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Abstract: Artificial neural networks are a powerful tool for managing data that are difficult to process
and interpret. This article presents the design and implementation of backpropagated multilayer
artificial neural networks, structured with a vector input, hidden layers, and an output node, for
information processing generated by an optical encoder based on the polarization of light. A machine
learning technique is proposed to train the neural networks such that the system can predict with
remarkable accuracy the angular position in which the rotating element of the neuro-encoder is
located based on information provided by light’s phase-shifting arrangements. The proposed neural
designs show excellent performance in small angular intervals, and a methodology was proposed to
avoid losing this remarkable characteristic in measurements from 0 to 180◦ and even up to 360◦. The
neuro-encoder was implemented in the simulation stage to obtain performance results, where the
main evaluation metric employed to assess the performance is the total error. This proposal can be
useful to improve the capabilities of resolvers or other polyphasic sensors used to obtain outstanding
precision and accurate data, even when working under hard and noisy industrial conditions.

Keywords: artificial neural networks; machine learning; optical encoder

1. Introduction

There are several types of rotative encoders, each with its own advantages and disad-
vantages. Here are some of them:

1. Optical encoders: Some of these encoders use a disk with slots that interrupts the
light emitted by an LED or laser to generate digital signals that indicate position. Optical
encoders have high resolution, are precise, and can be used in high-speed applications.
However, they are susceptible to electromagnetic interference and may require careful
alignment. Other encoders of this type use optical principles such as polarization of light
and interference patterns.

2. Magnetic encoders: These encoders use a Hall effect sensor to detect changes
in a magnetic field generated by a rotating magnet. Magnetic encoders are resistant to
electromagnetic interference and can be used in high-speed and extreme-temperature
applications. However, their resolution is limited and may require careful calibration.

3. Inductive encoders: These encoders use coils and magnetic cores to measure position.
Inductive encoders have high resolution and are resistant to electromagnetic interference.
However, they are less precise than optical and magnetic encoders and are limited to
lower speeds.

4. Capacitive encoders: These encoders measure the distance between two electrically
charged parallel plates. Capacitive encoders have high resolution and are resistant to
electromagnetic interference. However, their use is limited to lower speeds, and they may
be sensitive to humidity.

As we said, there are some types of encoders that leverage the polarization proper-
ties of light to measure physical variables, such as the positioning of movable elements.
Considering the state-of-the-art, the following works on this subject can be found:
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In [1], a straightforward encoder design principle is presented, detecting light intensity
using a photo-emitter and a photo-detector placed on opposite sides of two polarized filters.

In [2], polarized light is directed towards multiple fixed analyzers and light detectors,
which output an electrical signal to a phase processor.

In [3], an angular position is detected by utilizing amplitude and quadrant information.
In [4], polarization difference imaging techniques are employed to calculate the orien-

tation of a rotatable member.
In [5], an encoder is constructed with a multi-channel reception module to generate

two signals proportional to the light intensity of the beam from the polarizers.
In [6], a device is presented for detecting a reference position signal and calculating

the relative rotation angle between fixed and movable units.
Additional information on this topic can be found in [7–11], where different polariza-

tion techniques are also used to design optical sensors.
Some of these kind of sensors also use neural networks as auxiliary components to

achieve accuracy in their measurements:
In [12], an optical encoder is designed using convolutional neural networks to detect a

robot’s position.
Additionally, in [13], a nonlinear multilayer optical neural network encoder for image

sensing is reported.
The closest antecedents can be found in the previous work [14] and in the patent [15],

where Alvarez-Rodríguez and Alcalá Ochoa proposed a novel optical encoder based
on a phase-shifting algorithm that utilizes the polarization properties of light. However,
for devices like this one, the mathematical approach proposed to predict the positional
angle of the rotary element cannot be accurate due to multiple factors, e.g., imperfections
in the geometry of encoder phases, optical aberrations, nonlinearities in the behavior
of photoreceptors, and electromechanical system noise. Therefore, the incorporation of
Artificial Intelligence becomes essential for enhancing the reliability of such devices in an
industrial context, which is the motif of the present work.

Furthermore, deep learning in conventional neural networks, with multiple processing
layers to learn (see [16,17]), has proven to be particularly effective in computer vision and
also in a wide range of applications related to the processing of complex and unstructured
data. One of the reasons deep learning has been so successful is its ability to automatically
learn useful features and representations from data. This has led to significant advances
in artificial intelligence and the automation of tasks that previously required detailed
manual programming.

Thus, the main contribution of this work is focused on the design and implementation of
conventional artificial neural networks to address information provided by polyphasic sensors,
especially the one presented in the next section, utilizing deep learning strategies (i.e., multilayer
neural networks), to obtain a high-precision neuro-encoder, which detects the angular position of
the rotary element with a negligible margin of error in small angular intervals but is also endowed
with some strategies to extend measurement ranges. Likewise, a simple machine learning strategy is
proposed to train the neural networks for any angular interval.

The remainder of the document is organized as follows: Section 2 establishes the
problem that is intended to be solved with this proposal; Section 3 is devoted to presenting
the neural designs to address the polyphasic signals along with the training algorithm,
the machine learning strategy, and an implementation example; Section 4 is focused on the
performance results made via simulations for the neuro-encoder; Section 5 is devoted to
suggesting the strategy so that the encoder can work in the full range from 0 to 360◦ without
losing its characteristic precision; finally, in Section 6, the main conclusions are given.

2. Problem Setting

This work is devoted to designing and implementing Artificial Neural Networks (ANNs)
using a machine learning technique to predict the angular position of rotary elements using
the device reported in [14].
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However, some changes have been made to the original idea of [14] in order to make
it compatible with the Neural Network design.

In Figure 1, we have an exploded view of the device where each of its constituent
components can be appreciated. In this figure, we have a base that has five holes to ac-
commodate the five photoreceptors whose information constitutes the five inputs of the
proposed neural network. The base also has four seats to house the analyzers, which means
that the central photoreceptor is without an analyzer. On top of the base, a bearing is also
seated, which allows the rotation of a polarizer since the latter is attached to the rotating
element of the bearing. A housing unit solidly connects the base to the fixed element of the
bearing. Finally, a transparent cover attached to the rotating element allows the entry of light
from the outside. As an additional element, the cover can contain an arrow indicating the
reading of the angular position, which must coincide with the output of the neural network.

Figure 1. Exploded view of the encoder.

In Figure 2, the main elements of the basic idea of the sensor are shown. Both the
photoreceptors and the analyzers within their bases, and the rotating polarizer in its
position are displayed.

In Figure 3, we have the assembly of all the constituent elements of the sensor.
To explain the operation of the encoder, we will begin by saying that when a beam

of light passes through two consecutive polarizers, one of them fixed and the other with
rotary movement (the fixed one called “polarizer” and the rotary one called “analyzer”),
the resulting light intensity I(θ) is quantified by the Malus’s law

I(θ) = I0 cos2(θ) (1)

where I0 represents the intensity of light of reference, i.e., the intensity of light before any
polarization, and θ is the angular position of the polarizer mounted on the rotary element of
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the encoder (see [18,19]). Nevertheless, such an arrangement allows us to measure an angle
in the interval 0 ≤ θ ≤ π/2 and to solve this major drawback; the studied sensory device
consists of four phases which follow Malus’s law, with phase shift of π/4 as depicted in
Figure 4. It should be clarified that the red grids are only a representation for didactic
purposes of the polarization axes since they are not perceived by the naked eye.

Figure 2. Main elements of the encoder.

Figure 3. Assembly of the elements shown in Figure 1.

Figure 4. Orientation of the polarizing axes of each analyzer.

In this way, the light intensities coming from the reading of each photoreceptor will
allow the identification of the angle generated by the polarizer, as depicted in Figure 5,
whose value is in the interval 0 ≤ θ ≤ 2π.
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Figure 5. Angular position of the rotary polarizer.

According to the equations, relative to the phase shift polarization, in theory, the angle
θ can be obtained by

θ =
1
2

tan−1
[

I4 − I2

I1 − I3

]
(2)

where the intensity of light for each of the four phases is modeled by

I1(θ) =
1
2

I0 +
1
2

I0 cos(2θ) (3)

I2(θ) =
1
2

I0 −
1
2

I0 sin(2θ) (4)

I3(θ) =
1
2

I0 −
1
2

I0 cos(2θ) (5)

I4(θ) =
1
2

I0 +
1
2

I0 sin(2θ) (6)

However, the use of the algorithm shown by the above equations only works in a
laboratory environment since the following conditions in the encoder’s manufacturing
must be strictly met:

1. The phase shift angles must be exactly 45 degrees for 4 phases, 120 degrees for
3 phases, etc.

2. Both polarizers and analyzers must be free of optical aberrations and must be
manufactured perfectly.

3. The photoreceptors must present linear readings according to the intensities marked
by Malus’s law and must be free from phenomena of saturation and hysteresis.

4. The device must work free from disturbances and noise.
Then, a math-based algorithm would provide a reading with zero error as long as the

device’s manufacturing was absolutely perfect and there was no electromechanical noise
around it.

Obviously, for heavy-duty work conditions in the industry, these conditions are practi-
cally impossible to meet. Therefore, a method based on artificial intelligence is proposed to
obtain the reading of the encoder’s angular aperture.

Summarizing, according to the polyphasic encoder depicted by Figures 1–5, the prob-
lem to solve is focused on designing and implementing adequate ANNs endowed with a
machine learning technique, with an input vector of five intensities of light and one output
to predict the angular position, such that none of the four conditions enumerated above are
necessary to fulfill in order to obtain an excellent encoder performance.
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This work presents a multidisciplinary approach, where several branches of knowl-
edge are involved, as is suggested in [20], to solve the problem that has arisen.

3. Neural Networks Design

This study presents several supervised deep learning neural networks, in the sense
presented in [21], instead of a single one, with the purpose of observing the behavior of
each of them and obtaining conclusions about the dimensions and characteristics that a
neural system oriented to perform the proposed task should have.

Thus, a set of four neural networks are being developed to perform a regression task,
where the input of each is a vector with the values of five light intensities and the output
is a predicted angle, as is shown in Figure 6 where the hidden neural layers are the ones
that will process the input information and transform the data in a way that can be used to
generate a good angle prediction. The number of hidden layers and the number of neurons
in each of them is a hyperparameter that must be determined through experimentation
and fine-tuning.

Figure 6. Basic design of the deep NN for the polyphasic encoder.

Figures 4 and 5 show the four phases from which the intensities of light I1, I2, I3, I4
originate, along with the light’s intensity of reference I0.

The first NN is a network with its five respective inputs, a single hidden layer with
two neurons, and finally, an output node. This is represented in Figure 7.

Figure 7. NN with five inputs, one hidden layer of two neurons, and the output neuron.

Figure 8 shows a more complex neural network with its five respective input nodes,
two hidden layers of four neurons each, and its respective output node.

Figure 9 shows the most complex network of the last three since it is similar to the
previous network, but its first hidden layer has eight neurons instead of four.

In this last Figure 9, not all connections are shown in order to preserve the quality of
the figure. However, in all the networks shown, it is assumed that all the nodes in one layer
are connected to all the nodes in the next layer and to all the nodes in the previous layer.
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Figure 8. NN with five inputs, two hidden layers of for neurons each, and the output neuron.

Figure 9. NN with five inputs, two hidden layers: the first one with eight and the second one with
four neurons, and the output neuron.

Finally, in Figure 10, a NN with 36 neurons is presented, where the first hidden layer
has 27 and the second hidden layer has 8 neurons. As in the last NN, all nodes from one
layer to the next are connected, such that there are 359 synaptic weights.

Figure 10. NN with five inputs, two hidden layers: the first one with 27 and the second one with 8
neurons, and the output neuron.
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For all the NNs, the synaptic weights are represented with Wij, where i represents the
destination node and j is the source node.

Concurrently, the activation functions for all the neurons in the network are the
constant 1 since after attempting to work with other activation functions, the network
does not work correctly. The activation functions that were tested were tanh, sig functions,
and combinations of exponentials with sin and cos functions. Thus, the first conclusion is
that the neural network for this type of application does not require the introduction of
these types of nonlinearities.

Furthermore, the numerical value for each node is given by:

Ni =
n

∑
j=1

Xj Wij (7)

which is graphically exemplified in Figure 11.

Figure 11. An individual neuron.

3.1. Training Algorithm

Deep learning is a subfield of machine learning that relies on deep artificial neural net-
works to perform pattern recognition and decision-making tasks automatically (see [17,21]).
These deep neural networks consist of multiple layers of interconnected nodes, which
enable them to learn and represent complex features from data.

To train the network, a labeled dataset containing values of light intensity and corre-
sponding predicted angles will be needed. These data will be used to adjust the weights
of the network and improve its ability to make accurate predictions. The goal will be to
minimize the error between predicted angles and actual values.

To accomplish this task, the total error must be obtained with

ε = XR − XOUTPUT (8)

where XR is the real value of the angle, and XOUTPUT is the predicted angle. After this,
the total error ε must be retro propagated to the NN, multiplying the error corresponding
to each node by its respective synaptic weight Wij.

When the error has been retro propagated, the synaptic weights must be updated by

W∗ij = Wij + δ εij Xj (9)

where δ is the learning rate.
The updated numerical values for each node N∗i are obtained by

N∗i = ∑
j

W∗ij Xj. (10)

When the output value has been obtained, this process is repeated using many train-
ing examples.
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Once the neural network has been trained, it can be used to make predictions on new
sets of data. The accuracy of the network will depend on the quality of the training data
and the architecture of the network.

3.2. Training Example

The last Algorithms (8)–(10) are now exemplified to train the NN given by Figure 8.
However, to train the NNs of Figures 7 and 9, the procedure is the same.

1. The first step is the obtaining of the total output using (8) in three consecutive stages.
(a) To obtain the value for each neuron at the first hidden layer (1 ≤ i ≤ 4):

Ni =
4

∑
j=0

Ij Wij (11)

(b) To obtain the value for each neuron at the second hidden layer (5 ≤ i ≤ 8):

Ni =
8

∑
j=5

N(j−4) Wi(j−4) (12)

(c) Finally, to obtain the value for the total output of the NN:

N9 =
8

∑
j=5

Nj W9j (13)

The total output (N9), which is the predicted angle, is compared with respect to
the expected actual value XR, obtaining the total error (the value we wish to minimize),
given by:

ε = XR − N9 (14)

2. The second step consists of the retro propagation of the total error to each connection
of the NN, also in three reversed stages.

(a) To retro propagate the error from N9 to the second hidden layer (5 ≤ j ≤ 8):

ε9j = ε W9j (15)

(b) To retro propagate the error from the second hidden layer to the first hidden layer
(5 ≤ i ≤ 8 and 1 ≤ j ≤ 4):

εij = ε Wij (16)

(c) Finally, to retro propagate the error from the first hidden layer to the input nodes
(1 ≤ i ≤ 4 and 0 ≤ j ≤ 4), Equation (16) is also used.

3. The third step consists of the updating of the synaptic weights using (9), (15), and
(16) in the following forwarding direction.

(a) From the input vector to the first hidden layer (1 ≤ i ≤ 4 and 0 ≤ j ≤ 4):

W∗ij = Wij + δ εij Ij (17)

(b) From the first to the second hidden layer (5 ≤ i ≤ 8 and 1 ≤ j ≤ 4):

W∗ij = Wij + δ εij Ni−4 (18)

(c) Finally, from the second hidden layer to the output (5 ≤ i ≤ 8):

W∗ij = Wij + δ εij Ni (19)

4. The last step is the obtaining of the new output, and, in some sense, it is simultaneous
with step 3 because the updating of the synaptic weights also requires the update of the
last outputs, with the exception of the total output, which must be obtained using (10).
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3.3. Machine Learning Strategy

The acquisition of information vectors for training a neural network is a time-consuming
and laborious process. For this reason, it is desirable for the machine to have the ability to
learn by itself using some strategy.

A mathematically based strategy to use the given Equations (3)–(6) to automatically
obtain the values of light intensities for each angular value is desired, provided that in the
referred equations structural perturbations and system noise represented by λk (where k is
the number of phases) are modeled and incorporated in the following form:

∗ I1(θ) =
1
2

I0 +
1
2

I0 cos(2θ) + λ1 (20)

∗ I2(θ) =
1
2

I0 −
1
2

I0 sin(2θ) + λ2 (21)

∗ I3(θ) =
1
2

I0 −
1
2

I0 cos(2θ) + λ3 (22)

∗ I4(θ) =
1
2

I0 +
1
2

I0 sin(2θ) + λ4 (23)

where λk is the term that must be absorbed by the neural network and can be obtained
using

∗ Ik(θ)− Ik(θ) (24)

To carry out this process, it is necessary to implement a system where the angle
value is updated, and with that value, the light intensities are obtained. Subsequently,
the network is trained with those values, and this entire process is repeated automatically
in a repetitive manner.

In the initial step, an arbitrary value θ0 is assigned to the angle θ, and the given
equations are used to calculate the light intensities I0

1 , I0
2 , I0

3 , I0
4 . Then, the angle is incre-

mented/decremented to obtain θ1, leading to the modification of the light intensities to I1
1 ,

I1
2 , I1

3 , I1
4 , and the synaptic weights are adjusted accordingly.

This process of updating the angle, calculating the new intensities, and modifying
synaptic weights is repeated for n iterations:

θn → In
1 , In

2 , In
3 , In

4 (25)

For a detailed procedure in implementing these concepts, see the explanation of
Figure 12 in the next section.

Figure 12. Automatic calculation of angular position along with its corresponding light intensities.
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In order to model the function of nonlinearities, noise, and static and dynamic distur-
bances of a specific device, it is advisable to first carry out the process described manually
to obtain the light intensities, and then use the proposed Equation (24).

The other alternative to using machine learning techniques is to train the network
manually, which would increase, in an extreme way, the time and effort devoted to obtaining
results and adjustments to the neural network

3.4. Implementation Example

This implementation example is performed in Matlab’s Simulink program and in-
volves applying the Equations (11)–(19) that describe the neural network in the Figure 8
along with its training, and the machine learning strategy (20)–(25).

The same principles and programming techniques from this example are followed
to program the other neural networks proposed in this work. Figure 13 shows the root
program, which consists of eight subsystems. The first subsystem contains the neural
network with five inputs, two hidden layers with four neurons each, and one output neuron.

Figure 13. Root program of the machine learning technique.

The second subsystem contains the program for the first training cycle, where the
error is backpropagated, synaptic weights are adjusted, and an output is obtained with
reduced error.

The third subsystem contains a program that calculates the corresponding light inten-
sities for an angle that has a different value than the initial one. Concurrently, the fourth
subsystem contains the training program for this third subsystem, following the same
description as for subsystem two.

The fifth and sixth subsystems are a repetition of the third and fourth subsystems.
Similarly, the seventh and eighth subsystems are also a repetition of the previous ones,
allowing for the addition of the desired number of pairs.

The W1, · · · , W9, represent vectors of synaptic weights for each of the nine neurons in
the exemplified network, totaling forty parameters that are updated in each angle update
and its corresponding training. This process continues until the end of the sequence,
where the values of the synaptic weights are stored in Matlab using the “To Workspace”
instruction to initiate new training cycles that progressively reduce the error.

If, for example, we start with an angular value of 17 degrees and program a negative in-
crement of one degree, then subsystem eight will provide us with adapted synaptic weights
and corresponding light intensities for 14 degrees. However, prior to this, the network has
been trained for values of 15, 16, and 17 degrees. If we repeat this process a sufficient number
of times, it is expected that the network will be trained to predict angular measurements
close to the 14–17 degree interval when given a vector of light intensities as input.
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Both the accuracy and precision, as well as the range of the angle to be predicted,
depend on the capacity of the neural network. In other words, a neural network with small
hyperparameters and insufficient architecture will be able to predict within small angular
intervals with wide margins of error. At the same time, powerful neural networks can
predict with high accuracy and precision within the full 360-degree range detectable by
the sensor.

Moving on to the next Figure 14, we have the block programming of what is contained
in subsystems three, five, and seven of the previous Figure 13. In program of Figure 14,
we can see other subsystems, one of them containing the error backpropagated inherited
from the previous subsystem, another one containing the calculation of light intensities
for new angles, and four others containing the neurons of the first hidden layer. The four
summation nodes appearing on the right-hand side represent the four neurons of the
second hidden layer. The rightmost summation node represents the output neuron, where
the calculation of the total error at that stage is performed. As it can be seen, the synaptic
weights are updated before the calculation of each neuron’s output.

Figure 14. Program inside the third, fifth, and seventh subsystem blocks of Figure 13.

In Figure 12, the program within the subsystem “Intensities of light” is shown, which
corresponds to the calculation of the light intensities that should correspond to each angular
measurement, according to what was explained in the subsection “Machine learning
strategies”. Figure 12 also includes disturbances and a white noise generator to simulate
real-world conditions.

The input “a” is the angle stored in the program’s working memory, starting with an
arbitrary initial value. Concurrently, the constant input “b” is the increment/decrement that
will be applied to the angle in each iteration of the training process. By adding/subtracting
“b” from “a”, an updated value of “a” is obtained, which will change throughout the
machine learning cycle.

If we take away the subsystem of Figure 12 from Figure 14, then subsystems four, six,
and eight in Figure 13 are obtained because the exclusive training blocks do not include
an update of angle and light intensities. The same can be said for block two in Figure 13;
however, the first training block does not inherit previous synaptic weights.

The block program within the “Retro propagation” subsystem is shown in Figure 15,
where items 3 and 4 of the “Training example” can be seen in a diagram block.

Finally, Figure 16 shows the interior of a neural subsystem where it can be observed
that the only constant value is I0. In this case, we are dealing with a neuron in the first
hidden layer. As you can see, the synaptic weights converging on the node are multiplied
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by the light intensities from the encoder. The neurons in the second hidden layer have a
similar structure but with four inputs coming from the first hidden layer.

Figure 15. Program for the retro propagation of the error.

Figure 16. Interior of a neural subsystem.

Up to this point, the neural network of Figure 8 has been exemplified using block
diagrams and explanatory text, allowing the reader to implement this neural network on
their own. Finally, as you may have noticed, for this program to work, two additional
Matlab programs in .m format are required. The first program should be executed before
running the block program and should contain the parameters “a” and “b” along with their
initial light intensity values, the learning rate “RA”, and the initial synaptic hyperparameter.
The second .m program should be executed after each run and should contain the updated
values of the synaptic weights sent to Matlab using the “To Workspace” instruction.

Now let us show another example with an arrangement made for the NN of Figure 10
endowed with 36 neurons, which corresponds to the program shown by Figure 17, which
has a different purpose than the one in the Figure 13. Every “Stage” block of Figure 17 has
the same structure of the “Increment” block in Figure 13, and both kinds of structures will
be used to obtain simulation results.

Observe that the hyper parameter for this NN is conformed by 359 synaptic weights.
Once the NNs have been trained, the hyper parameters can be stored in a database

to be used when they are required. In the Appendices A–D, the initial synaptic weights,
along with the trained ones, are provided for every NN.
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Note: The synaptic weights for I0 do not appear for the first NN (3 neurons) since,
heuristically, it was detected that they did not provide benefits for their good performance.

Figure 17. Neural training around an specific angular value.

4. Performance Results

The implementation for simulation purposes has been performed for the four networks
shown in the Figures 7–10, and below performance results are presented for an interval
from 13 to 17 degrees, and symmetrically from 17 to 21 degrees, using the corresponding
light intensity vector as a system input. For this purpose, each NN has been implemented
in two versions, the first one with the structure shown by Figure 13, and the second one
with a structure as shown in Figure 17.

The intensities of light for every angle θ were obtained using Equations (3)–(6), and tak-
ing I0 = 50 as the parameter for all simulation results.

For this first set of results no perturbations λk have been included in (20)–(23).
Nevertheless, a second study has been performed to investigate the effect of including
λ1, λ2, λ3, λ4 as white noise functions with a peak amplitude of 0.00012 and an average
frequency of 650 Hz. Due to the strange behavior of neural networks, which can vary
significantly based on their architecture and size, establishing benchmarks for comparison
can be a challenging task. Nevertheless, given its specific role within this application, we
will endeavor to devise a methodology for conducting meaningful comparisons.

Using the novel machine learning technique expressed by (25) and illustrated by
Figure 13, a performance comparison between NN2, NN3, and NN4 is given in Table 1
(NN1 is not considered because it presents low performance when it is trained for intervals).

Table 1. Minimum error in training for angular intervals.

NN 2 NN 3 NN 4

Interval 9 Neurons 13 Neurons 36 Neurons

16-17-18 0.007742 (LR = 2.705× 10−4) 0.0029 (LR = 1.29× 10−4) 0.00474 (LR = 5.35× 10−4)

15-17-19 0.01664 (LR = 2.6× 10−4) −0.08481 (LR = 8.5× 10−5) −0.01136 (LR = 3.9× 10−4)

14-17-20 −0.03545 (LR = 2.5× 10−4) 0.08497 (LR = 6× 10−5) 0.02585 (LR = 3× 10−4)

13-17-21 −0.4323 (LR = 2× 10−4) −0.8673 (LR = 5× 10−5) −0.303 (LR = 3× 10−4)

The intervals in the first column of the referred table have a lower value, a central
value, and an upper one, such that the central value for every interval has been arbitrarily
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selected as 17 degrees for this study. This central value increases or decreases symmetrically
in one, two, three, and four degrees to obtain four intervals.

Remember that every increment block increases/decreases “b” degrees (for this case
b = 1) from the previous block (accordingly with Figure 12), such that the performance of
the first interval is obtained taking data from the Training 1 block, the second interval takes
data from the Training 2 block, while the third interval takes data from the Training 3 block,
shown in the mentioned Figure 13.

The table indicates the minimum values obtained for the training at the extremes of
every interval, taking into account the better learning rate (LR) heuristically found and
used for each case.

Certain remarks can be drawn from Table 1:
1. When the range of the interval is widened, the minimum error increases. Neverthe-

less, an increase in network capacity helps in reducing error.
2. The neural network of 36 neurons performs a little better than the others; however,

the computational cost increases considerably.
3. Strangely, the network of 9 neurons is more efficient than that of 13, which supports

the fact that the architecture of the network influences its efficiency.
4. Both the errors and the training rates of the network of 13 neurons are higher than

those of the others (for the last three intervals), which supports the idea that both concepts
are directly proportional to each other for a neural network (also see that in the first interval,
it is reversed).

5. An additional remark obtained from the research process is that every one of the
presented Neural Networks is extremely sensitive to small hyper parameter changes since
a single change of some initial synaptic weight value can lead to different NN behavior.
Nevertheless, those of Table 1 are the better results obtained after many hours of tune and
adjustment. Thus, it is concluded that a lot of time is required to tune the NNs and to find
their optimal functioning.

Once a comparative analysis between the different neural networks has been carried
out, let us review the error that each of them throws when they are trained around a specific
region. The angle must be specified by the user assigning the desired angular value “a”
and “b = 0” in the Matlab console directly or running beforehand a .m file containing
this information, which feeds the subprogram shown in Figure 12, and after running the
program depicted in Figure 17.

For this case is selected “a = 17” (which with ±0.5 can be used to detect angles in the
range 16.5–17.5). The corresponding intensities of light are automatically obtained by sub-
program of Figure 12, and the training process starts with the machine learning technique.

In Tables 2–5, the first column corresponds to the Learning Rate (LR), and the first row
to the training stage from the initial reading (0) to the 9th learning stage.

The initial readings in column 0 were obtained using randomly assigned synaptic
weights, while the machine learning technique updated the synaptic weights from the 1st
to the 9th stages in an extremely fast process.

Table 2, shows the training performance of the first NN shown in Figure 7, where the
best LR is 0.0005 and reaches a minimum error of−1.2× 10−4. Figure 18, shows graphically
the 4th row of Table 2.

Table 2. Error magnitude of the NN with three neurons of Figure 7, taking different learning rates
(LR), along the nine training stages, where the best LR is 0.0005 (in bold).

LR 0 1 2 3 4 5 6 7 8 9

0.003 7.24 −56.8 2 × 104 −1 × 1019 −4 × 10102 nan nan nan nan nan
0.002 7.24 −33.08 225.1 −3 × 107 −2 × 1036 2 × 10199 nan nan nan nan
0.001 7.24 −11.14 12.63 −9.032 4.085 −0.4246 0.065 −9.2 × 10−3 1.3 × 10−3 −1.9 × 10−4

0.0005 7.24 −1.398 0.3467 −0.079 0.0184 −4.3 × 10−3 9.9 × 10−4 −2.3 × 10−4 5.3 × 10−5 −1.2 × 10−5

0.0001 7.24 5.61 4.318 3.303 2.513 1.905 1.439 1.084 0.8156 0.6124
1 × 10−5 7.24 7.077 6.92 6.766 6.615 6.457 6.321 6.179 6.039 5.903
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Figure 18. Error behavior of the NN with three neurons given by Figure 7 along the training stages
from the initial 0 to the 9th.

In Appendix A, both the initial and the final synaptic weights (after nine training
stages using the machine learning technique) are given for the NN with three neurons,
excluding the I0 connections.

Table 3 shows the training performance of the first NN shown in Figure 8, where the
best LR is 0.0001 and reaches a minimum error of −0.533. Figure 19, shows graphically the
5th row of Table 3.

Table 3. Error magnitude of the NN with nine neurons of Figure 8, taking different learning rates
(LR), along the nine training stages, where the best LR is 0.0001 (in bold).

LR 0 1 2 3 4 5 6 7 8 9

0.003 −23.9 −6.6 × 104 −3.7 × 1050 nan nan nan nan nan nan nan
0.002 −23.9 −1.3 × 104 −6 × 1038 nan nan nan nan nan nan nan
0.001 −23.9 −657.5 −1.8 × 1020 −4 × 10250 nan nan nan nan nan nan

0.0005 −23.9 −48.67 −5170 5 × 1030 nan nan nan nan nan nan
0.0001 −23.9 −8.187 −5.309 −3.693 −2.638 −1.905 −1.383 −1.006 −0.732 −0.533

1 × 10−5 −23.9 −21.59 −19.71 −18.11 −16.75 −15.56 −14.53 −13.6 −12.78 −12.04
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−25

−20

−15

−10

−5

0

Training Stage

E
rr

or
 M

ag
ni

tu
de

−23.8696

−8.1859999

−5.30876159

−3.69292528

−2.63761346

−1.9050475598

−1.382692

−1.0056695187

−0.732052

−0.53301077

Figure 19. Error behavior of the NN with nine neurons given by Figure 8 along the training stages
from the initial 0 to the 9th.
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In Appendix B, both the initial and the final synaptic weights are given for the NN
with nine neurons, where the initial synaptic weight corresponds to the table’s column 0
and the final weights are those obtained from the nine training stage.

Table 4 shows the training performance of the third NN shown in Figure 9, where the
best LR is 0.0001 and reaches an error of 1.72 × 10−4. Figure 20, shows graphically the 5th
row of Table 4.

Table 4. Error magnitude of the NN with thirteen neurons of Figure 9, taking different learning rates
(LR), along the nine training stages, where the best LR is 0.0001 (in bold).

LR 0 1 2 3 4 5 6 7 8 9

0.003 22.19 −1 × 104 4 × 1038 nan nan nan nan nan nan nan
0.002 22.19 −2380 4 × 1028 nan nan nan nan nan nan nan
0.001 22.19 −271.5 2 × 1014 −1 × 10171 nan nan nan nan nan nan

0.0005 22.19 −37.81 −254.6 −2 × 1012 −3 × 10143 nan nan nan nan nan
0.0001 22.19 17.51 11.24 5.069 1.42 0.2693 0.044 6.9 × 10−3 1.1 × 10−3 1.7 × 10−4

1 × 10−5 22.19 21.83 21.46 21.08 20.67 20.25 19.82 19.37 18.9 18.42
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Figure 20. Error behavior of the NN with thirteen neurons given by Figure 9 along the training stages
from the initial 0 to the 9th.

In Appendix C, both the initial and the final synaptic weights are given for the NN
with thirteen neurons, where the machine learning technique has been used to obtain the
last trained weights (during nine stages).

Table 5, shows the training performance of the third NN shown in Figure 10, where
the best LR is 0.001 and reaches an error of −1.1 × 10−10. Figure 20 shows graphically the
3rd row of Table 5.

Table 5. Error magnitude of the NN with thirty-six neurons of Figure 10, taking different learning
rates (LR), along the nine training stages, where the best LR is 0.001 (in bold).

LR 0 1 2 3 4 5 6 7 8 9

0.003 3.51 3.19 −8.635 13.15 2.4× 104 5.6× 1041 nan nan nan nan
0.002 3.51 1.986 −2.851 1.13 0.693 0.296 −0.1436 0.06515 0.0304 0.014
0.001 3.51 −0.081 0.0062 4.9× 10−4 3.82× 10−5 −2.99 × 10−6 2.35× 10−7 −1.84 × 10−8 1.44 × 10−9 −1.1 × 10−10

0.0005 3.51 −1.59 0.7184 −0.3263 0.1487 0.06788 0.031 0.01418 6.48 × 10−3 2.96 × 10−3

0.0001 3.51 −3.09 −2.72 −2.398 2.116 1.869 1.652 −1.462 −1.294 −1.147
1 × 10−5 3.51 −3.47 −3.427 −3.385 −3.344 −3.303 −3.262 −3.222 −3.183 −3.144

To observe the evolution of the synaptic weights from their initial to the final val-
ues in the training process using the proposed machine learning technique, please see
Appendix D.
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As mentioned at the beginning of this section, the presented results were obtained
using a machine learning model without any disturbance. However, experiments were
conducted by introducing white noise to dynamically perturb the light intensity values,
resulting in an accuracy approximately 4% lower than the results obtained with the undis-
turbed system. Clearly, as the dynamic disturbance increases, the accuracy continues to
decrease. A more comprehensive study on this matter is proposed as a topic for future
research in the context of applications involving polyphasic sensors with perturbed input
vectors. It will be hypothesized that static disturbances are completely absorbed by the
neural network.

Obtaining the results presented in each of the above tables using manual neural
training methods can take several days of hard work per run, while the use of the proposed
computer machine learning technique has reduced that time to only a few minutes per run
using a standard computer.

5. Intervals Management

In Table 6, the full range from 0 to 180◦ is partitioned in 16 intervals of 11.25◦ each.
In the first column, the angular position is marked, and in columns 2, 3, 4, and 5, the cor-
responding intensities of light are given (taking I0 = 50). Observe that every interval has
a defined and unrepeated relationship between the four intensities of light. For example,
the first interval goes from 0 to 11.25◦, and the relationship between the corresponding
intensities of light is:

I1 > I4 ≥ I2 > I3
50 ≥ I1 ≥ 48.1

25 ≥ I2 ≥ 15.42
0 ≤ I3 ≤ 1.9

25 ≤ I4 ≤ 34.57

(26)

Table 6. Intensities of light with I0 = 50.

Angle (Deg) I1 I2 I3 I4

0 50 25 0 25
11.25 48.1 15.42 1.9 34.57
22.5 42.7 7.32 7.32 42.7

33.75 34.57 1.9 15.43 48.1
45 25 0 25 50

56.25 15.43 1.9 34.57 48.1
67.5 7.32 7.32 42.7 42.7

78.75 1.9 15.43 48.1 34.57
90 0 25 50 25

101.25 1.9 34.57 48.1 15.43
112.5 7.32 42.7 42.7 7.32
123.75 15.43 48.1 34.57 1.9

135 25 50 25 0
146.25 34.57 48.1 15.43 1.9
157.5 42.7 42.7 7.32 7.32
168.75 48.1 34.57 1.9 15.43

180 50 25 0 25

Obviously, the beginning of the first interval, or in other words, zero degrees, can be
located at any position on the circumference, so it is possible to put any interval (e.g., 16-17-
18, 15-17-19, 14-17-20, 13-17-21, and so on) in the center of any interval of Table 6.

Under these considerations, the following methodology to measure angular positions
from 0 to 180◦ with grate precision is suggested:

1. Train the NN with 36 neurons, according to the scheme of Figure 10 for each of the
16 intervals given by Table 6.

2. Store the values of the synaptic weights trained for each of the intervals in a data bank.
3. Use an automatic system to identify the interval in which the reading is found based

on the relationships between the values of light intensities.
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4. Call the package of synaptic weights that correspond to the identified interval and
use it to make the prediction of the angular measure.

Additionally, an index on/off detector can be located in the encoder to detect from 180◦

to 360◦, and then a full range neural encoder can be obtained with outstanding accuracy.

6. Conclusions

A neuro-encoder that solves the drawbacks caused by mathematically based algo-
rithms to address polyphasic signals has been designed and presented in this work. Unlike
math-based algorithms, the deep learning neural network does not require a perfect ge-
ometry of encoder phases, optical components free from aberrations, linear behavior of
photoreceptors, or a system free from electromechanical noise. This represents a significant
reduction in manufacturing costs and makes the encoder suitable for operation under
rugged industrial conditions with high reliability. The maximum precision achieved in
previous work using Equation (2) to obtain readings through mathematical methods was
1.39 × 10−2 under laboratory conditions. In contrast, the angular precision achieved using
neural network 4, disregarding ideal conditions, is 1.1 × 10−10 in the 9th stage of self-
training. Therefore, the neural network makes the polyphase encoder 126 million times
more accurate, in small measurement intervals, than the math-based algorithm.

Thus, the proposed neural architecture is ideal for predicting, with great accuracy,
positions that are within small angular intervals. It performs these predictions in such a
way that the precision and accuracy of the neural device are inversely proportional to the
length of the angular interval. The characteristics of the light intensities provided by the
encoder allow segmenting the 180◦ of the semi-circumference into 16 intervals, which is
very convenient for this type of artificial intelligence applications.

The accuracy, precision, and range of the angle to be predicted are influenced by
the capacity of the neural network. A neural network with small hyper parameters and
limited architecture may struggle to predict within wide angular intervals and may have
larger margins of error. On the other hand, more powerful neural networks, with larger
architectures and better training, have the ability to predict with higher accuracy and
precision across a wider range of angle measurements. Properly choosing the neural
network architecture and optimizing its hyper parameter guarantee achieving optimal
performance in angular prediction.

The most notable advantage of using the machine learning technique, exemplified by
Figure 12, is the enormous savings in time and effort in tuning synaptic weights for the
neural networks. Furthermore, Figures 18–21 show the outstanding performance of the
proposed math-based self-learning strategy.
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Figure 21. Error behavior of the NN with thirty-six neurons given by Figure 10 along the training
stages from the initial 0 to the 9th.
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Finally, in Figures 22 and 23 we show an example of the behavior of the synaptic
weight values of w1 from 0 to the 9th training stage, where the robustness of the applied
technique can appreciate.
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Figure 22. Behavior of the synaptic weights values of w1 from 0 to the 9th training stage.
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Figure 23. Enlarged view into the rectangle at the bottom of Figure 22.

7. Future Work

For future work, it is proposed to find and study a neural architecture capable of
reading the angular positions of polyphase encoders in the range of 0 to 360 degrees
with extraordinary precision, directly, without the need for interval segmentations or
constraining readings to regions. Another natural follow-up task is to implement these
proposed techniques with other types of encoders and polyphase signal devices, such as
resolvers and multi-channel potentiometers.

Another future work can be a deeper study of the math-based machine learning
technique, focused on modeling both the static and the dynamic disturbances λk for every
kind of polyphasic sensor.
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Appendix A

Initial synaptic weights for the three neurons NN:
W11 = 0.2921; W12 = 0.4535; W13 = 0.6159; W14 = 0.641; W21 = 0.8409; W22 = −1.048;

W23 = 0.3921; W24 = −0.4775; W31 = 0.445; W32 = −1.073.
After nine training stages, the synaptic values are, respectively:
0.309371089476513; 0.460049135637463; 0.619358528620518; 0.673391503338393;

0.710784471418466; −1.009915837017339; 0.386601959514996; −0.414830180813457;
0.509201326369290; −1.093646052779812.

Appendix B

Initial synaptic weights for the nine neurons NN:
W10 = 1; W11 = −1; W12 = 0.5; W13 = −0.8; W14 = 1; W20 = 1; W21 = −1; W22 = 0.7;

W23 = −0.5; W24 = 1; W30 = 1; W31 = −1; W32 = 0.4; W33 = 0.5; W34 = −1; W40 = 1;
W41 = −1; W42 = 0.8; W43 = −0.7; W44 = 1; W51 = −1; W52 = 0.1; W53 = −1.1; W54 = 1;
W61 = −1; W62 = 1.1; W63 = −0.2; W64 = 1; W71 = −1; W72 = 0.4; W73 = −0.6; W74 = 1;
W81 = −1; W82 = 0.5; W83 = −0.4; W84 = 1; W91 = −1; W92 = 0.7; W93 = −0.3; W94 = 1.

After nine training stages, the synaptic values are, respectively:
1.039880053990216; −1.033239305418995; 0.504041074761261; −0.802512051431480;

1.028381939386067; 0.777996585877908; −0.813051918386014; 0.666923709525362;
−0.490751780882688; 0.839155944277211; 0.833747121496673; −0.860424187421459
0.386047579188096; 0.493187974436129; −0.880178051000489; 0.957916826555126;
−0.965083756076087; 0.793322684596321; −0.697737519403375; 0.970284571402989;
−1.266502353129590; 0.123154922501845; −0.991326342802792; 1.261241654493599;
−0.844283216609060; 0.948147665602257; −0.214064814933969; 0.847026647789969;
−1.074765322759282; 0.426200060696783; −0.581914526918561; 1.073358832754733;
−0.775592928518854; 0.400251867838731; −0.442202067555261; 0.779410970382417;
−0.876292132042843; 0.543984795600861; −0.256825650245113; 0.867152586949721.

Appendix C

Initial synaptic weights for the thirteen neurons NN:
W10 = 1; W11 = −1; W12 = 0.5; W13 = −0.8; W14 = 1; W20 = 1; W21 = −1; W22 = 0.7;

W23 = −0.5; W24 = 1; W30 = 1; W31 = −1; W32 = 0.4; W33 = 0.5; W34 = −1; W40 = 1;
W41 = −1; W42 = 0.8; W43 = −0.7; W44 = 1; W50 = 0.15; W51 = −1; W52 = 0.1; W53 = −1.1;
W54 = 1; W60 = 0.35; W61 = −0.53; W62 = 0.19; W63 = −0.48; W64 = 0.8; W70 = 0.17;
W71 = −1.1; W72 = 0.9; W73 = −0.88; W74 = 0.6; W80 = 0.2; W81 = −1.2; W82 = 0.19;
W83 = −1; W84 = 0.9; H11 = −1; H12 = 1.1; H13 = −0.2; H14 = 1; H15 = 0.25; H16 = −0.55;
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H17 = 0.4; H18 = −0.35; H21 = −1; H22 = 0.4; H23 = −0.6; H24 = 1; H25 = −0.3; H26 = 0.7;
H27 = −0.18; H28 = 0.3; H31 = −1; H32 = 0.5; H33 = −0.4; H34 = 1; H35 = 0.4; H36 = −0.54;
H37 = 0.45; H38 =−0.29; H41 =−1; H42 = 0.7; H43 =−0.3; H44 = 1; H45 =−0.6; H46 =−0.66;
H47 = 0.51; H48 = −0.27; G11 = 0.5; G12 = −0.55; G13 = 0.2; G14 = −0.15.

After nine training stages, the synaptic values are, respectively:
0.973316586648890; −0.977779843284244; 0.497306092177081; −0.798326338515899;

0.981035664417498; 1.146358081032596; −1.120616621001501; 0.719687641982480;
−0.505419126233326; 1.102162684910085; 1.076658266688113; −1.063438433007409;
0.406009789591604; 0.502903686544218; −1.053894999426617; 1.029352766911886;
−1.024360704311696; 0.804666196368594; −0.701581503832057; 1.020740284626266;
0.175601002789301; −1.140508164752758; 0.103263285085375; −1.113821996218247;
1.118918731363781; 0.273784824349882; −0.432614662904822; 0.181108676427552;
−0.471194540834058; 0.673338145559633; 0.189585352469577; −1.204648726242231;
0.920114759945990; −0.887590145120565; 0.648417894536344; 0.175726694377779;
−1.077954320597960; 0.185203617813933; −0.990153147773806; 0.821523142806859;
−1.173481103205025; 1.322749115036263; −0.184979432653887; 1.190706144191202;
0.248085307662374; −0.592806989644411; 0.383966950764191; −0.338444289089156;
−0.833976389165167; 0.324105324033352; −0.651817922539721; 0.819732927745842;
−0.302503826725900; 0.644190563714590; −0.188065715650834; 0.311017731836398;
−1.062228353865710; 0.536006416579679; −0.388616057344596; 1.068086921094777;
0.398860276413015; −0.555424334170047; 0.443233129992580; −0.286401202768889;
−0.954592052837150; 0.663436010880030; −0.306596916524484; 0.950494651070167;
−0.601299699833615; −0.645958439402882; 0.515875914250012; −0.272561056364805;
0.716835327360211; −0.741597840367342; 0.234187179534956; −0.180685083999298.

Appendix D

Initial synaptic weights for the thirty-six neurons NN:
W10 = 0.21; W11 =−0.51; W12 = 0.5; W13 =−0.8; W14 = 0.16; W20 = 0.17; W21 =−0.18;

W22 = 0.7; W23 = −0.5; W24 = 0.11; W30 = 0.11; W31 = −0.31; W32 = 0.4; W33 = 0.5;
W34 = −0.81; W40 = 0.17; W41 = −0.19; W42 = 0.8; W43 = −0.7; W44 = 1; W50 = 0.15;
W51 = −1; W52 = 0.1; W53 = −1.1; W54 = 1; W60 = 0.35; W61 = −0.53; W62 = 0.19;
W63 = −0.48; W64 = 0.8; W70 = 0.17; W71 = −1.1; W72 = 0.9; W73 = −0.88; W74 = 0.6;
W80 = 0.2; W81 = −1.2; W82 = 0.19; W83 = −0.31; W84 = 0.9; W90 = 0.1; W91 = −0.1;
W92 = 0.55; W93 = −0.85; W94 = 0.1; W100 = 0.41; W101 = −0.51; W102 = 0.7; W103 = 0.5;
W104 = 0.1; W110 = 0.61; W111 = −0.11; W112 = 0.4; W113 = 0.5; W114 = −1; W120 = 1;
W121 = −0.71; W122 = 0.8; W123 = −0.7; W124 = 1; W130 = 0.15; W131 = −0.71; W132 = 0.1;
W133 = −1.1; W134 = 1; W140 = 0.35; W141 = −0.53; W142 = 0.19; W143 = 0.48; W144 = 0.8;
W150 = 0.17; W151 =−1.1; W152 = 0.9; W153 =−0.88; W154 = 0.6; W160 = 0.2; W161 =−1.2;
W162 = 0.19; W163 = −0.91; W164 = 0.9; W170 = 0.11; W171 = −0.31; W172 = 0.5;
W173 = −0.8; W174 = 0.31; W180 = 0.51; W181 = 0.41; W182 = 0.7; W183 = −0.5; W184 = 0.1;
W190 = 0.61; W191 =−0.11; W192 = 0.4; W193 = 0.5; W194 =−0.1; W200 = 0.1; W201 =−0.21;
W202 = 0.8; W203 = 0.7; W204 = 0.11; W210 = 0.15; W211 = −0.51; W212 = 0.1; W213 = −1.1;
W214 = 0.1; W220 = 0.35; W221 = −0.53; W222 = 0.19; W223 = −0.48; W224 = 0.8;
W230 = 0.17; W231 =−1.1; W232 = 0.9; W233 =−0.88; W234 = 0.6; W240 = 0.2; W241 =−1.2;
W242 = 0.19; W243 = −0.91; W244 = 0.9; W250 = 0.81; W251 = −0.31; W252 = 0.5;
W253 = 0.8; W254 = 0.31; W260 = 0.21; W261 =−0.11; W262 = 0.7; W263 =−0.5; W264 = 0.11;
W270 = 0.11; W271 = −0.1; W272 = 0.4; W273 = 0.5; W274 = −0.1; H11 = −1; H12 = 1.1;
H13 =−0.2; H14 = 1; H15 = 0.25; H16 =−0.55; H17 = 0.4; H18 = 0.35; H19 =−0.05; J11 =−0.1;
J12 = 0.11; J13 = −0.2; J14 = 0.12; J15 = 0.25; J16 = −0.55; J17 = 0.4; J18 = −0.35; J19 = −0.05;
K11 = −0.16; K12 = 0.11; K13 = −0.2; K14 = 0.17; K15 = 0.25; K16 = −0.55; K17 = 0.4;
K18 = −0.35; K19 = −0.055; H21 = −1; H22 = 0.4; H23 = −0.6; H24 = 0.1; H25 = −0.3;
H26 = 0.7; H27 = −0.18; H28 = 0.3; H29 = 0.18; J21 = −0.1; J22 = 0.4; J23 = −0.6; J24 = 0.1;
J25 = −0.3; J26 = 0.7; J27 = 0.18; J28 = 0.3; J29 = −0.18; K21 = −0.18; K22 = 0.4; K23 = −0.6;
K24 = 0.1; K25 = −0.3; K26 = 0.72; K27 = −0.18; K28 = 0.3; K29 = −0.18; H31 = −0.14;
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H32 = 0.5; H33 = −0.4; H34 = 0.19; H35 = 0.49; H36 = −0.54; H37 = 0.45; H38 = −0.29;
H39 =−0.46; J31 =−0.14; J32 = 0.5; J33 =−0.47; J34 = 0.19; J35 = 0.48; J36 =−0.54; J37 = 0.45;
J38 = −0.29; J39 = −0.41; K31 = −0.14; K32 = 0.53; K33 = −0.44; K34 = 0.19; K35 = 0.42;
K36 = −0.54; K37 = 0.45; K38 = −0.29; K39 = −0.47; H41 = −1; H42 = 0.7; H43 = −0.3;
H44 = 1; H45 =−0.6; H46 =−0.66; H47 = 0.51; H48 =−0.27; H49 = 0.7; J41 =−0.19; J42 = 0.7;
J43 = −0.3; J44 = 0.15; J45 = −0.6; J46 = −0.66; J47 = 0.51; J48 = −0.27; J49 = 0.7; K41 = −0.17;
K42 = 0.7; K43 = −0.3; K44 = 0.1; K45 = −0.6; K46 = −0.66; K47 = 0.51; K48 = −0.27;
K49 = 0.74; H51 = −0.1; H52 = 1.1; H53 = −0.2; H54 = 0.1; H55 = 0.25; H56 = −0.55;
H57 = 0.4; H58 = −0.35; H59 = 0.25; J51 = −0.12; J52 = 0.11; J53 = −0.2; J54 = 0.1; J55 = 0.25;
J56 =−0.55; J57 = 0.4; J58 =−0.35; J59 = 0.25; K51 =−0.14; K52 = 0.11; K53 =−0.2; K54 = 0.51;
K55 = 0.25; K56 =−0.55; K57 = 0.4; K58 =−0.35; K59 = 0.25; H61 =−1; H62 = 0.4; H63 =−0.6;
H64 = 1; H65 = −0.3; H66 = 0.7; H67 = −0.18; H68 = 0.3; H69 = 0.4; J61 = −0.61; J62 = 0.4;
J63 = −0.6; J64 = 0.51; J65 = −0.3; J66 = 0.7; J67 = −0.18; J68 = 0.3; J69 = 0.4; K61 = −0.31;
K62 = 0.4; K63 = −0.6; K64 = 0.21; K65 = −0.3; K66 = 0.7; K67 = −0.18; K68 = 0.3; K69 = 0.4;
H71 = −0.15; H72 = 0.5; H73 = −0.4; H74 = 0.16; H75 = 0.42; H76 = −0.54; H77 = 0.45;
H78 = −0.29; H79 = −0.27; J71 = −0.15; J72 = 0.52; J73 = −0.4; J74 = 0.16; J75 = 0.47;
J76 = −0.54; J77 = 0.45; J78 = −0.29; J79 = −0.27; K71 = −0.15; K72 = 0.59; K73 = −0.41;
K74 = 0.16; K75 = 0.43; K76 = 0.54; K77 = 0.45; K78 = −0.29; K79 = −0.15; H81 = −0.31;
H82 = 0.7; H83 = −0.34; H84 = 0.21; H85 = −0.6; H86 = −0.66; H87 = 0.51; H88 = −0.27;
H89 = −0.38; J81 = −0.17; J82 = 0.7; J83 = −0.3; J84 = 0.15; J85 = −0.6; J86 = −0.66; J87 = 0.51;
J88 = −0.27; J89 = −0.37; K81 = −0.13; K82 = 0.7; K83 = −0.3; K84 = 0.13; K85 = −0.6;
K86 = −0.66; K87 = 0.51; K88 = −0.27; K89 = −0.33; G11 = 0.5; G12 = −0.55; G13 = 0.2;
G14 = −0.15; G15 = 0.5; G16 = −0.55; G17 = 0.2; G18 = −0.15.

After nine training stages, the synaptic values are, respectively:
0.1877; −0.4604; 0.4880; −0.7925; 0.1467; 0.1539; −0.1644; 0.6851; −0.4959; 0.1018;

0.1035; −0.2933; 0.3947; 0.4974; −0.7726; 0.1751; −0.1953; 0.8053; −0.7018; 1.0235; 0.1289;
−0.8710; 0.0968; −1.0862; 0.8894; 0.4281; −0.6375; 0.1989; −0.4886; 0.9372; 0.1539; −1.0045;
0.8808; −0.8727; 0.5554; 0.2230; −1.3260; 0.1947; −0.3130; 0.9802; 0.1032; −0.1029; 0.5539;
−0.8523; 0.1025; 0.3928; −0.4904; 0.6934; −0.4982; 0.0967; 0.6422; −0.1153; 0.4046; 0.5022;
−1.0410; 0.9373; −0.6692; 0.7888; −0.6962; 0.9509; 0.1547; −0.7304; 0.1007; −1.1029; 1.0244;
0.3004; −0.4610; 0.1838; −0.4739; 0.7107; 0.2078; −1.3224; 0.9420; −0.8958; 0.7025; 0.1811;
−1.0959; 0.1859; −0.9024; 0.8332; 0.1227; −0.3426; 0.5124; −0.8076; 0.3376; 0.5258; −0.4216;
0.7047; −0.5013; 0.1024; 0.5992; −0.1082; 0.3984; 0.4992; −0.0986; 0.1050; −0.2196; 0.8088;
−0.7030; 0.1143; 0.1413; −0.4830; 0.0987; −1.0945; 0.0955; 0.3394; −0.5153; 0.1887; −0.4787;
0.7810; 0.1464; −0.9600; 0.8715; −0.8691; 0.5345; 0.2449; −1.4448; 0.1989; −0.9265; 1.0552;
0.7341; −0.2834; 0.4894; −0.7934; 0.2872; 0.2342; −0.1215; 0.7173; −0.5048; 0.1198; 0.1134;
−0.1028; 0.4027; 0.5013; −0.1024; −1.0062; 1.0839; −0.2099; 0.9331; 0.2509; −0.5275; 0.4067;
−0.3553; −0.0495; −0.0990; 0.1112; −0.1823; 0.1181; 0.2416; −0.5624; 0.4065; −0.3470;
−0.0488; −0.1534; 0.1091; −0.2046; 0.1639; 0.2540; −0.5613; 0.3774; −0.3415; −0.0547;
−0.9927; 0.4070; −0.5660; 0.1083; −0.2987; 0.7348; −0.1765; 0.2947; −0.1822; −0.1012;
0.3950;−0.6663; 0.1019;−0.3121; 0.6816;−0.1766; 0.3031;−0.1853;−0.1891; 0.4040;−0.5840;
0.1043; −0.2944; 0.7028; −0.1924; 0.3087; −0.1811; −0.1404; 0.4969; −0.4083; 0.1846; 0.4908;
−0.5306; 0.4532; −0.2919; −0.4580 −0.1394; 0.5023; −0.4522; 0.1887; 0.4731; −0.5451; 0.4531;
−0.2889; −0.4057; −0.1375; 0.5281; −0.4442; 0.1871; 0.4228; −0.5447; 0.4392; −0.2870;
−0.4689; −0.9981; 0.7031; −0.2956; 1.0204; −0.5993; −0.6682; 0.5075; −0.2688; 0.7022;
−0.1906; 0.6978; −0.3082; 0.1507; −0.6061; −0.6556; 0.5075; −0.2707; 0.7052; −0.1721;
0.7017;−0.2980; 0.1011;−0.5972;−0.6560; 0.5188;−0.2720; 0.7412;−0.1006; 1.0835;−0.2102;
0.0931; 0.2509; −0.5269; 0.4069; −0.3555; 0.2473; −0.1188; 0.1112; −0.1819; 0.0984; 0.2414;
−0.5627; 0.4067; −0.3469; 0.2436; −0.1340; 0.1091; −0.2047; 0.4912; 0.2541; −0.5616; 0.3769;
−0.3413; 0.2486; −0.9931; 0.4066; −0.5679; 1.0776; −0.2988; 0.7327; −0.1767; 0.2950; 0.4046;
−0.6167; 0.3953; −0.6624; 0.5191; −0.3114; 0.6827; −0.1768; 0.3029; 0.4112; −0.3247; 0.4037;
−0.5849; 0.2186; −0.2947; 0.6843; −0.1917; 0.3082; 0.4024; −0.1504; 0.4969; −0.4083; 0.1554;
0.4207;−0.5306; 0.4532;−0.2918;−0.2688;−0.1494; 0.5223;−0.3849; 0.1589; 0.4633;−0.5451;
0.4531;−0.2889;−0.2672;−0.1474; 0.5879;−0.4139; 0.1576; 0.4329;−0.5446; 0.4392;−0.2870;
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−0.1497; −0.3094; 0.7033; −0.3347; 0.2146; −0.5993; −0.6687; 0.5073; −0.2687; −0.3813;
−0.1705; 0.6976; −0.3087; 0.1508; −0.6065; −0.6553; 0.5074; −0.2707; −0.3729; −0.1317;
0.7019;−0.2978; 0.1315;−0.5970;−0.6557; 0.5193;−0.2721;−0.3306; 0.4092;−0.5656; 0.1968;
−0.1193; 0.4475; −0.4655; 0.1931; −0.1483.
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