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Abstract: Many individuals worldwide pass away as a result of inadequate procedures for prompt
illness identification and subsequent treatment. A valuable life can be saved or at least extended
with the early identification of serious illnesses, such as various cancers and other life-threatening
conditions. The development of the Internet of Medical Things (IoMT) has made it possible for
healthcare technology to offer the general public efficient medical services and make a significant
contribution to patients’ recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast
cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can
be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures
can be used to achieve this. However, the majority of deep learning (DL)-based image classification
approaches are of a large number of parameters and unsuitable for application in IoMT-centered
imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model
suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight
DTL-based model “MobileNet-SVM”, which is the hybridization of MobileNet and Support Vector
Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against
a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy
of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on
the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The
MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of
precision. According to the simulation findings, the suggested model requires a small computation
speed and time.

Keywords: breast cancer histology; Internet of Medical Things; deep convolutional neural network

1. Introduction

Throughout the world, one of the most important challenges relating to public health
is cancer. With 12.5% of all new instances of cancer worldwide each year, breast cancer
(BC) is currently the most prevalent cancer in the world. In the U.S., women are anticipated
to receive diagnoses for 287,850 new instances of invasive BC and 51,400 new cases of
non-invasive (in situ) BC in 2022. It is anticipated that 2710 new instances of invasive BC
will have been identified in men. About 1 in 833 men may develop BC in their lifetimes. In
the United States, there are more than 3.8 million women who have had breast cancer in the
past. Women who are receiving treatment now and those who have concluded therapy are
both included in this. In American women, BC is the most often diagnosed type of cancer.
About 30% of women’s newly diagnosed cancers are predicted to be BCs in 2022 [1,2]. In
particular, BC is the most widespread malignancy and the main reason for cancer-related
deaths in women globally [3]. As a result, early detection of this condition is essential to
stop its spread and lower the incidence of female morbidity. The likelihood of survival can
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be significantly increased by early diagnosis. Breast cancer (BC) is a diverse illness made up
of several entities with unique biochemical, histological, and clinical characteristics [4]. The
development of these cancerous breast cells causes an outbreak that may spread to nearby
healthy tissues [4]. Radiology pictures, including those from mammography, ultrasound
imaging, and magnetic resonance imaging (MRI), are utilized in the first clinical screening
of the condition [5,6]. However, it is possible that these non-invasive imaging techniques
will not be effective in identifying the malignant spots. To do this, a more thorough analysis
of the malignancy in BC tissues is classically performed using the biopsy procedure. As part
of the biopsy procedure, tissue samples are collected, firmly fixed on tiny glass slides, and
stained to cause the nuclei and cytoplasm more noticeable [7]. The ultimate diagnosis of BC
is subsequently made by pathologists after a microscopic examination of these slides [7].

The human interpretation of intricately detailed histopathology pictures is, however,
a laborious, time-consuming operation that is potentially error prone. Additionally, the
categorization of these pictures based on morphological criteria is rather subjective, which
results in an average diagnostic concordance of 75% [8] among pathologists. The use of
computer-assisted analysis [5,7,9] is, therefore, crucial in helping pathologists interpret the
pictures from histology. Lowering the inter-pathologist differences in diagnostic choices,
specifically, increases the analysis accuracy of BC [7]. However, the intra-class variance and
inter-class evenness inside of the histopathological pictures of BC may not be adequately
challenged by the standard electronic investigative methodologies, instigating from rule-
based systems to ML approaches [10]. Additionally, the majority of these procedures
count on the feature extraction techniques such as scale-invariant feature transform [10],
rapidity robust features [11], and local binary patterns [12], all of which are founded on
supervised data and are susceptible to producing biased outcomes when used to classify
BCH images [13]. The demand for effective breast cancer disease analysis motivates the
implementation of a sophisticated collection of computer models built on numerous layers
of nonlinear processing units [14].

Delays in the discovery of illnesses can be brought on by improper medical examina-
tion, missed follow-up appointments, and trouble accessing a patient’s medical data [15].
The IoMT technology that has been used for a wide range of services is now being used
in the healthcare industry. The way that humans and medical equipment interact when
delivering medical services is undoubtedly changing under the IoMT. For patients, health
specialists, clinics, pharmacological companies, and insurance organizations, IoMT-built
healthcare applications are advantageous. Applications founded on the IoMT for health
care are crucial because they enhance patient care while lowering facility costs [15].

The IoMT enables operative and efficient patient health monitoring, can even make
disease detection early, and can even save a person’s life by starting therapy promptly [16].
The obtainability of modern sensors has enhanced the capabilities of IoMT facilities by
making it possible to accurately and promptly gather a person’s physiological data. How-
ever, the diagnosis system’s accuracy depends on both the image analysis method and
exact data in addition to both. DL-based approaches for job scheduling and sequencing for
IoMT-centered health structures have also been created by researchers [17]. The procedures
necessary for the conventional way of sickness diagnosis are quite expensive and time
consuming. A skilled individual must collect the abnormal material with the aid of the
computer-aided diagnosis system, which pathologists presently use to assist in monitoring
and examining of patients’ health conditions [17]. The report written by the pathologist is
founded on their evaluation of the examples, and practitioners refer to the reports. There
are situations when a dearth of qualified pathologists might impede timely medical action
and postpone the accurate diagnosis of illnesses, threatening the patient’s life. The need for
automatic detection of medical pictures grows as a result [18].

The study of diseased pictures has gained significant attention as a result of the
massive rise in AL and ML. With the increase in serious illness cases worldwide, there is a
growing demand for effective computer-assisted disease detection. Given that the cellular
structure in photographs differs in relation to color, forms, magnitudes, and other functional
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aspects, automated analysis of digital photos of a tissue sample presents several technical
challenges. The accuracy of illness screening has increased thanks to the application of
DL in computer-centered analysis. Disease detection using histological tissue pictures is
now possible because of the development of extremely correct learning networks such as
ConvNet/CNN and Recurrent Neural Network (RNN) [19].

Due to their capacity to inevitably learn complex and sophisticated patterns from
images, DL approaches [20,21] have recently made extraordinary strides in computer vision,
particularly in biomedical image processing. This has encouraged numerous investigators
to use these approaches in the classification of BCH images. Due to the propensity to
proficiently communicate parameters transversely through numerous layers of DL ap-
proaches, CNN in particular is generally exploited in image-associated tasks. However,
AlexNet [22] is regarded as one of the foremost deep CNNs to attain notable accuracy on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) around 2012. Several
CNN-built designs have been suggested all through the previous few ages. The notion
of utilizing deeper networks with reduced convolutional filters were subsequently pre-
sented by VGG architecture [23], which won second place at ILSVRC 2014. The inception
Network [24] and residual network (ResNet) [25] are two pre-trained models that take
advantage of the notion that several weighted reduced convolutional filters might generate
an effective receptive field.

Examining pathological pictures has placed a lot of emphasis on cytological image
analysis for illness identification using computers. Unlike histopathological samples, which
are more difficult to analyze, these pictures are typically characterized by lone or grouped
cells. An extra thorough scan of the illness and its effects on tissue trials may be seen in the
histopathological photos. Aside from that, screening histopathological pictures for illness
analysis is regarded as the gold standard since it is effective at identifying a wide range of
illnesses and tumors [26]. However, the difficulties of extra pathological features showing
in the BCH scans are challenging to the automated disease detection procedure but can
be handled using advanced AI-based approaches. These image analysis techniques can
help doctors identify the actual cause of a patient’s illness and classify morphological traits
associated with prognosis. The early and precise diagnosis of illnesses in IoMT applications
might greatly benefit from automated image analysis; however, owing to the enormous
size of such software, the processing is only feasible on cloud servers or fog nodes.

IoMT devices can be equipped with small, lightweight software to calculate the
pictures locally. A large number of the current research, as described in Section 2, have
achieved excellent illness detection accuracy, but they are computationally costly, rendering
them unsuitable for use in medical devices. To analyze histopathology samples, this
research suggests a unique DTL MobileNet model with fewer parameter sizes and a
significantly lower computing need. The final prognosis is produced by majority voting.
Utilizing quantization, the model is further compacted without significantly affecting its
performance.

In this study, we used two alternative lightweight DTL architectural techniques to
effectively classify the histology of BC using data from the Kaggle breast cancer repository.
The following is a summary of the paper’s key contributions:

• The study proposed a novel MobileNet-SVM model that combines MobileNet DTL
and SVM ML model for BCH scans. This is the first of its kind to the best of
our knowledge.

• A proposed DTL-based BCH image processing model learns critical characteristics
from real-world BreakHis v1 400× BCH samples necessary for the disease’s detection.

• A new model is suggested with minimal size and computing power requirements so
that it may be efficiently integrated into any medical image capture equipment and
utilized to process the data correctly at the source.

• The models for the two lightweights were adjusted to increase the precision of training,
validation and testing.

• The performance of the models was assessed as fully trained frameworks.
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• When applied to a real-life health dataset, the implementation findings confirm the
conclusions of the suggested MobileNet-SVM models. The comparison statement in
the resulting unit demonstrates the model’s effectiveness in predicting illness using
histopathological scans.

Therefore, the accurate classification of the breast malignant class on a precedence
foundation is our major goal. We discovered that the combination of the MobileNet and
SVM approaches, when fine-tuned, performed well in classifying benign and malignant
BreakHis v1 400× BCH pictures.

The rest of this article is alienated into subsequent sections: related works are men-
tioned in Section 2, and summarizes the purpose of the study. The tools and models used
to carry out this investigation are described in Section 3 of the paper. Section 4 discusses
the investigational strategy, and confers the implementation outcomes and analyses. The
discussion of the results in presented in Section 5. Section 6 concludes the investigation
and suggests a course for the future.

2. Related Works

Medical cases can be studied using a variety of medical imagery processes, including
ultrasonography (USG), computed tomography (CT), magnetic resonance imaging (MRI),
and digitally scanned histological pictures. The field of deep learning-based medical
image analysis has grown tremendously during the previous several decades. The study
municipal has devoted itself to modeling AI-centered models for the detection of lethal
illnesses, notably various types of cancer, to avoid patient fatalities owing to late diagnosis.
When working with huge volumes of data, DL-based categorization approaches offer
findings that are more practical, exact, and quick, as mentioned in [27,28]. Bayramoglu,
Kannala, and Heikkila [29] suggested two independently sized CNN models for classifying
histopathological BC pictures.

A cloud-integrated Android app for the detection of breast cancer from a BCH image
was proposed by Chowdhury et al. [27] in 2022. For the prediction of BC, they utilized
ResNet 101, a transfer learning-based model that was trained on 15,616 pictures and tested
on 3904 images. The model’s precision and accuracy were tested on 3904 photos, and they
were both 99.58%. A novel rank-based ensemble method was proposed by Majumdar,
Pramanik, and Sarkar [28] in 2022 by merging the results of three transfer learning CNN
models: GoogleNet, VGG11, and MobileNetV3 Small. To classify breast histopathology
pictures into two categories, the suggested ensemble model is created utilizing the Gamma
function. With classification accuracy scores of 99.16%, 98.24%, 98.67%, and 96.16% for
40×, 100×, 200×, and 400× levels of magnification, respectively, on the publicly available
standard dataset known as BreakHis and 96.95% on another well-known dataset known as
ICIAR-2018, our method outperforms state-of-the-art approaches.

The classification phase of pre-trained networks, which has not received enough
attention, was the focus of Abbasniya et al. [30] study on sixteen different pre-trained
networks. Among all studied convolutional neural networks, the Inception-ResNet-v2,
which combines the benefits of residual and inception networks, has demonstrated the
best feature extraction capabilities for BCH images (CNNs). The grouping of Categorical
Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting
Machine (LightGBM) have provided the best average accuracy during the classification
phase. The suggested method, IRv2-CXL, is evaluated using the BCH Image Classification
(BreakHis) dataset, with experimental findings showing that IRv2-CXL performs better
than existing state-of-the-art methods. A unique hybrid AlexNet-gated recurrent unit
(AlexNet-GRU) model for the detection and classification of lymph node (LN) BC was
deployed by Ahmad et al. [31] in 2022. To classify LN cancer samples, the authors employed
a well-known Kaggle (PCam) dataset. Three models are examined and compared in
this study: the suggested AlexNet-GRU, CNN-LSTM, and convolutional neural network
GRU (CNN-GRU). The experimental results showed that the proposed model performed
significantly better than CNN-GRU and CNN-LSTM models in terms of accuracy, precision,
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sensitivity, and specificity (99.50%, 98.10%, 98.90%, and 97.50%), reducing pathologist
errors that occur during the diagnosis process of incorrect classification. The effectiveness
of the suggested model is examined by comparison with other contemporary ML/DL
algorithms, which demonstrates that the proposed AlexNet-GRU model is computationally
effective. The author offers the AlexNet-BC model, a novel framework for classifying
breast pathologies, relating to that of research conducted by Liu et al. [32]. The ImageNet
dataset is used to pre-train the model, and an enhanced dataset is used to fine-tune it. To
punish overconfident low-entropy output distributions and make the predictions suitable
for uniform distributions, we also developed an improved cross-entropy loss function. The
suggested method is then verified through a series of comparative studies using datasets
from BreaKHis, IDC, and UCSB. The experimental results demonstrate that, at various
magnifications, the suggested method outperforms the state-of-the-art methods.

A single-task CNN model for predicting malignancy level and a multi-task CNN
model for simultaneously predicting magnification and malignancy level are both included
in the suggested model. The single-task CNN model’s average identification rate for
identifying benign and malignant tissue is 83.25%, whereas the multi-task CNN model’s
average recognition rate for identifying benign and malignant tissue is typically 82.13% and
80.10% for magnification level prediction. On the “Wisconsin BC” dataset [33], conducted
a comparative examination of many machine learning (ML) techniques, including “Sup-
port Vector Machine” (SVM), “Naive Bayes” (NB), “Decision Tree” (C4.5), and “K-Nearest
Neighbor” (K-NN). With an accuracy of 97.13%, SVM outperformed all other models. For
the diagnosis of BC, Transfer Learning (TL) also showed promise. On the “BreakHis”
dataset [34], utilized the TL idea utilizing AlexNet CNN architecture for classifying malig-
nant and benign tumors using HI. With Google’s “Inception V3” for BC categorization [35],
used augmentation and TL approaches to address the issue of restricted data availability.
The accuracy of this model was 89%. Reference [36] proposed a DL framework for the TL
technique-based identification and classification of cytology breast pictures.

The features were extracted using CNN-based pre-trained models, including “GoogLeNet”,
“VGGNet”, and “Residual Networks” (ResNet), which were then fed to the Fully Connected (FC)
layer for the classification job using the average pooling method. With an accuracy of 97.25%,
the suggested framework fared better than all existing models. To extract the important visual
traits for the classification of BCH images, ref. [37] introduced a multi-network classification
framework. For feature extraction, pre-trained multi-network Deep CNN (DCNN) models, such
as “DenseNet-121”, “ResNet-50”, “multi-level Inception V3”, and “multilevel VGG-16”, have
been employed. The retrieved features had a high degree of dimension, which increased the
cost of calculation. Therefore, the dimensional reduction has been accomplished using the “Dual
Network Orthogonal Low-Rank Learning” (DOLL) model. Using the Ensemble Support Vector
Machine (E-SVM) classifier, the authors employed fused features and a voting mechanism for
classification [37]. To classify BC Histopathology Images, a non-linear Class Structure-based Deep
CNN (CSDNN) model was proposed. To limit the feature similarity between images belonging
to various classes, some feature space limitations were created and incorporated with CSDCNN.
The accuracy of this model was 93.2% at the patient level and 93.8% at the image level.

To expand the training dataset due to the lack of images, patches must be extracted
from high-quality histopathology images. Reference [38] created a patch-based CNN
classifier (PBC-CNN) for identifying BC high-intensity imaging. Determining the severity
of BC requires the ability to detect mitosis. Reference [39] created a Deep Learning CNN-
based system for the MITOS Histopathological Imaging dataset’s mitotic identification.
The foreground cellular structure from HI has been extracted using the Cluster-based
segmentation method K-means. For feature selection, the CNN model has been applied,
and for feature reduction, PCA (Principal Component Analysis) and Linear Discriminant
Analysis (LDA) have been utilized. The SVM classifier has also been used to differentiate
between mitotic and non-mitotic cells. For this methodology, the accuracy result was 96.8%.
Reference [40] utilized two pre-trained DCNN models, Inception-V3 and Inception-Resnet-
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V2, for BC detection using the BreakHis dataset. To address the uneven distribution of
photos in BC subclasses, various data augmentation techniques were used.

Additionally, the scientists created a brand new unsupervised auto-encoder (AE)
model to perform clustering analysis on histopathology images and to lower the dimen-
sionality of features retrieved by the Inception-Resnet-V2 model. Since invasive cancer cells
have poor contrast and a comparable look to non-invasive regions, segmenting the area
of interest (ROI) on invasive cancer whole slide images (WSIs) is a difficult task. Authors
of reference [41] proposed the concept of TL and the skipped connection-based U-Net
Auto-encoder for the segmentation of WSIs for invasive BC. Reference [42] suggested an
ensemble learning approach to enhance BC classification. For the classification job, the
investigators employed gene-expression data and BCH. Gene expression is 1D data; thus,
using the Convex Hull method [43] and the t-Distributed Stochastic Neighbor embedding
technique, it was transformed into picture data.

In their 2018 study, Bardou, Zhang, and Ahmad [44] examined two machine-learning
methods for automatically classifying breast cancer histology images into benign and
malignant tumors as well as into subclasses of each. The first method relies on the extraction
of a set of manually created features that have been encoded using two coding models (bag
of words and locality-constrained linear coding) and trained by support vector machines,
while the second method relies on the creation of convolutional neural networks. To
improve the convolutional neural network’s accuracy, we have also conducted experimental
tests on “handcrafted features + convolutional neural network” and “convolutional neural
network features + classifier” configurations. Convolutional neural networks beat the
manually created feature-based classifier, according to the results, where we were able
to reach accuracy levels of between 83.31% and 88.23% for multi-class classification and
between 96.15% and 98.33% for binary classification.

The usefulness of Multiple Instance Learning (MIL) for computer-aided diagnosis
of breast cancer patients, based on the interpretation of histopathological pictures, is
investigated by Sudharshan et al. [45], who also suggests a weakly supervised learning
framework. Without having to label every instance, multiple-instance learning involves
grouping instances (pictures) into bags (patients). We contrast several cutting-edge MIL
techniques, including the original ones (APR, Diverse Density, MI-SVM, and citation-kNN)
and more contemporary ones, such as a non-parametric method and a deep learning-based
approach (MIL-CNN). The BreaKHis dataset, which is available to the public and contains
roughly 8000 microscopic biopsy pictures of benign and malignant breast tumors from
82 people, is used for the research.

A CAD system is presented by Anwar et al. [46] in 2020 to categorize BC as benign
or malignant. The four stages of the suggested CAD technique are pre-processing of the
image, feature extraction and fusion, feature reduction, and classification. The ResNet
Deep Convolution Neural Network (DCNN)-extracted fusion features of wavelets packet
decomposition (WPD) and histograms of the oriented gradient are the foundation of the
CAD (HOG). Next, principal component analysis was used to decrease the feature data
(PCA). Finally, various separate classifiers are trained using the reduced features. The
results reveal that a 97.1% accuracy rate was attained.

Convolutional neural networks were proposed by Bayramoglu, Kannala, and Heikkila [29]
in 2016 to classify breast cancer histopathology images regardless of their magnification (CNNs).
We suggest two distinct architectures: a single-task CNN that predicts malignancy and a multi-task
CNN that simultaneously predicts both malignancy and the degree of picture magnification. On
the BreakHis dataset, evaluations and comparisons with earlier findings are made. According to
experimental findings, the performance of the magnification-specific mode was improved by our
magnification-independent CNN approach.

In order to automatically classify hematoxylin-eosin-stained breast cancer microscope
images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using
the gathered dataset, Hameed, Garcia-Zapirain, Aguirre, and Isaza-Ruget et al. [47] devel-
oped a deep learning strategy. The results showed that their proposed model performed
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better than the baseline AlexNet model and the cutting-edge VGG16, VGG19, Inception-v3,
and Xception models, with an accuracy of 98%.

The bulk of the research studies presented in this part is built on intricate structures
that demand a lot of computing. Simple models for illness prediction, such as SVM,
CNNor Naive Bayes, perform substantially less accurately than approaches that utilize
deep learning. The related studies reviewed are summarized in Table 1.

Table 1. Summary of related works.

Authors Models Dataset Accuracy Limitations

Chowdhury et al. [27] ResNet101 BreakHis
dataset 99.58% Used only one DL model for their

study

Majumdar, Pramanik,
and Sarkar [28]

GoogleNet, VGG11,
and MobileNetV3

BreakHis
dataset, ICIAR 2018 99.16% Used only two benchmark

datasets to evaluate their study

Ahmad et al. [31] CNN-GRU BreakHis
dataset 99.50% The study was evaluated against

only two models

Liu et al. [32] AlexNet-BC BreakHis
dataset 96.10%

The lesion area of the BCH images
was not divided for the

implementation of their study

Chang et al. [35] Google’s “Inception
V3

BreakHis
dataset 89% They employed only one DL

model

Bardou, Zhang, and
Ahmad [44] SVM, Ensemble BreakHis

dataset 96.15% and 83.31 They limited their study to only
two ML models

Sudharshan et al. [45] APR, MI-SVM,
KNN, MIL-CNN

BreakHis
dataset 92.1%

They limited their works to one
DL framework and they did not

use any feature selection technique

Karthiga and
Narasimhan [48]

K-means, Discrete
Wavelet Transform,

SVM

BreakHis
dataset 93.3% The accuracy achieved is less than

95%

Anwar et al. [46] ResNet, PCA BreakHis
dataset 97.1% Only one deep-learning algorithm

was used

Senan et al. [49] CNN, SVM and RF BreakHis 99.67%, 89.84% and
90.55%

The proposed model was not
compared and evaluated with

existing systems.

Bayramoglu, Kannala,
and Heikkila [29] CNN BreakHis

dataset 83.25% It is limited to only the baseline
CNN

Aljuaid et al. [50]
ResNet 18,

ShuffleNet and
Inception-V3Net

BreakHis
dataset

99.7%, 97.66%, and
96.94%

The datasets used in the study was
not robust.

Liu et al. [51] MSMV-PFENet BreakHis
dataset 93.0% and 94.8% The study was not compared with

existing systems

Attallah et al. [52] Histo-CADx BreakHis
dataset 97.93

A multi-center study was not
carried out to assess the

performance of the proposed
CADx system

Han et al. [53]

class
structure-based

deep convolutional
neural network

(CSDCNN)

BreakHis
dataset 93.2

The study was not compared with
other baseline DL techniques or

existing studies.

Nahid and Kong [54]
CNN model

containing residual
block

BreakHis
dataset 92.19% The authors only used one type of

breast cancer dataset
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3. Material and Methods

The importance of locally computerized histologic image processing in IoMT tech-
nologies has been emphasized in the earlier sections. Thus, a computer vision analysis
software approach advocates for a remedy with very minimal storage and computing
requirements while maintaining an insignificant drop in accuracy likened to the most
sophisticated ones for classifying images now available. A lightweight image-centered
classifier with low resource needs and good accuracy makes up our suggested illness
prediction model. There are four steps to the suggested solution. The preprocessing phase
comes first. The normalization approach is used to preprocess the picture datasets at this
point. Additionally, the image augmentation approach is used to enhance the dataset that
is already accessible and to help balance the uneven datasets. The training and validation
processes make up the second step. In this step, the preprocessed data are utilized to train
the “MobileNet-SVM” model that we have suggested. The proposed model’s performance
is tested in the third step, known as the testing phase when 20% of the dataset is put aside to
assess its effectiveness. Following this, a confusion matrix is used to calculate the model’s
performance metrics on the testing dataset. The prediction of illnesses is carried out in
the fourth phase, which is the last stage. This aids in evaluating how well the suggested
method detects BreakHis v1 400× BCH. In this part, we go over each of these methods
concerning the suggested model.

3.1. Preprocessing Stage

The pre-processing step is applied to every input scan of the BreakHis v1 400× to
produce recognition accuracy that is more consistent and has additional quality. A huge
image dataset was needed for the CNN approach’s massively repeated learning to avoid
the risk of over-fitting. The initial BreakHis v1 400× image dataset dimension includes
700 × 460. The dataset has been scaled down to 224 × 224, which will improve the
computation time and prediction results.

All images were normalized to ImageNet standards. Then the image collection has
been categorized into two which are Benign and Malignant and was uploaded to the
system’s local drive. They were verified to be properly and accurately uploaded using
Python code in the Jupyter Notebook environment. There are a total of 1819 scans in this
BreakHis v1 400× dataset out of which 588 scans are from Benign patients and 1231 scans
from Malignant patients as shown in Table 2. The imbalanced dataset was balanced using
data augmentation techniques [40] as shown in Table 2.

Table 2. Input BCH scan for the two classes.

Input BCH Scan Before Image Augmentation After Image Augmentation

Benign 588 1231
Malignant 1231 1231

Total 2462 2462

The dataset was split in train, validation, and test set at a ratio of 80:10:10. A total
of 10% of the whole balanced BreakHis v1 400× is first split, after which the validation
10% is split from the remaining dataset then the remaining is used for the model training.
Table 3 shows the number of BreakHis v1 400× images input for the training, validation,
and testing set before and after augmentation for the system implementation.

Table 3. Number of image dataset input for the training, validation, and testing sets.

Number of Input Images Before Image Augmentation After Image Augmentation

Training dataset 1473 1993
Validation 164 222

Testing dataset 182 247
Total 1819 2462
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The dataset has an uneven distribution of scans among the two classifications. A
dataset’s imbalance may result in bias in favor of the dominant class. The study introduced
data augmentation techniques on the dataset to prevent problems with class imbalance. To
prevent complete duplication of the images, each of the images is then randomly rotated,
sheared, zoomed, and flipped. Data augmentation was also carried out to enhance the data
size to make the suggested model more resilient to feature transformation. Several studies
have looked into the importance of data augmentation in deep learning, as this technique
frequently does not modify image classes and allows for a large amount of data and the
creation of more generic models.

3.2. Image Augmentation

By using significant modifications to the available data, image augmentation is a
process often utilized to artificially upsurge the magnitude and diversity of the dataset.
Additionally, it aids in resolving any datasets’ potential imbalanced data issues. Since
datasets are the backbone of the suggested approach and imbalanced datasets might lead
to devastating inaccuracies in our recommendations, having a broad and even dataset is
crucial for image classification techniques. Images can be enhanced with data augmentation
using a variety of techniques, including rotation, shearing, brightness shift, random zoom,
horizontal flip, vertical flip, etc. However, it is still crucial to remember that not all data
augmentation approaches can be used with all kinds of data. We ought to select image
augmentation techniques to ensure that the modifications produce realistic images and
maintain the caption of the source image. The authors chose to utilize horizontal flip,
width shift range, height shift range, zoom range, and rotation range augmentations after
carefully evaluating several image augmentation techniques, since these transitions will
produce images that are probable to be found in an unidentified input image. The many
augmentations utilized to produce the final image dataset for the investigation are depicted
in Figure 1. To augment the image, the image was rotated at 45◦ (see Figure 1b), a width
shift range of 0.2 (see Figure 1c), a height shift range of 0.2 (see Figure 1d), a shear range
of 0.2 (see Figure 1e), a zoom range of 0.2 (see Figure 1f), a horizontal flip as True (see
Figure 1g), or a vertical flip as True (see Figure 1h), as demonstrated in Table 4.

3.3. Proposed Model—MobileNet-SVM

Deep transfer learning is a sort of model that the authors have suggested, called
MobileNet-SVM. The foundation of all cutting-edge image categorization technologies is
the convolutional neural network (CNN). They are a form of neural network (NN) where
convolution is used for at minimum a single layer instead of matrix multiplication. Con-
trary to the NN model, which treats each component of the source image as a standalone
input, convolution takes neighborhood pixels into account, greatly enhancing the effective-
ness of the network. MobileNets are built on a simplified design that creates lightweight
DTL using depth-wise separable convolution layers. The foundation of the MobileNet
framework is feature maps convolutions, which significantly impact a normal convolution
into a depth-wise convolution (DWC) and an 11-convolution known as a pointwise convo-
lution. The depth-wise convolution for MobileNets utilizes a single filter for every network
interface. The outcomes of the DWC are then united by the pointwise convolution using an
11 convolution. Standard convolutions integrate inputs into a novel series of outputs in
one iteration, while also filtering the inputs. This is divided into two layers by the depth-
wise separable convolution, one for filtration and one for integration. This simplification
results in a significant decrease in computational and framework size.

The same protocol was utilized for all three pre-trained CNN models, i.e., InceptionV3,
MobileNet, and DenseNet121, implemented in this study at each stage of transfer learning.
In this study, the four DTL models were selected based on a preliminary study carried
out using previous investigations on the classification of breast cancer images, includ-
ing InceptionV3, MobileNet, and DenseNet121. MobileNet was used out of the other
lightweight model because we proposed an IoMT system and MobileNet was initially
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developed for a mobile device, which makes it process fewer number of parameters and
lowers computational complexity.
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Table 4. Image augmentation approaches.

Changes Settings

Rotation 45◦

Width shift range 0.2
Height shift range 0.2

Shear range 0.2
Zoom range 0.2

Horizontal flip True
Vertical flip True
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In this paper, a DTL is introduced for detecting BreakHis v1 400× BCH scans. To
handle the issues of class imbalance in the BCH scan sample and provide variety, pre-
processing and different image augmentation approaches are utilized in the foremost step.
The BCH scans are classified into benign or malignant cancer in the second step after
auto parameters are obtained and a pre-trained “MobileNet-SVM” model is put into use.
Figure 2 displays the suggested technology’s process flow.
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4. Implementation Results

This section explains the execution of the suggested model. It is divided into three
subsections. In the first, the dataset which was used throughout the system execution is
introduced together with innumerable problems with medical datasets and the way the
study attempted to resolve them. The training, validation, and testing of the dataset on the
MobileNet-SVM model are detailed in the second subsection. In the last subsection, the
authors investigate and correspond the results of the proposed model with three existing
baseline CNN architectures, which include DenseNet121, MobileNet, and InceptionV3.
TensorFlow and Keras were used for the implementation process.

4.1. Dataset

The BCH dataset [55] which the study has used consists of 588 scans of benign and
1231 scans of malignant samples, for a total of 1819 images of BCH. Figure 3 displays an
example picture for each of the different subtypes. Techniques for image classifiers are
trained on data that is very distinct from the accessible medical data. Medical datasets
that are labeled are severely lacking. The ImageNet dataset, for instance, has more than
14 million photos in more than 20,000 distinct classifications. Similar medical databases,
nevertheless, are hardly accessible to the common public. Additionally, the development
of a comparable integrated medical dataset is difficult because the majority of medical
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conditions are distinct from one another and might call for a completely distinct method
for their diagnosis.
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Additionally, since the medical scans that are currently accessible typically have very
high resolution, the common technique of image scaling to a smaller dimension is incorrect
for them, since doing so could result in the loss of cellular features that are essential for
the diagnosis of the illness. The dataset utilized in this study includes 375 high-resolution
images. We used data augmentation to address these issues, primarily to increase the
dataset size and address the issue of class imbalance. Table 5 displays the frequency of the
BCH subclass of the dataset before and after the use of image augmentation approaches.

Table 5. Distribution of the images before and after image augmentation.

BCH Classes Before Augmentation After Augmentation

Benign 588 1231

Malignant 1231 1231

4.2. Transfer Learning

The process of transfer learning involves keeping the information learned when
resolving an issue and using it to solve a new, related problem. When the dataset is small,
this is particularly successful since it makes the model easier to react to the new data, which
would not be as quick or effective if trained from scratch. In this study, the authors employ
models with ImageNet pre-trained weights. The ImageNet is a collection of image data
containing tens of millions of photos that are neatly organized and available to academics
all over the world [56]. Additionally, the model’s fine-tuning was performed in this study.
The fine-tuning step helps to achieve improvements in the model’s outcomes. It assumes
that a model’s parameters must be altered very accurately for the model to respond to
specific facts. A trained model or a portion of it is unfrozen during fine-tuning, and then
training is carried out once more on the fresh data using a shallow learning rate. The
weights that have already been learned are somewhat modified as a result. In this study,
the encoder weights were frozen to allow for fine-tuning. According to [57], there are
occasions when we can freeze the encoder and train only the de-coder that was randomly
initialized to avoid damaging the weights that were properly trained with large gradients
during the initial stages of training. Removing the last completely connected layer from
selected pre-trained CNN models and replacing them with our new fully connected layer
or layers is the primary method for fine-tuning (i.e., the same size as the number of classes
in our new dataset). In this investigation, we employed two classes due to the benign B
and malignant M instances in the imaging datasets.

4.3. Training, Validation, and Testing

There were three parts to the BreakHis v1 400× BCH dataset: training, validation,
and testing. The validation and test sets were applied to assess the effectiveness of the
proposed model, while the training set was applied to train the MobileNet-SVM method.
As a result, the dataset was divided into the training, testing, and validation groups, with
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corresponding percentages of 80%, 10%, and 10%. The dataset described in Section 4.1
served as the basis for training the MobileNet-SVM. In total, 1993, 222, and 247 images,
respectively, were utilized for training, validation, and testing on the BreakHis v1 400×
BCH data. With training, validation, and testing accuracies of 100%, 92.34%, and 91.50% on
the training and validation datasets, Table 6 displays the model parameter and values that
produced the most efficient results. The study obtained a test accuracy of 91% on the test
dataset using the implementation parameters (Table 6).

Table 6. Implementation parameters used.

Parameters Values

Model used MobileNet-SVM
Transfer form From scratch transfer knowledge
Train layers Layers 150–154
Optimizer SGD

Learning rate 0.01
Activation function Relu and softmax

Loss function CategoricalCrossentropy
Batch size 32

Epochs 20

4.4. Performance Analysis

Following the training procedure, the computation method was evaluated using the
test dataset. The accuracy, f1-score, precision, recall, and AUC-ROC curve values were
employed to determine the effectiveness of the model. The evaluation metrics used in this
study were investigated thoroughly as follows. TP represents true positives, TN for true
negatives, FN for false negation, and FP for false positives in the concepts and formulas
that are presented here.

4.4.1. Accuracy (Acc.)

This measure calculates the proportion of accurate forecasts to all projections that were
made correctly. The equation is shown in Equation (1):

Accuracy =
TP + TN

(TP + TN + FP + FN)
(1)

4.4.2. Precision (Prec.)

Classification accuracy is not necessarily a reliable indicator of overall simulation
results, as shown by several cases. One of these situations is when there is an uneven
distribution of classes. It is absurd to achieve a superior accuracy rate if we regard all data
as having the greatest caliber. Precision, on the contrary, implies that inconsistency may be
obtained by using the exact tool again, such as when examining the same part. One such
metric is precision, which is defined as:

Precision =
TP

(TP + FP)
(2)

4.4.3. Recall

Another crucial metric is recalled, which is the division of the original dataset into
classes that the algorithm accurately predicts. The recall is computed as:

Recall =
TP

(TP + FN)
(3)



Sensors 2023, 23, 656 14 of 23

4.4.4. F1-Score

A popular indicator that combines recall and accuracy measurements is the F1- score.
The F1- score is determined by:

F1 − score =
2 × (Precision ∗ Recall)
(Precision + Recall)

(4)

4.4.5. AUC Score and ROC Curve

The receiver operating characteristic (ROC) is a probabilistic curve, and the area under
curves (AUC) measures the degree of computational complexity. The relationship between
specificity (rate of false positives) and sensitivity is shown in a graph by the ROC curve
(true positive rate).

5. Discussion

The implementation with the suggested MobileNet-SVM model was executed on
Python 3.9 using the Juypter Notebook interface. The Keras open-source library and the
Tensor-flow platform were used to build the model. It employed a CategoricalCrossentropy
loss function and the SGD optimizer with a baseline learning rate for training. The outcomes
of the suggested MobileNet-SVM model focus on the following:

1. To discern amid benign and malignant dermoscopic scans.
2. To utilize a diversity of image augmentation procedures to determine the effectiveness

of the given MobileNet-SVM on the BreakHis v1 400× BCH dataset.
3. To compare the outcomes of the proposed model with methods already in use.

MobileNet-SVM Performance on BreakHis v1 400× Dataset

The research aimed to appraise the effectiveness of the newly suggested MobileNet
with SVM models. SGD optimizer, Categorical-Crossentropy loss function, 20 epochs,
32 batch size, and learning rate of 0.01 was used in the research, as depicted in Table 4.
The accuracy and loss graphs for all the DTL approaches implemented are displayed
in Figures 4–7, while the confusion matrix of the approaches is shown in Figures 8–11.
Likewise, the AUC-ROC curves for all four DTL-implemented approaches are displayed
in Figures 12–15. The testing results showed that, for benign and malignant tumors,
respectively, the new approach achieved 93% and 90% accuracy. On the BreakHis v1
400× dataset, it similarly attained an accuracy of 91.3%, as demonstrated in Table 3. On
benign and malignant tumors, the transfer learning model had recall rates of 89% and 94%,
respectively. It achieved an F1-score of 91% and 92% for benign and malignant tumors,
respectively, with an accuracy of 89% and 94% for each.
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The confusion matrix is a useful machine-learning technique that assesses a model’s
precision, recall, accuracy, and ROC curve. The categorization accuracy was measured
graphically using a confusion matrix. Darker hue denoted the better classification accuracy
of the MobileNet-SVM of the appropriate class, while lighter color denoted erroneously
recognized data. In the confusion matrix, accurate estimates are shown diagonally, and
inaccurate guesses are shown off-diagonally. The findings showed that the MobileNet-SVM
model worked better when such a model was fine-tuned and used with the BCH dataset, as
shown in Figure 8. It showed that out of 247 cancer scans, 116 were successfully diagnosed
by the MobileNet-SVM model as cancerous images, while 110 were effectively labeled as
benign images. The suggested MobileNet-SVM approach was generalized by the given
MobileNet system, which had an accuracy result of 91.3% and a 1.0% error.

The MobileNet-SVM network displayed exceptional classification efficiency in the
validation and test set classes attributable to a significant AUC (almost 91.5%). Using the
ROC curve shown in Figure 12, the effectiveness of the suggested approach was evaluated.
The ROC curve was denoted with blue. When the suggested technique is applied to the
BreakHis v1 400× dataset with the data augmentation approaches and fine-tuning method
applied in the training set, the evaluation metrics, including accuracy, F1-score, recall,
precision, and the ROC curve, showed that the suggested model achieved remarkably well
with an AUC of 0.9149.

Researchers evaluated the effectiveness of the suggested model with cutting-edge
methods to reflect the scalability of the suggested methodology. As indicated in Table 7, it
was established that the proposed hybrid DTL system surpassed baseline methods with
an accuracy of 91.3%, precision of 89.4%, f1-score of 91.3%, AUC of 91.5%, and FPR value
of 0.1008. However, the DenseNet121 baseline model performed best in terms of recall,
i.e., of 95.4%. Upon evaluating the suggested model with cutting-edge techniques, there
was little variance in misclassification. It can be deduced in Table 7 that the proposed
model outperformed other baseline models because of the SVM that is combined with the
MobileNet model. The proposed model also used regularization techniques, such as L1
and L2, for experimentation.

Table 7. Performance analysis of the proposed MobileNet-SVM on the BCH dataset.

DTL Model Acc. (%) Prec. (%) Recall (%) F1-Score (%) AUC FPR

MobileNet-SVM 91.3 89.4 93.2 91.3 91.5 0.1008
DenseNet121 90.3 84.6 95.4 89.7 90.3 0.1377

MobileNet 85.8 81.3 89.3 85.1 85.8 0.1071
InceptionV3 83.4 77.4 88.1 82.4 83.4 0.2014

Table 8 shows the computational time complexity for the proposed models. It can
be deduced that the baseline MobileNet had the lowest training time of 28 min, while the
proposed model (MobileNet-SVM) had the second lowest computational time of 37 min.
The time was increased 9 min because of the hybridization of the MobileNet model with
the SVM technique. In general, it was deduced that the proposed model with 37 min still
had the lowest computation time when compared with the other two baseline pre-trained
model, with DenseNet121 having a training time of 62 min and InceptionV3 a training time
of 49 min.

Table 8. Computational time of the models.

Models Time in Mins

MobileNet-SVM 37 min
DenseNet121 62 min

MobileNet 28 min
InceptionV3 49 min
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Table 9 compares the effectiveness of the suggested technique to various previously
reported benign and malignant categorization systems. Compared to other recent studies,
the study’s findings showed that the suggested approach had the best accuracy, as shown
in Table 9. The suggested MobileNet-SVM approach classification results surpassed the
prevailing research, such as studies by Singh et al. [58], obtaining 90.30% accuracy in
classifying the BreakHis dataset using VGG-19 TL model. Spanhol et al. [59] had an accuracy
of 86.1% using the AlexNet DL technique to classify BreakHis_400× images into benign
and malignant diseases. Lastly, for the comparison process, Xie et al. [41] implemented
Inception-ResNet-V2, and Inception-V3 DTL approaches on the BreakHis_400× dataset
and obtained an accuracy of 84.50% and 82.08% respectively. Attallah et al. [52] used
Histo-CADx model on BreakHis dataset to classify breast cancer and obtained an accuracy
of 97.93% which means their system outperformed that of our proposed system. The results
of the studies by Anwar et al. [46] and Choudhary et al. [60] outperformed our proposed
system with an accuracy of 97.1% and 92.07%, respectively. Both studies were evaluated on
BreakHis dataset using ResNet50 and ResNet with PCA models for their implementation,
respectively. It was also discovered that the proposed study MobileNet-SVM outperformed
two other existing studies that used BreakHis dataset. Sudharshan et al. [46] and Gupta
and Bhavsar [61] used CNN and ResNet models respectively. The former obtained an
accuracy of 88.03%, while the later had an accuracy of 88.25%.

Table 9. Comparative evaluation with existing models.

Authors Models Dataset Accuracy (%)

Choudhary et al. [60] ResNet50 Trasnfer
Learning Model BreakHis dataset 92.07

Singh et al. [58] VGG-19 Transfer
Learning Model BreakHis dataset 90.30%

Spanhol et al. [59] AlexNet BreakHis dataset 86.10

Xie et al. [41] Inception-ResNet-V2,
Inception-V3 BreakHis dataset 84.50 and 82.08

Attallah et al. [52] Histo-CADx BreakHis dataset 97.93

Sudharshan et al. [46] CNN BreakHis dataset 88.03

Gupta, and Bhavsar [61] ResNet BreakHis dataset 88.25

Anwar et al. [46] ResNet, PCA BreakHis dataset 97.1

Researchers, thus, claim that the suggested MobileNet-SVM model significantly out-
performs the existing methods, by achieving a test accuracy of 91% on test dataset and 100%
training accuracy using the training dataset. In comparison to other existing approaches, it
acquired the best accuracy, as evidenced by Table 8. It is deduced from Table 8 that some
studies performed better than the proposed model because their dataset was more robust
than ours while the proposed model also outperformed some existing studies because of
the introduction of data augmentation for balancing the dataset, regularization techniques,
dropout technique to avoid model overfitting, and the introduction of the SVM model to
combine with the MobileNet model.

6. Conclusions

IoMT plays a critical role in delivering patients with high-quality, affordable, and
rapid medical treatment. Early detection of serious disorders is also crucial to assisting
this medical center. Millions of people’s lives can be saved if illnesses are detected ear-
lier. However, an accurate and spontaneous illness diagnosis task has certain problems.
Decisions may be delayed as a result of the transmission of real-time patient records to
a subsequent IoMT level for computations. Additionally, the volume of histopathology
pictures is often substantial, necessitating high bandwidth for data delivery. If the gathered
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data is examined remotely at the IoMT equipment, these problems can be overcome. We
presented the MobileNet-SVM model, a high-performing, low-weight model that is equiva-
lent to current existing approaches while preserving its compact size constraints, to address
these problems.

BCH is among the deadliest types of cancer that affect women; however, if detected
early enough, it may not be catastrophic. Therefore, it is crucial to use complementary
imaging techniques that have been demonstrated to aid in diagnosis. These techniques are
based on approaches created by medical professionals to find BCH before it expands to
neighboring lymph nodes. In this study, the authors offer a MobileNet-SVM-based DTL
model for benign and malignant BCH diagnostics that can be utilized to look into any
possible disorders. The recommended approach is used to classify diseases as benign or
malignant using photos of BCH disorders from the BreakHis v1 400× challenge dataset.
The dataset was expanded using data augmentation methods, which also enhanced the
precision of MobileNet-SVM. This system performs well and has a 91% percent diagnostic
ability on the test dataset and 100% accuracy on the training dataset. Furthermore, the
suggested model is used to compare the accuracy of several recently developed approaches.
The proposed model was shown to offer exceptional prediction performance without the
requirement for model retraining to increase model effectiveness. The study is limited
to using only one benchmark dataset and is overfitted a little. It is, therefore, suggested
that more than one BC dataset should be employed in the future and their performances
can be evaluated to obtain the dataset that performs best. The problem of overfitting can
be solved with the use of regularization techniques, batch normalization, dropout, early
stopping techniques, learning rate, optimizer, more robust balanced dataset, and so on.
Higher accuracies can be obtained with more training epochs, so it is suggested that the
training epochs be increased in the future.
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