, Sri Lanka and Vietnam.
Currently, China’s annual production of tea exceeds 2 million tons. Tea is divided into
green tea, white tea, yellow tea, red tea, black tea, and oolong according to the differences
of variety, production method, and product appearance [1]. As a popular drink, various
countries have introduced relevant standards for tea products. However, when fresh tea
is purchased for commercial purposes, the quality of fresh tea leaves mostly relies on
subjective assessment by practitioners, and there is a lack of systematic detection and
evaluation methods. [2]. As an evergreen perennial crop that grows in acidic soil, tea tree
leaves are an important embodiment of product value. After being processed by a variety of
different techniques, the tea tree leaves can be processed into various tea drinks. Drinking
tea has many health benefits: such as anti-oxidation [3], excitation of the central nervous
system [4], prevention and treatment of diabetes [5], etc. Tea drinks contain tea polyphenols,
free amino acids, soluble sugar, and other ingredients. The difference in the proportion of
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these ingredients is the essential reason for the difference in the quality of tea products, and
carbon, nitrogen and carbon–nitrogen ratio are the important basis for the formation of key
physical and chemical ingredients of tea. Therefore, detecting the ingredient information of
tea tree leaves has great significance for accurately acquiring the growth status of tea trees,
ensuring the quality of tea products, and improving economic value.

The traditional detection methods for tea leaf grading are mainly chemical analysis [6].
Chemical analysis detection methods are complicated. Experimenters need to master
professional operating skills [7], so it is difficult to popularize and apply. At the same
time, analyzing the ingredients of tea tree leaves through chemical analysis is a destructive
detection method [8].

At present, the non-destructive detecting methods of tea tree leaf ingredients include
machine vision detecting methods [9,10], chemical sensor detecting methods [11], spectral
technology detecting methods, etc. Among them, the detection method based on spectral
technology has the advantages of fast detection speed, high detection efficiency, and no
need for pretreatment. It has a good application prospect in the detection of fresh tea leaf
ingredients. At present, many researchers have carried out extensive research. These studies
explored the feasibility of optical detection methods [12] in predicting the ingredients (tea
polyphenols, theanine, etc.) in tea. Some reports proved that spectral technology had
a high application value in the real-time detection of tea ingredient information [13].
Luo et al. [14] proposed an efficient and high-precision prediction model for the content
of tea polyphenols based on near-infrared spectroscopy. Many researchers have also used
spectral technology to detect and predict the moisture content in tea tree leaves [15–17].
Liu et al. [18] studied the moisture content changes during green tea processing based on
near-infrared spectroscopy combined with machine vision technology. Wang et al. [19]
combined hyperspectral techniques with chemical determination methods to propose a
prediction model for moisture, nitrogen, crude fiber content, quality index value, and
other ingredients of different varieties of tea. Wang et al. [20] proposed a non-destructive
detection method of macro elements (phosphorus and potassium) in tea leaves based
on spectral technology. The spectral analysis experiments in the above research were
mainly carried out in the laboratory environment. Spectral data of samples were collected
by a benchtop near-infrared spectrometer or a hyperspectral imager. These instruments
are bulky and costly, which is not conducive to practical application in tea plantations.
Therefore, it is necessary to develop a convenient and accurate real-time detection device
for tea tree leaf ingredient information detection.

With the development of optical sensors, many miniaturized non-destructive detection
devices for agricultural products based on optical sensors have been manufactured. Some
researchers have manufactured a tea tree leaf quality evaluation device based on a miniature
spectrometer [21,22]. Wang et al. [23] developed a portable micro near-infrared spectrom-
eter to detect the content of catechin and caffeine in black tea samples. Ren et al. [24]
identified the quality of Dianhong red tea based on the method of near infrared spec-
troscopy and stoichiometry. However, the existing devices of this kind are mostly aimed at
the detection of single-ingredient parameters. There is still a lack of detection device for
comprehensive ingredients and parameters of tea tree leaves. Based on the above problems,
this research designed a detection device for fresh tea leaf ingredient information based
on a multi-channel spectral sensor. At the same time, spectral real-time analysis software
with a random forest prediction model was loaded to realize rapid and non-destructive
detection of water content, tea polyphenols, total free amino acids, soluble sugar content,
total nitrogen content, and chlorophyll content of fresh tea leaves. At the same time, a
spectral real-time analysis software equipped with a random forest prediction model was
written. The software realizes rapid and non-destructive detection of ingredients of tea
tree leaves. It was expected to provide an effective technical means of real-time monitor-
ing of the current quality of tea leaves, evaluating the status during tea tree growth, and
improving the quality of tea production.
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2. Materials

When light hits the surface of tea tree leaves, the difference in texture and color of
the leaf surface will affect the reflected light. Different chemical bonds and functional
groups inside tea tree leaves will also respond to different information in specific spectral
bands. Therefore, various ingredients of tea tree leaves can be detected through the analysis
and inversion of reflectance spectral information. Based on the above principles, this
research developed a detection device for ingredients of detached tea leaves based on
spectral technology.

The development of tea tree leaf ingredients information detection device mainly
included hardware system design and software design. The hardware system design
included sample chamber, spectral acquisition, power supply, cooling, control, and display
unit design. The software was developed on the Linux system using the Qt software.
Functions such as multi-channel spectral sensor setting, spectral acquisition, spectral
preprocessing, result prediction, result display, and storage could be realized. The prototype
was shown in Figure 1.
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Figure 1. Tea leaf ingredient estimation sensor.

2.1. Hardware System Design
2.1.1. Sample Chamber Unit

The environment for acquiring spectral information of tea tree leaves needed to meet
two principles: The first principle was that the incident light spectrum must cover the
target reflected light spectrum so that the spectral sensor could receive the reflected light of
the target band; the second principle was that the collection environment needed to build a
dark room to avoid the leakage of light sources and the interference of external ambient
light. The sample room unit was designed based on the above principles, and the layout
of the sample room is shown in Figure 2. The sample chamber unit size is 15 cm × 10 cm.
The sample chamber was partially made of resin material by 3D printing in order to reduce
the light reflection phenomenon inside the sample chamber. In the cause of reducing the
influence of external ambient light on the test results, the inside of the chamber was sprayed
with black matte material to construct a dark room.

A multi-channel spectral sensor and light source were installed above the chamber.
A Philips G4 tungsten halogen lamp bead was selected as the light source. Its power was
45 W, the rated voltage was 12 V, and the lamp head width was 4 mm.

A groove was in which to place the diffuse reflectance standard plate and the tea
leaf sample was designed at the bottom of the chamber. Jingyi JY-WS1 diffuse reflection
standard white board was selected as the diffuse reflection standard board. The standard
whiteboard diameter was 50 mm and was made of PTFE (polytetrafluoroethylene) material.
Through testing with the American Ocean Optical Reflectivity Test System, the results
showed that the reflectance of the standard whiteboard was 99.3% and that the uniformity
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was ±0.04% (environment temperature of 25 ◦C, relative humidity of 40%), which met the
design requirements.
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Figure 2. Structure diagram of the sample chamber unit.

2.1.2. Spectral Acquisition Unit

The spectral acquisition unit was designed based on the Ocean Optics PixelSensor
multi-channel spectral sensor. The sensor integrated eight-band simultaneous sensing
photodiodes onto a 9 mm× 9 mm optic. The PixelSensor chip-level optical filter technology
equipped with the sensor directly splits the spectrum into eight independent color bands,
and the background light of other bands was well suppressed, thereby improving the
contrast and sensitivity. The sensor photodiode performance parameters were shown in
Table 1. The sensor integrated OEM circuit boards that supported USB 2.0 communication.

Table 1. Ocean Optics PixelSensor Photodiode performance parameters.

Parameters Value

Dark current 2 nA
Shunt resistor 100 MΩ
Spectral range 700–1000 nm
Response time 6.0 ns

2.1.3. Power Supply Unit

To ensure that the device could work for more than two hours in a tea plantation, the
device used a total of twelve 18650 lithium batteries connected in three series and four
parallel to form a power supply with an output voltage of 11.1 V and a battery capacity of
12 Ah. During the working process, the output voltage of the battery would decrease with
voltage fluctuation. This would cause unstable brightness of the light source, which would
affect the prediction performance. Therefore, two voltage-stabilizing modules were added
to the circuit to realize the smooth operation of the device, as shown in Figure 3.
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2.1.4. Cooling Unit

The light source and multi-channel spectral sensor were sensitive to temperature.
Tungsten-halogen lamps generated abundant heat during work. Since the internal space of
the device was limited and the heat was difficult to dissipate, a cooling unit was designed
to maintain a constant temperature inside the device. The DC fan reduced the heat by
exchanging the air inside the device with the air outside. The air volume was an important
index to measure the cooling capacity of the fan. Excessive air volume would increase
the power consumption burden of device. Therefore, the number of fans needed to be set
according to the calorific value. The calculation method of the total heat exhausted by a
single fan was shown in Equation (1).

H = CP × [(Q/60)× ρ]× ∆Tc × η (1)

where H represents the total heat exhausted by the fan (unit: J); Q represents the air
volume of the fan (unit: CFM). η represents the heat dissipation efficiency of the fan,
generally taken as 60% (unit: %); ∆Tc represents the allowable temperature rise of the
container (unit: ◦C); ρ represents the air density (unit: kg/m3); CP represents the specific
heat capacity (unit: J/(kg·◦C)).

The power of the light source was 45 W. The total power of the multi-channel spectral
sensor, Raspberry Pi, and touch screen assembly was 15 W, and the battery was 40 W.
The total power of the device was about 100 W. Required air volume Q was shown in
Equation (2).

Q =
2.2P
∆Tc

= 5.50CFM (2)

This device used an aluminum alloy shell double fan cooling module with an air
volume of 6.0 cubic feet per minute (CFM).

2.1.5. Control and Display Unit

The control and display unit was designed based on RaspberryPi4 4B, which was
equipped with a BCM2711B0 CPU based on ARM architecture and Broadcom Video Core
VI GPU. Th computing capabilities were capable of running the spectral data analysis
model, which can realize real-time detection. Two USB3.0 and two USB2.0 interfaces were
reserved on the RaspberryPi4 4B, which could communicate directly with the PixelSensor
multi-channel spectral sensor through the USB interface to realize data transmission and
control. Two HDMI ports were reserved for direct connection with the touch screen.

2.2. Software Design

Good interface design could not only give users a good experience but also increase the
efficiency of using the software. Visual interactive interface was designed as shown in Figure 4.
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The software operation process as follows is shown in Figure 5.
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1. Open the software and select a leaf ingredient for detecting (moisture content, free amino
acid content, tea polyphenol content, sugar content, nitrogen content, or chlorophyll content);

2. The software loads prediction model according to the ingredient’s parameter selection;
3. Turn on the light source, place the diffuse reflection standard board into the spectral

collection area of the sample chamber, and click “Diffuse Reflectance Correction”;
4. Open the side panel of the sample chamber, take out the standard board, and put in

the leaf sample. Close the side panel and click “detection” button in the interface to acquire
the spectrum;

5. The software automatically performs reflectance calculation, preprocessing, and
output of prediction results;

6. The software saves the spectral data and prediction results in a .txt file.

2.3. Debugging and Testing

The Raspberry Pi 4B was connected with MIPI DSI capacitive touch display, multi-
channel spectral sensor, etc., to the corresponding interface with the program loaded. The
multi-channel spectral sensor was placed under different light intensity environments, and
spectral data acquired by the device were observed on the MIPI DSI screen to ensure the
effectiveness of the collection of spectral information. The integration time and sampling
speed in the debugging and testing experiment are shown in Table 2.

Table 2. Result of debugging and testing experiment.

Test Items Measurement Value

Integration time 1–1024 ms
Sampling speed (storing to RAM) 0.5 ms/time

Data transmission speed 1.3 ms/time
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3. Methods
3.1. Spectral Acquisition of Tea Tree Leaves

This experiment was carried out in a tea plantation in Yongchuan District, Chongqing,
China. The experimental subject was Fuding white tea trees, as shown in Figure 6. Compre-
hensively considering the quantity of samples required for the chemical experiments, an
abundance of tea tree leaves was selected from two sample plots in the tea plantation. In
total, 33 Fuding white tea trees were selected in each sample plot for sufficient sampling.
During the sampling process, fresh leaves were picked from the selected tea tree canopy in
accordance with the principle of uniformity and randomness. Tea tree leaves were selected
from each tea tree, respectively. A total of 264 samples were obtained, each with about
200 g of tea tree leaves.
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3.2. Chemical Experiments for Ingredient Content Determination

After the spectrum acquisition is completed, the samples of tea tree leaves were
put into the fresh keeping bags for marking and stored at low temperature in a portable
incubator. The ingredients content of samples was measured in the laboratory.

The moisture content (Lwater) of the samples was measured according to Equation (3):

Lwater =
M1 −M2

M1
× 100% (3)

where M1 represents the mass of the sample before drying (unit: g); M2 represents the mass
of the sample after drying (unit: g).

The free amino acid content (Y) was measured by ninhydrin method according to
Equation (4):

Y =
(

C
1000

)× (
V1

V2
)

m× w
× 100% (4)

where V1 represents the total amount of tested liquid (unit: mL); V2 represents the amount
of test liquid used for mensuration (unit: mL); m represents the sample quantity (unit: g);
w is the dry matter fraction of the sample.

The tea polyphenol content was measured using the Lowenthal–Neubauer method.
According to the Lambert–Beer law, the chlorophyll content (M) was measured via

spectrophotometry according to Equation (5):

M =

A652

34.5
× Amount o f extract

Mass o f sample
(5)

where A652 represents the absorbance of the solution at the band of 652 nm; 34.5 represents
the specific absorption coefficient of the solution at band 652 nm.

The sugar content was measured using the anthracene reagent method.
The nitrogen content (D) was measured using the Kjeldahl method according to

Equation (6):

D =
c(V2 −V1)× 14.01

m× 1000
× 100% (6)



Sensors 2023, 23, 571 8 of 17

where c represents the concentration of sodium hydroxide (NaOH) solution during mensu-
ration (unit: mol/L); V1 represents the volume of NaOH solution (unit: mL); V2 represents
the volume of NaOH solution in blank experiment (unit: mL); 14.01 represents the molar
mass value of nitrogen (unit: g/mol); m represents the sample quantity (unit: g).

3.3. Modeling Method
3.3.1. Ridge Regression

Ridge regression (Ridge) is a method for estimating the coefficient of multiple regres-
sion model with highly correlated independent variables. This theory was first proposed by
Hoerl et al. [25]. When the linear regression model has some highly correlated independent
variables, ridge regression is a reliable solution to the imprecision of least squares estima-
tion. It avoids the problem of XTX determinant approaching 0 by artificially introducing
the penalty term kIp, and its principle is shown in Equation (7):

βridge = (XTX + kIp)
−1XTy (7)

where βridge represents the parameter estimation value of ridge regression; IP represents
the identity matrix of order with XTX; k represents the ridge regression coefficient, which is
a constant greater than 0 and represents the artificially introduced error.

3.3.2. Random Forest

Random forest (RF) is a supervised machine learning algorithm [26] which is a bagging
algorithm based on decision trees. Random forest can better learn the potential relationship
between multiple feature dimensions. It has low complexity and strong anti-interference
ability, so it is often used to process high-dimension data.

Random forest regression (RFR) is an important application branch of random for-
est. Random forest regression models, through random sampling and features, combine
multiple classification and regression trees (CART). The prediction results are obtained
in parallel. Based on different shred variables and descendants, all values of each feature
are traversed. The optimal shred variable and descendants are selected according to the
impurity of the descendant after shred. The calculation method is shown in Equation (8):

G(xi, vij) =
nle f t

Ns
H(Xle f t) +

nright

Ns
H(Xright) (8)

where G(xi, vij) represents the unpurity weighted sum of each descendant; xi represents the
tangent variables; vij represents the corresponding shred value of variables; nle f t, nright, Ns
represent the number of left and right descendants training samples and the total number
of training samples after segmentation, respectively. Xle f t, Xright represent training sample
sets of left and right descendants, respectively. H(X) represents the descendant impurity
measure function.

3.3.3. Model Training

The spectral technology analyzed the material content based on the fingerprint map
of the frequency absorption from the hydrogen group (including C-H, N-H, O-H and S-H)
expansion and vibration in different spectral bands. The concentration of the hydrogen
group was positively correlated with the absorption intensity. Therefore, ingredients
composed of the hydrogen group could be described by the spectral characteristics, and
the correlation model of the reflected spectrum and ingredients content was established by
combining the chemical measurement.

The combination of tea tree leaf spectral data and ingredients information established
the tea tree leaves spectrum ingredients database. The ingredient information was set as
labels. The database was divided by 70% and 30% into the modeling set and the validation
set, respectively. The verification set data was used as the sample data set for the device
prototype verification analysis. The modeling set was divided by 70% and 30% into the
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training set and the test set. The training set was analyzed using the ridge regression model
and the random forest model to build the prediction model of tea tree leaves ingredient
content. The performances of both models were tested in the test set.

3.3.4. Evaluation Index

The MAE measures the mean absolute error between the predicted value and the true
value. The smaller the MAE is, the better the prediction effect is, and its definition is shown
in Equation (9):

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

The root mean square error (RMSE) is used to measure how much error will be
generated by the model in the prediction. The smaller RMSE is, the better the prediction
effect is, and its definition is shown in Equation (10):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

Determination coefficient (R2) is used to measure whether the prediction error is larger
or smaller than the mean reference error. The closer the R2 is to 1, the better the prediction
effect is. Its definition is shown in Equation (11):

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (11)

In Equations (9)–(11), yi represents the predicted value; ŷi represents the true value.

4. Results
4.1. Results of Measured Ingredients Content

Some basic statistical data regarding the measured tea leaf ingredients are presented in
Table 3. The moisture content in all samples of tea tree leaves ranged from 1.37% to 14.2%;
the tea polyphenols content ranged from 6.59% to 13.2%; the free amino acid content ranged
from 1.6% to 3.04%; the sugar content ranged from 2.05% to 6.66%; the nitrogen content
and chlorophyll contents ranged from 2.22% to 4.91% and 0.14% to 0.39%, respectively.

Table 3. Some basic statistical data on the measured tea leaf ingredients.

Paraments
(Number of Data = 264) Minimum Value Maximum Value Mean Value Standard Deviation

Moisture content 1.37 14.2 5.06 2.56
Free amino acid content 6.59 13.2 10.21 1.35
Tea polyphenol content 1.6 3.04 2.24 0.3

Sugar content 2.05 6.66 3.58 0.96
Nitrogen content 2.22 4.91 3.96 0.66

Chlorophyll content 0.14 0.39 0.29 0.1

4.2. Spectrum Analysis

Due to the high humidity of the air in the tea plantation during the field experiment,
some samples of fresh tea tree leaves showed over-exposure phenomena with high reflec-
tivity. The spectral curves of these samples could not represent the material information
contained in the samples and it was difficult to correct by mathematical method. Therefore,
the original spectral data of tea tree leaves collected were screened to remove abnormal
data. The spectral data of 220 samples were obtained after elimination. The spectral curve
of tea tree leaves was drawn for each sample, as shown in Figure 7.



Sensors 2023, 23, 571 10 of 17Sensors 2023, 23, 571 11 of 18 
 

 

  
(a) (b) 

Figure 7. Spectral curve: (a) original spectral curve of the tea tree leaf samples; (b) mean reflectance 

curves for high, medium, and low values of nitrogen. 

As shown in Figure 8, the spectral curve of all the tea tree leaf samples had the same 

trend. The reflectivity from 700 nm–760 nm was significantly elevated, and the light re-

flection intensity was higher, but the change was less than that of the 700 nm–760 nm 

reflectance. In the range of 760 nm–1000 nm, the light reflection intensity was high but the 

change was small. All spectral curves showed similar troughs between 970 nm and 980 

nm, which is considered to be the characteristic absorption peak of water and could be 

used to estimate moisture content [27,28]. Research showed that the O-H bond in tea pol-

yphenols was stretched and vibrated strongly near the second-order frequency-doubling 

region, which was reflected in the spectral bands near 1000 nm. These bands could be 

used to estimate tea polyphenol content. The main constitution of sugar in tea was three 

soluble sugars: fructose, glucose, and sucrose. The O-H bond (triple frequency) in soluble 

sugar had strong scattering property near 980 nm and had evident response to the infor-

mation of chemical constitution. This band could be used to estimate tea sugar content 

[29]. Due to the absorption of chlorophyll, 726 nm was a reflection peak. In particular, 710 

nm was the “red edge” position of chlorophyll. This band could be used to estimate the 

chlorophyll content. At about 947 nm, the O-H bond of theanine was bent, and the ab-

sorption capacity increased in a strong vibration near a level of frequency. In 1000 nm 

band, the N-H bond of amino acid molecules was stretched, leading to a strong reflection 

band of the spectrum [30]. In addition, there was a high correlation between the free amino 

acid and the nitrogen elements in the tea tree leaves, which could be used to estimate free 

amino acid and nitrogen contents. The relationship between wavelength and leaf ingredi-

ents is shown in Table 4. 

Table 4. Relationship between wavelength and leaf ingredients. 

 Chlorophyll Nitrogen and Free Amino Acid Tea Polyphenol and Water 

Wavelengths 700 nm Near 1000 nm 700 nm–1000 nm 

 

  
(a) (b) 

Figure 7. Spectral curve: (a) original spectral curve of the tea tree leaf samples; (b) mean reflectance
curves for high, medium, and low values of nitrogen.

As shown in Figure 8, the spectral curve of all the tea tree leaf samples had the same
trend. The reflectivity from 700–760 nm was significantly elevated, and the light reflection
intensity was higher, but the change was less than that of the 700–760 nm reflectance.
In the range of 760–1000 nm, the light reflection intensity was high but the change was
small. All spectral curves showed similar troughs between 970 nm and 980 nm, which is
considered to be the characteristic absorption peak of water and could be used to estimate
moisture content [27,28]. Research showed that the O-H bond in tea polyphenols was
stretched and vibrated strongly near the second-order frequency-doubling region, which
was reflected in the spectral bands near 1000 nm. These bands could be used to estimate
tea polyphenol content. The main constitution of sugar in tea was three soluble sugars:
fructose, glucose, and sucrose. The O-H bond (triple frequency) in soluble sugar had
strong scattering property near 980 nm and had evident response to the information of
chemical constitution. This band could be used to estimate tea sugar content [29]. Due to
the absorption of chlorophyll, 726 nm was a reflection peak. In particular, 710 nm was the
“red edge” position of chlorophyll. This band could be used to estimate the chlorophyll
content. At about 947 nm, the O-H bond of theanine was bent, and the absorption capacity
increased in a strong vibration near a level of frequency. In 1000 nm band, the N-H bond of
amino acid molecules was stretched, leading to a strong reflection band of the spectrum [30].
In addition, there was a high correlation between the free amino acid and the nitrogen
elements in the tea tree leaves, which could be used to estimate free amino acid and nitrogen
contents. The relationship between wavelength and leaf ingredients is shown in Table 4.

Table 4. Relationship between wavelength and leaf ingredients.

Chlorophyll Nitrogen and Free Amino Acid Tea Polyphenol and Water

Wavelengths 700 nm Near 1000 nm 700–1000 nm

4.3. Prediction Model of Tea Tree Leaf Ingredients Content

The leaf ingredients R-Square of train set and test set (R2
c, R2

t), root mean squared
error of train set and test set (RMSEc, RMSEt) were used to evaluate model accuracy and
stability; the results are shown in Table 5.

As shown in Table 3, the prediction ability of random forest model was better than
the prediction model based on the ridge regression. Although the more complex network
structure of the random forest model brought larger calculation, the performance of Rasp-
berryPi 4b met the operation of random forest model. Therefore, the prediction model
based on random forest was selected to load into the tea leaf ingredient estimation sensor.
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4.4. Verification Analysis for Device

In the analysis and detection of unknown tea tree leaf samples, the corresponding
prediction model was used to analyze the spectral data of samples. Then, the ingredient
information of tea tree leaves could be detected quickly. Based on the above principles,
verification analysis was carried out to test the detection performance of the tea leaf
ingredient estimation sensor.

The device was used to collect the spectral data of the tea tree leaves and detect the
content of each ingredient in the samples. Moisture content, free amino acid content, tea
polyphenol content, sugar content, nitrogen content, and chlorophyll content predicted
by the device were recorded and compared to the measured value of ingredient content
measured via chemical experiment, as shown in Figure 8.

The predicted value–measured value (real value) fitting curve (P-R curve) of each
ingredient was drawn as Figure 9. The mean absolute error (MAE), root mean square error
(RMSE), and determination coefficient (R2 score) were calculated according to the predicted
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value of the device and measured value of the chemical experiment, which was used as the
standard to evaluate the prediction accuracy of the device, as shown in Table 5.

Table 6 shows that the sensors can predict some parameters with high accuracy (nitro-
gen, chlorophyll, free amino acid) but some with lower accuracy (moisture, polyphenol,
sugar) based on the R2 values.

Table 5. Evaluation index scores of ridge regression model (RR) and random forest model (RFR).

Paraments Models
Train Set Test Set

R2
c RMSEc R2

t RMSEt

Moisture content
RR 0.40 1.91 0.37 1.95

RFR 0.41 1.54 0.40 1.65

Free amino acid content
RR 0.47 1.40 0.52 1.41

RFR 0.66 0.23 0.65 0.33

Tea polyphenol content RR 0.22 4.57 0.32 5.58
RFR 0.24 1.12 0.46 1.67

Sugar content RR 0.49 3.09 0.52 2.59
RFR 0.34 0.12 0.70 0.13

Nitrogen content RR 0.48 1.63 0.56 1.24
RFR 0.92 1.49 0.50 1.51

Chlorophyll content RR 0.78 0.97 0.78 0.94
RFR 0.90 0.08 0.82 0.09
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Table 6. Accuracy evaluation table of prediction results.

Paraments Mean Absolute Error
(MAE)

Root Mean Square Error
(RMSE)

Determination Coefficient
(R2 Score)

Moisture content 1.35 1.61 0.35
Free amino acid content 0.12 0.16 0.79
Tea polyphenol content 1.10 1.35 0.28

Sugar content 0.12 0.14 0.33
Nitrogen content 0.83 1.15 0.91

Chlorophyll content 0.01 0.02 0.97

5. Discussion

At present, the main methods for the quality detection of tea tree leaves are sensory
review and physical/chemical testing. These traditional detection methods are all de-
structive testing methods, and there are problems, such as serious subjective error and
tedious operation, respectively. The existing devices of this kind are mostly aimed at the
detection of single ingredient parameters. There is still a lack of detection devices for
the comprehensive ingredients and parameters of tea tree leaves [12,31–34]. Among this
research, a device for detecting the ingredient of tea tree leaves was developed based on
the spectral technology to realize the rapid non-destructive detection of the key ingredients
affecting the quality of tea. It is beneficial to realize the status detection of tea tree during
the growth period, evaluate the current quality of tea tree leaves, and improve the quality
of tea production made by the tea tree leaves.

According to the experimental results of tea tree leaf ingredient prediction, the pre-
diction ability of random forest regression model was better than that of ridge regression
model. This is because the network depth of the random forest model is deeper than that
of the ridge regression model. Therefore, the random forest model is more suitable for
analyzing and mining the material information contained in the high-dimensional spectral
data in this research.

According to the evaluation indexes score in the verification analysis, the tea leaf
ingredient estimation sensor had the highest accuracy for the prediction of chlorophyll
content in all six ingredients paraments. This is because the device effectively collected the
spectral reflection peak and reflection valley of the chlorophyll at 700 nm [35]. Therefore,
the significant correlation between the chlorophyll content and the spectrum data can be
effectively obtained [36].

The accuracies for the prediction of nitrogen content and free amino acid content in
tea leaves were the second- and third-highest. This indicated that the device effectively
collected the spectral data of the spectral absorption enhancement region caused by amino
acid O-H bond bending and the spectral data of the strong reflection region caused by N-H
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bond stretching near 1000 nm. Therefore, the spectral data highly correlated with proteins
and amino acids were obtained by the device.

In the fitting curve of moisture content prediction results, there were some discrete
values in the lower-left and upper-right parts of the fitting regression line, which may be
due to the over-aeration phenomenon caused by water mist and small water droplets on
some samples of fresh tea leaves collected. This case affected the accuracy of spectral data
collected by multi-spectral sensors. There was another possible case that the operation error
occurred in the drying weighing experiment, leading to a certain deviation in the predicted
results [37]. After removing the discrete values, the mean absolute error (MAE), root mean
square error (RMSE) and determination coefficient (R2 score) of water content prediction
were 1.00, 1.13, and 0.473 respectively, which significantly improved the prediction accuracy.

The prediction accuracy of tea polyphenol content in the samples was unsatisfactory,
which may be due to the correlation of tea polyphenol content indirectly expressed by the rel-
evant spectral information of chlorophyll and water in the band range of 700–1000 nm [38,39].
Catechins are the main component of tea polyphenols. In this band range, the 2-phenyl-3,4-
dihydro-2H-chromen structure of catechin has a certain overtone overlap with aldehydes and
ARCH functional group of aromatic compounds in the spectral expression [40]. Therefore, it
caused a certain confusion in the spectral correlation analysis.

The next research plan is to use spectral sensors with wider spectrum segments and
combine correlation analysis method to acquire characteristic spectrum band so as to
develop a regression model with better prediction accuracy of tea tree leaf ingredient
information. In the future, we will continue to transfer the proposed device and method
to other application fields [41–43], such as time prediction, signal modeling, and control
systems [44–46]. Relevant technologies will be studied to expand the application scope of
this model in smart agriculture [47] and the food supply chain [48].

6. Conclusions

(1) This research developed a tea leaf ingredient leaf ingredient estimation sensor
based on a multi-channel spectral sensor. Experiments showed that the device could
effectively collect 700–1000 nm spectral data of tea tree leaves and has functions such as
black/white correction and ingredient content prediction. Through the visual interactive
display, it could collect, display, and save the ingredient information of tea tree leaves in
real time.

(2) Using the tea leaf ingredient estimation sensor, spectral data of leaf samples of
Fuding white tea were collected. The ridge regression model and random forest model
were respectively trained to establish each ingredient content prediction model. As a result,
the prediction model based on random forest with better prediction effect was loaded into
the detection device. R2 and RMSE values for the prediction model based on random
forest algorithm of moisture content, free amino acid content, tea polyphenol content,
sugar content, nitrogen content, and chlorophyll content were 1.607 and 0.35; 0.162 and
0.79; 1.354 and 0.284; 0.138 and 0.334; 1.154 and 0.914; and 0.02 and 0.973, respectively.
Results showed that the nitrogen, chlorophyll, and free amino acid content were predicted
with highest performance. The moisture and tea polyphenol content were predicted with
lower performance. The verified experiment showed that the detection accuracy of tea leaf
ingredient estimation sensor loaded with random forest prediction model can meet the
requirements of a tea plantation. When farmers sell fresh tea and tea product manufacturers
purchase fresh tea, the equipment can be used to comprehensively detect and evaluate the
quality of the fresh tea. Compared to the traditional method of subjective grading of fresh
tea, this method can improve the accuracy and efficiency of tea quality assessment.
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