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Abstract: Recently, due to the development of semiconductor technology, high-performance memory
and digital convergence technology that integrates and implements various functions into one
semiconductor chip has been regarded as the next-generation core technology. In the semiconductor
manufacturing process, various motors are being applied for automated processes and high product
reliability. However, dust and shaft loss due to mechanical friction of a general motor system
composed of motor-bearing are problematic for semiconductor wafer processing. In addition, in the
edge bread remove (EBR) process after the photoresist application process, a nozzle position control
system for removing unnecessary portions of the wafer edge is absolutely necessary. Therefore, in
this paper, in order to solve the problems occurring in the semiconductor process, a six-degrees-of-
freedom (6-DOF) magnetic levitation system without shaft and bearing was designed for application
to the semiconductor process system; and an integrated driving control algorithm for 6-DOF control
(levitation, rotation, tilt (Roll–Pitch), X–Y axis movement) using the force of each current component
derived through current vector control was proposed. Finally, the 6-DOF magnetic levitation system
with the non-contact position sensors was fabricated and the validity of the 6-DOF magnetic levitation
control method proposed in this paper was verified through a performance test using a prototype.

Keywords: edge bread remove (EBR) process; integrated driving control; non-contact position sensor;
6-DOF magnetic levitation system

1. Introduction

Semiconductors are next-generation core parts that are being applied to various indus-
tries such as home appliances, automobiles, robots, and IT, and the size of the market is
continuously growing. Accordingly, a number of motors having advantages of high output,
high efficiency, low vibration, and miniaturization are applied to the semiconductor manu-
facturing process for process automation and product quality improvement [1]. In general,
motor systems have problems such as mechanical friction of bearings and shaft wear and
dust caused by them. In particular, dust generated from the shaft and bearings of the Spin
coater, a motor system used in the photoresist coating process during the semiconductor
wafer process, causes a fatal problem. To solve this problem, a dust absorption structure is
additionally installed and operated in the semiconductor wafer processing system. In addi-
tion, in the EBR process system for removing unnecessary portions of the wafer edge after
the photoresist coating process, a nozzle position control system is additionally required.
This paper is a study of the design and control method of a 6-DOF magnetic levitation
system using a non-contact position sensors that can replace the spin coater used in the
existing semiconductor wafer process. The six-degrees-of-freedom magnetic levitation
system that combines magnetic levitation and rotational motion was designed by using
the force generated by independent current components obtained through vector control
of a permanent magnet motor. Then, the control methods of levitation, tilt, rotation, and
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movement for 6-DOF motion were studied, and the system-integrated driving control
algorithm using the combination of forces that can be generated in the system based on
the control method for each degree of freedom was proposed. Finally, the validity of the
integrated driving control method of the 6-DOF system proposed in this paper was verified
through a performance test using a prototype of the 6-DOF magnetic levitation system.

2. Design of 6-DOF Magnetic Levitation System

The motor of the 6-DOF magnetic levitation system proposed in this paper has the
same structure as the axial flux permanent magnet motor as shown in Figure 1a, but it is a
system in which the shaft and bearing are removed by using magnetic levitation to replace
the existing spin coater. In general, current vector control used to control a permanent
magnet motor converts the current applied to the stator into a d–q-axis current, and each
current can be controlled independently. Therefore, the q-axis current can be used for
rotational motion of the 6-DOF magnetic levitation system, and the d-axis current can be
used for magnetic levitation through the repulsive force between the permanent magnets of
the rotor [2–7]. That is, the rotation and levitation control of the system is possible through
the vector control of the current applied to the stator [8,9]; and the stator is divided into
4 parts for additional axial movement, such as tilt (roll–pitch) and movement in the x–y
axis. It is designed as a 4C1M (4 Controller 1 Motor) system consisting of 4 controllers in
one motor to enable different vector control for the 3-phase current for each part of the
stator [10,11]. Additionally, the sensor base, composed of gap sensors for measuring the
levitation position of each part of the stator and non-contact optical encoders for measuring
the rotational position of the rotor was designed in the center of the system for control of
each axis movement. Figure 1b shows a cross-section of the 6-DOF magnetic levitation
system and the structure of 4C1M.
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3. Control Method of 6-DOF Magnetic Levitation System Using Current
Vector Control

The core of the control method of the 6-DOF magnetic levitation system proposed in
this paper is to use the current vector control of the existing permanent magnet motor, not
to apply a complicated control method for 6-DOF motion. This is an integrating control
method of 6-DOF motion (levitation, rotation, tilt (Roll–Pitch), X–Y axis movement) by
controlling the d–q-axis current through the current vector control of each part of the stator
divided into 4 parts as shown in Figure 2.
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3.1. Control of the Magnetic Levitation

For the levitation of the rotor, a Halbach-array permanent magnet was applied to
the rotor. As shown in Figure 3, the Halbach-array permanent magnet increases the
magnetic flux in the air gap through the synthesis and cancellation of the magnetic flux
generated from nearby permanent magnets and can decrease the magnetic flux in the
opposite direction of the air gap. The rotor is lifted by using the repulsive force generated
by the interaction between the magnetic flux generated by the permanent magnet and
the magnetic flux caused by the current flowing in the stator coil. The current applied to
the coil can be explained by decomposing it into two directional force components (id, iq)
as shown in Figure 3. The D-axis current component corresponds to the magnetic force,
and it can realize the force that creates the levitation force through interaction with the
permanent magnet attached to the rotor. Additionally, the q-axis current component creates
the rotational force of a typical motor. FZ in Figure 3 means repulsive force. Since the
position of the rotor can be measured in real time through the encoder, the current can be
controlled to match the polarity of the magnetic flux generated from the permanent magnet
for all positions of the rotor, so even if the position of the rotor changes due to rotation,
stable levitation is possible by generating a certain repulsive force. The total repulsive force
for rotor levitation is the sum of the repulsive forces generated in each part as shown in
Equation (1). (Each part means parts of the stator divided into 4 parts.)

FZ(t) = FZA(t) + FZB(t) + FZC(t) + FZD(t) (1)
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The control block diagram using the encoder and gap sensor placed in the magnetic
levitation system for rotor levitation is shown in Figure 4. First, current is applied through
the inverter to generate the levitation force of the system by calculating the error between
the levitation position command through each controller corresponding to each part of
the stator and the position measured from the position sensor; Equation (2) is the overall
levitation command of the system, and Equation (3) is the overall levitation position
measured from each gap sensor. leviA,B,C,D* represents the levitation control command of
each stator part, and levipos. A,B,C,D represents the position sensing result of the gap sensor.

Levitaionm
∗ =

leviA
∗ + leviB

∗ + leviC∗ + leviD
∗

4
(2)

Levitaionm =
levipos.A + levipos.B + levipos.C + levipos.D

4
(3)
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=
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The overall levitation command (Levitationm*) is the average value of the levitation
commands of each controller, and the d-axis current command (id) is calculated through
a current vector control algorithm so that each command satisfies the required position.
Thereafter, the d-axis voltage (Vd) command is calculated by using the PI current controller,
based on the current command and the actual current measured by the current sensors. This
voltage command is converted into a three-phase voltage command through coordinate
transformation, and a voltage is applied to the magnetic levitation system through a space
vector voltage modulation method in the inverter to generate the levitation force required
by the system.

3.2. Control of the Tilt (Roll–Pitch)

The control of the tilt (Roll–Pitch) is possible by controlling the levitation position by
generating different forces on each part of the stator divided into four parts. To control the
tilt (roll–pitch), measure the distance(r) of the non-contact position sensors in the sensor
base and the levitation position as shown in Figure 5, and calculate the tilt of the rotor
using Equation (4).

θPitch = arctan
levipos.A−levipos.C

r

θRoll = arctan
levipos.B−levipos.D

r

(4)
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Figure 5. Conceptual diagram of Magnetic levitation system with non-contact position sensors.

In order to control the roll–pitch by giving the difference in the levitation position
of each part, the measurement values of two non-contact position sensors are needed to
calculate the tilt command. The control block diagram for tilt control is shown in Figure 6.
As in the previous levitation control method, when the tilt command (Roll, Pitchm*) is
input, the current command (iroll,pitch*) for each part is output through the roll and pitch
controller. Then, the current command is converted into a d-axis current command (id)
through the current vector control algorithm, and the required voltage is applied to the
inverter through the current controller.
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3.3. Method of Levitation and Tilt Sensing Using Gap Sensors

Since the 6-DOF magnetic levitation system of this paper has no shaft and bearings,
and when levitating, it can easily lose position information due to disturbance and force
imbalance, leading to derailment and uncontrollable situations. Therefore, stable levitation
control of the magnetic levitation system and control to maintain a balance of forces are
absolutely necessary. In the case of magnetic levitation using repulsive force, the repulsive
force decreases as the gap between the stator and the rotor increases. Therefore, as shown in
Figure 7, the limits and commands of levitation, roll and pitch control should be calculated
using the main sensing range of the gap sensor. Considering the Z-axis sensing range of
the sensor in Figure 7, each control command and limit for the control of levitation and
tilt (Roll Pitch) was set as shown in Figure 8, and through this, magnetic levitation and tilt
control were performed.
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3.4. Control of the Rotation

Since the 6-DOF magnetic levitation system in this paper is intended to replace the
existing spin coater, it is essential to rotate at a constant speed for uniform coating of
photoresist. The rotation control of the 6-DOF magnetic levitation system is the same as
the rotation control of a general permanent magnet motor using current vector control, but
since there is no shaft and bearing, the position of the rotor is determined using non-contact
encoders located on each part of the stator. The total torque of the rotor is the sum of the
torques generated in each, and the speed of the rotor used to control the rotational speed
of the magnetic levitation system can be calculated as shown in Equation (5). ωm,A,B,C,D
represents the value for the rotational speed of each part, and the force is determined by
the q-axis current iq* component in Figure 9.

ωm =
ωm,A + ωm,B + ωm,C + ωm,D

4
(5)
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The control block diagram for 6 degree of freedom rotation control is shown in Figure 9.
Similar to the rotation speed control of a general motor, after measuring the position
information of the rotor through the encoder, the current command is generated through
the speed controller. Then, based on the q-axis current command generated through the
current vector control, the voltage is applied to the inverter.

3.5. Control of the X–Y Axis Movement

In order to simplify the system for moving the nozzle used in the EBR process after the
photoresist coating process on the semiconductor wafer, it is necessary to move and control
the X–Y axis (position) of the magnetic levitation system. When the rotational speed is
differently controlled for each part, a difference in centrifugal force occurs in each part of the
rotor, and as a result, the rotor moves in one direction due to the imbalance of the centrifugal
force [12]. That is, the X–Y axis movement control of the rotor of the magnetic levitation
system proposed in this paper generates a difference in rotational force for each part of the
rotor as shown in Figures 6 and 10, artificially generating eccentricity in the X or Y axis so
that it is to generate the force that can move the rotor. Fθ,ABDC represents the rotational
force generated from the stator of each part, and Fmove,X,Y, which generates the force of
movement, is generated by using the difference between the two forces corresponding to
the X–Y axes.

Fmove,X = Fθ,A − Fθ,C
Fmove,Y = Fθ,B − Fθ,D

(6)
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3.6. Method of Rotation and X–Y Axis Movement Sensing Using Non-Contact Encoders

Non-contact encoders that use the method of sensing the encoder scale attached to
the rotor have a limited sensing range for the X–Y axis. However, even if changes (errors)
occur in the position of the encoder scale and sensor according to the movement of the X–Y
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axes of the rotor, position control is possible within the sensing range as shown in Figure 11.
Therefore, as shown in Figure 12, an X–Y axis movement control process was designed that
can control the X–Y axis movement within the sensing range of the non-contact encoder
and which restores the rotor back to the sensing range when it is out of the sensing range.
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3.7. Integrated Driving Control of 6-DEF Magnetic Levitation System

Above, the method of controlling the levitation and tilt control, rotation and X–Y
movement within the sensing range of each sensor has been described. For the integrated
driving control of the 6-DOF magnetic levitation system based on this, a system integrated
control algorithm considering the limit of the sensing range is required. Levitation and
Roll–Pitch control the force generated on each axis through the d-axis current control. To
this end, the d-axis current should be generated by calculating the final command of each
part of the stator divided into four parts as the sum of the tilt and magnetic levitation control
commands. Rotation and X–Y axis movement control the force generated on each axis
through q-axis current control. As in the previous method, the q-axis current is generated
by calculating the final command of each part of the stator as the sum of the rotation and
X–Y axis movement control commands. Figure 13 shows d–q axis control block diagram of
each part of the stator divided into 4 parts for the integrated drive control of the 6-DOF
magnetic levitation system.
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4. Control Simulation of 6-DOF Magnetic Levitation System
4.1. Six Degrees of Freedom Magnetic Levitation System Modeling

For control simulation of the 6-DOF levitation system, simulation modeling consisting
of a 6-DOF controller, current vector controller and 6-DOF levitation system was designed
as shown in Figure 14a. The parameters of the designed magnetic levitation system are
shown in Table 1. The 6-degrees-of-freedom levitation system is designed in the form
of 4 motors to realize a real system consisting of a 4-segmented stator and a single rotor.
The six force commands output through each controller were converted into respective
current components by distributing the force commands to enable simultaneous control as
shown in Figure 14b. Additionally, as shown in Figure 14c, the d–q axis current command
is distributed according to each part of the system. A total of four pairs of d–q axis current
commands are generated for six-degree-of-freedom motion control (levitation, rotation,
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tilt, translation). That is, an algorithm was implemented to generate 4 d–q axis current
commands by combining 16 current commands to generate 8 current commands for gener-
ating a total of 8 forces of the 6-DOF magnetic levitation system [13]. Figure 14d shows the
internal variables of the current controller composed of the vector controller in Figure 14a.
The current command of idq is converted into a 2–phase voltage command, and the d–q
axis voltage command is converted into a 3–phase voltage command through coordinate
conversion and input to the inverter through the gate to generate the output of the grid.
Using the current value applied to the motor through each inverter configured as shown in
Figure 14a and motor modeling, the current controller re-outputs the voltage command as
much as the difference between the current command and the feedback current.
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Table 1. Six-degrees-of-freedom magnetic levitation system parameters.

System Classification Variable Name Value

Maglev Motor System
Parameters

Number of System Magnet Poles 24
Rotor Weight [kg] 1.33

Number of Stator Coils [Turn] 15
Phase Resistance (Rs) [Ω]

Outer Diameter of Rotor [mm]
11.5
261

Stator Outer Diameter [mm] 316

System Controller Parameters

DC Link Voltage [V] 60
Phase Voltage Maximum [V] Vdc/

√
3

Input Current Maximum [A] 10
No Load Linkage Flux [Wb] 0.02685
d-axis Inductance (Ls) [mH] 0.015 (1.7 (mH))

Current Controller Period (Tcc) [Hz] 2 kHz
idq-axis P gain Ls ∗ (2 ∗ π)/(Tcc)
idq-axis I gain Rs ∗ (2 ∗ π)/(Tcc)

Carrier Frequency 0.00025
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The control command entered into the 6-DOF Controller in Figure 14a converts the
force generated through the 6-DOF System (Motor Mech Plant) into the position result
value according to the load to calculate the output value for the control command.

4.2. Control Algorithm Modeling for Out-of-Control and Derailment Prevention

As explained in Section 3.3, since the 6-DOF magnetic levitation system is composed of
only the magnetic force of magnets and stators without shafts and bearings, position signal
information may be lost or derailment may occur during levitation. Therefore, additional
modeling is required to secure stable position control performance. The position controller
in Figure 14a includes a recovery controller and limiter modeling to ensure stable position
control performance, as shown in Figure 15. As shown in Table 2, the limits were designed
by applying the maximum sensing distance of the sensor applied to the magnetic levitation
system to simulation modeling.
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axis movement).

Table 2. Sensing limit range specification of sensor.

Sensor Classification Variable Name Limit Value

Non−contact encoder sensor
Encoder X–Y axis sensing range [mm] ±0.2

Encoder Z-axis sensing range [mm] 2.25~2.55

Gap Sensor Gap Sensing range [mm] 50~100

The system control algorithm was configured by applying an algorithm including
derailment prevention and reset functions to the levitation, movement, roll and pitch
controllers in the manner shown in Figure 15.

4.3. 6-DOF Magnetic Levitation System Simulation Result

Figure 16 shows the feedback result value for 6-DOF control command. Figure 15
shows the control simulation results for rotation speed command 50 rpm, levitation com-
mand 0.2 mm, tilting command (Roll–Pitch) 0.1 deg and X–Y axis movement command
0.05 mm using control simulation modeling.
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As shown in Figure 16b, it can be confirmed that overshooting occurs because a lot of
force is required for the initial levitation of the magnetic levitation system, and position
control proceeds afterwards. In the case of the position control result values of (a,c–f) in
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Figure 16, it can be confirmed that the control is relatively stable although it contains some
ripple components.

5. Performance Test of 6-DOF Magnetic Levitation System Using a Prototype

To verify the validity of the 6-DOF magnetic levitation system design and control
strategy proposed in this paper, a performance test was conducted using a prototype, as
shown in Figure 17.
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Figure 17. Prototype of 6-DOF magnetic levitation system.

Figure 18a,b are the performance test results for levitation and rotation by inputting a
speed command of 50 rpm and a levitation command of 0.2 mm in the system’s stopped
state. At this time, the tilt and movement control commands were set to 0. The performance
test for tilt and movement was performed within the permissible range of the sensor, and
when the rotor was lifted by 0.1 mm and rotated at 50 rpm, the roll–pitch and X–Y axis
movement commands were applied to perform the tilt and movement performance. The
test results are shown in Figure 18c–f.

In the case of the speed control in Figure 18a, a large overshoot occurs because a lot of
input current is required to overcome the frictional force of the ground at the initial start.
However, it can be confirmed that it converges at a relatively stable average speed.

Additionally, the result values of (a–f) in Figure 18 appear as if many ripple compo-
nents occur as a whole (average 0.2 mm, 0.2 degree). However, in the case of precise control,
even a small ripple component can greatly affect the result value, and it can be confirmed
that the average value converges to the command relatively well.

As shown in Figure 15, the experiment as shown in Figure 18 was conducted by
applying the restoration algorithm for derailment prevention, and it can be confirmed
through the result graph that the continuity of the position signal is not broken. In addition,
in order to secure the accuracy and reliability of precise control, the result of the experiment
was derived as the data without using a filter.
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6. Conclusions

This paper is about a 6-DOF magnetic levitation system to replace the spin coater
used in the wafer process during the semiconductor production process. By proposing the
design of 6-DOF magnetic levitation system applying axial flux permanent magnet motor
without shaft and bearing and the 6-DOF integrated driving control method (levitation,
rotation, tilt (Roll–Pitch), X–Y axis movement) using non-contact position sensors, it can
solve the problems of the existing spin coater and also simplify the nozzle position control
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system of the EBR process. This is thought to be applicable and expandable not only to
semiconductor process systems, but also to various industrial fields that require 6-DOF
drive and clean production processes.
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