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Abstract: Road defect detection is a crucial task for promptly repairing road damage and ensuring
road safety. Traditional manual detection methods are inefficient and costly. To overcome this issue,
we propose an enhanced road defect detection algorithm called BL-YOLOv8, which is based on
YOLOv8s. In this study, we optimized the YOLOv8s model by reconstructing its neck structure
through the integration of the BiFPN concept. This optimization reduces the model’s parameters,
computational load, and overall size. Furthermore, to enhance the model’s operation, we optimized
the feature pyramid layer by introducing the SimSPPF module, which improves its speed. Moreover,
we introduced LSK-attention, a dynamic large convolutional kernel attention mechanism, to expand
the model’s receptive field and enhance the accuracy of object detection. Finally, we compared the
enhanced YOLOv8 model with other existing models to validate the effectiveness of our proposed
improvements. The experimental results confirmed the effective recognition of road defects by the
improved YOLOv8 algorithm. In comparison to the original model, an improvement of 3.3% in
average precision mAP@0.5 was observed. Moreover, a reduction of 29.92% in parameter volume
and a decrease of 11.45% in computational load were achieved. This proposed approach can serve as
a valuable reference for the development of automatic road defect detection methods.

Keywords: BL-YOLOv8s; LSK-attention; dynamic large convolutional kernel; BiFPN

1. Introduction

Cracks are a common issue in pavements, adversely affecting road safety and driving
conditions. For transportation agencies, maintaining high-quality roads is crucial for ensur-
ing road safety in most provinces and cities. Detecting road cracks promptly is of utmost
importance in preventing road damage and ensuring traffic safety. Common methods for
road defect detection include manual inspection and multifunctional road inspection vehi-
cles. However, manual inspection is both time-consuming and labor-intensive, and it is also
subject to the subjective judgment of the inspectors. In comparison, multifunctional road
inspection vehicles rely on integrated sensors, such as GPS, cameras, laser profilers, and
ground-penetrating radars, enabling convenient and accurate detection of road defects. In
the 21st century, an increasing number of countries have introduced road-defect-detection
vehicles that do not disrupt traffic during inspections. Furthermore, Roadware has devel-
oped road damage detection vehicles that can operate at night. However, the construction
cost of road inspection vehicles is expensive and can reach as high as USD 500,000 [1],
making them unsuitable for large-scale promotion at present. Consequently, there is a
significant practical demand for the research and application of fast, efficient, and accurate
crack detection technologies.

In recent years, the field of object detection has undergone significant advancements
due to the rapid development of deep learning techniques. Object detection can be broadly
categorized into two main approaches. The first approach is region-based two-stage
detection models, which involve two distinct processes. Initially, a set of candidate regions
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that potentially contain objects is proposed. Subsequently, a classification network is
deployed on these proposed regions to determine the object categories within each region.
Popular two-stage algorithms include region-based Fast R-CNN [2], region-based Fully
Convolutional Networks (R-FCN) [3], and Mask R-CNN [4], which is based on masked
regions. The second approach is regression-based one-stage detection methods, which
directly separate specific categories and estimate the boundaries. Although these one-stage
methods offer faster processing speed compared to the two-stage approach, they tend to
exhibit a slightly lower accuracy. Well-known algorithms in this category encompass the
You Only Look Once [5,6] series, Single Shot MultiBox Detector (SSD) [7], and RetinaNet [8].
Presently, an increasing number of researchers are employing deep convolutional neural
networks to detect and classify road cracks. For instance, Seungbo Shim et al. [9] introduced
a road defect detection algorithm that combines generative adversarial networks and semi-
supervised learning, achieving an average recognition accuracy of up to 81.54%. In another
study, NaddafSH et al. [10] proposed the utilization of EfficientDet-D7 for the detection
and classification of asphalt road images, achieving a seventh-place ranking in the 2020
IEEE Big Data Challenge. Nevertheless, it is important to note that EfficientDet-D7 suffers
from drawbacks such as a large parameter size and slow detection speed, rendering it
unsuitable for real-time applications. Fang Wan et al. [11]. proposed YOLO-LRDD, a
lightweight algorithm for road defect detection. By using the novel backbone network
Shuffle-ECANet, the algorithm reduces the model size while maintaining accuracy, making
it suitable for deployment on mobile devices. Hacıefendioğlu et al. [12] used the two-stage
object detection model Faster R-CNN to detect concrete road defects. They analyzed how
shooting heights, distances, weather conditions, and lighting levels affect the detection
performance. Arya et al. [13] used MobileNet, a lightweight network, to detect road damage
images from the RDD2020 dataset in Japan, India, and Chile. They achieved an F1-score
of 0.52. Pei et al. [14] used the Cascade R-CNN model and various data augmentation
techniques. They achieved an F1-score of 0.635 in the Global Road Damage Detection
Challenge (GRDDC 2020). However, despite the contributions of the aforementioned
studies to road damage detection tasks, there is still significant room for improvement in
both accuracy and detection speed. As a classic single-stage detection algorithm, the YOLO
algorithm has evolved to YOLOv8, which offers significant advantages in both detection
accuracy and speed. Therefore, we chose to optimize the model using the YOLOv8s
framework to further enhance the algorithm’s accuracy.

2. YOLOv8 Network Architecture

The YOLOv8 algorithm is a fast one-stage object detection method comprising an
input segment, a backbone, a neck, and an output segment. The input segment performs
mosaic data augmentation, adaptive anchor calculation, and adaptive grayscale padding
on the input image. The backbone network and neck module form the central structures in
the YOLOv8 network. The input image is processed by multiple Conv and C2f modules
to extract feature maps at different scales. The C2f module is an improved version of the
original C3 module and functions as the primary residual learning module. It incorporates
the benefits of the ELAN structure in YOLOv7 [15], reducing one standard convolutional
layer and making full use of the Bottleneck module to enhance the gradient branch. This
approach not only preserves the lightweight characteristics but also captures more abundant
gradient flow information. Figure 1 depicts the basic structure of the algorithm. The output
feature maps are processed by the SPPF module, which employs pooling with varying
kernel sizes to combine the feature maps, and then the results are passed to the neck layer.
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Figure 1. Structural diagram of the C2f module.

The neck layer of YOLOv8 incorporates the FPN [16] + PAN [17] structure to enhance
the model’s feature fusion capability. This structure combines high-level and low-level
feature maps using upsampling and downsampling techniques, facilitating the transfer
of semantic and localization features. Through this approach, the network becomes better
equipped to fuse features from objects of varying scales, thereby enhancing its detection
performance on objects at different scales.

The detection head of YOLOv8 follows the common practice of separating the classifi-
cation head from the detection head. It involves loss calculation and target detection box
filtering. In the loss calculation process, the TaskAlignedAssigner [18] method is used to
determine positive and negative sample assignments. Positive sample selection is based
on a weighted combination of classification and regression scores. The loss calculation
includes two components: classification and regression, excluding the Objectness branch.
The classification branch utilizes Binary Cross-Entropy (BCE) loss, while the regression
branch employs the Distribution Focal Loss (DFL) [19] and CIoU loss functions. YOLOv8
prediction boxes are formed through decoupled heads, which predict classification scores
and regression coordinates simultaneously. Classification scores are represented by a
two-dimensional matrix, indicating the presence of an object in each pixel. Regression
coordinates are represented by a four-dimensional matrix, indicating the deviation of
the object’s center from each pixel. Finally, YOLOv8 employs a task-aligned assigner to
compute a task alignment metric using the classification scores and regression coordinates.
The task alignment metric combines the classification scores with the Intersection over
Union (IoU) value, enabling the simultaneous optimization of classification and localiza-
tion while suppressing low-quality prediction boxes. Intersection over Union (IoU) is a
widely employed metric in object detection, serving to determine positive and negative
samples as well as evaluate the distance between predicted boxes and ground truth. An
object is typically classified as detected when the IoU exceeds 0.5. The specific formula is
represented as Equation (1).

IoU =
| A ∩ B |
| A ∪ B | (1)
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3. Improved YOLOv8 Model

To enable the deployment of the improved model on embedded or mobile platforms,
this study modifies the model structure while maintaining accuracy. The objective is
to reduce the model’s parameters and computational complexity, thereby facilitating its
deployment in accuracy-critical and computationally limited scenarios. Additionally, al-
ternative methods exist to significantly reduce the model’s parameters and computational
complexity, for example, by substituting the backbone of YOLOv8 with the lighter Mo-
bileNet v3 [20] network. Incorporating attention mechanisms is a commonly employed
technique to enhance model accuracy as they possess fewer parameters while delivering
high performance. By including attention mechanisms, the model becomes more adept at
detecting targets, thereby improving detection accuracy. Following experimentation with
various attention mechanisms, this study chose LSK-attention, which exhibits superior
performance, to integrate into the original YOLOv8 model. The integration of BiFPN and
LSK-attention reduces computational complexity while concurrently enhancing detection
accuracy. Nevertheless, their inclusion leads to an augmented computational complexity of
the model, consequently prolonging the inference time and reducing the FPS values during
detection. To overcome this problem, the SimSPPF module was utilized to streamline the
complexity of the model and reduce the inference time.

3.1. Feature Pyramid Optimization

In YOLOv8, the feature maps are divided into five scales, denoted as B1-B5 for the
backbone, P3-P4 for the FPN, and N4-N5 for the PAN. The original model implements
the PAN-FPN structure, which is an optimized version of the traditional FPN structure.
The traditional FPN structure transfers deep semantic information in a top-down manner.
However, in YOLOv8, the fusion of B3-P3 and B4-P4 is performed to enhance the semantic
features of the feature pyramid, potentially resulting in a partial loss of localization infor-
mation. To address this, PAN-FPN introduces a bottom-up PAN structure on top of the
FPN to compensate for the lost localization information. In YOLOv8, the fusion of P4-N4
and P5-N5 is employed to enhance the learning of localization features, which achieves a
complementary effect. Figure 2 illustrates the specific structure diagram. Despite enriching
the semantic and localization information, there is room for further improvement in the
PAN-FPN structure. Firstly, the PAN-FPN structure does not adequately address large-scale
feature maps, potentially overlooking valuable information and leading to a decrease in
detection quality. Additionally, after upsampling and downsampling, the feature maps
lose some original information, resulting in a relatively low reuse rate. Therefore, there is
still potential to enhance the PAN-FPN structure.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 22 
 

 

3. Improved YOLOv8 Model 
To enable the deployment of the improved model on embedded or mobile platforms, 

this study modifies the model structure while maintaining accuracy. The objective is to 
reduce the model’s parameters and computational complexity, thereby facilitating its de-
ployment in accuracy-critical and computationally limited scenarios. Additionally, alter-
native methods exist to significantly reduce the model’s parameters and computational 
complexity, for example, by substituting the backbone of YOLOv8 with the lighter Mo-
bileNet v3 [20] network. Incorporating attention mechanisms is a commonly employed 
technique to enhance model accuracy as they possess fewer parameters while delivering 
high performance. By including attention mechanisms, the model becomes more adept at 
detecting targets, thereby improving detection accuracy. Following experimentation with 
various attention mechanisms, this study chose LSK-attention, which exhibits superior 
performance, to integrate into the original YOLOv8 model. The integration of BiFPN and 
LSK-attention reduces computational complexity while concurrently enhancing detection 
accuracy. Nevertheless, their inclusion leads to an augmented computational complexity 
of the model, consequently prolonging the inference time and reducing the FPS values 
during detection. To overcome this problem, the SimSPPF module was utilized to stream-
line the complexity of the model and reduce the inference time. 

3.1. Feature Pyramid Optimization 
In YOLOv8, the feature maps are divided into five scales, denoted as B1-B5 for the 

backbone, P3-P4 for the FPN, and N4-N5 for the PAN. The original model implements the 
PAN-FPN structure, which is an optimized version of the traditional FPN structure. The 
traditional FPN structure transfers deep semantic information in a top-down manner. 
However, in YOLOv8, the fusion of B3-P3 and B4-P4 is performed to enhance the semantic 
features of the feature pyramid, potentially resulting in a partial loss of localization infor-
mation. To address this, PAN-FPN introduces a bottom-up PAN structure on top of the 
FPN to compensate for the lost localization information. In YOLOv8, the fusion of P4-N4 
and P5-N5 is employed to enhance the learning of localization features, which achieves a 
complementary effect. Figure 2 illustrates the specific structure diagram. Despite enrich-
ing the semantic and localization information, there is room for further improvement in 
the PAN-FPN structure. Firstly, the PAN-FPN structure does not adequately address 
large-scale feature maps, potentially overlooking valuable information and leading to a 
decrease in detection quality. Additionally, after upsampling and downsampling, the fea-
ture maps lose some original information, resulting in a relatively low reuse rate. There-
fore, there is still potential to enhance the PAN-FPN structure. 

 

Figure 2. Schematic representation of the PAN-FPN (Path Aggregation Network–Feature Pyramid
Network) structure in YOLOv8.



Sensors 2023, 23, 8361 5 of 22

To address the aforementioned issues more effectively, this paper introduced a re-
construction of the feature fusion component of YOLOv8, based on the concept of the
Bi-directional Feature Pyramid Network (BiFPN). The BiFPN structure was initially in-
troduced by Google in the EfficentDet [21] object detection algorithm. BiFPN enhances
the semantic information of features by incorporating efficient bi-directional cross-scale
connections and weighted feature fusion. In the context of road defect detection, the limited
feature information extracted from smaller cracks often leads to lower detection accuracy.
To overcome the challenge, consideration was given to examining the benefits of BiFPN,
which expands the model’s receptive field by fully utilizing high-resolution features. The
primary implementation approach is as follows: for feature maps with a single input path,
no additional processing is applied due to their lower contribution. When fusing feature
maps with two input paths, provided that the feature maps have the same scale, cross-level
fusion requires the introduction of a new path from the backbone feature map. This en-
hancement improves the spatial information of the feature maps, resulting in improved
detection accuracy for small targets. Figure 3 illustrates the specific structure enhancement.
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3.2. Optimization of Spatial Pyramid Pooling

To ensure real-time performance in road defect recognition, this paper introduces the
replacement of the original SPPF (Spatial Pyramid Pooling Fusion) module in the YOLOv8
model with the faster SimSPPF (Simple Spatial Pyramid Pooling Fusion) structure. The
SimSPPF structure was initially introduced in YOLOv6 [22] and effectively reduces compu-
tational complexity and processing time. It achieves this by concatenating three 5x5 max
pooling layers to process the input, resulting in fixed-size feature maps. These feature maps
enhance the model’s receptive field and improve feature representation. Notably, SimSPPF
employs the Rectified Linear Unit (ReLU) activation function, in contrast to the SPPF mod-
ule, which uses the Shifted Linear Unit (SiLU) activation function. Equations (2) and (3)
illustrate the specific formulas for these activation functions.

ReLU : f (x)
{

x, i f x > 0
0, i f x ≤ 0

= max
(
0, x
)

(2)

SiLU : f (x) =
x2

1 + e−x (3)

However, the use of exponential computation in the SiLU function leads to an increase
in computational complexity. Consequently, replacing the SiLU function with ReLU helps
address the problem of gradient vanishing and accelerates convergence. Specific experi-
mental comparisons revealed that the execution speed of a single ConvBNReLU module is
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18% faster than that of a ConvBNSiLU module. This further confirms the advantages of
employing the ReLU function. Figure 4 presents the specific structure of SimSPPF.
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3.3. Dynamic Large Convolutional Kernel Spatial Attention Mechanism

Attention mechanisms are effective in enhancing neural representations due to their
simplicity and efficiency. Many excellent attention mechanisms have been developed
in the field of computer vision, including channel attention mechanisms such as SE [23]
modules, spatial attention mechanisms such as GeNet [24], GcNet [25], and SGE [26], and
combined spatial and channel attention mechanisms such as CBAM [27] and BAM [28].
Additionally, adaptive kernel selection is a technique that effectively enhances the ability to
focus on contextual regions, complementing the channel/spatial attention mechanisms. For
instance, Condconv [29] and Dynamic convolution [30] employ parallel kernel adaptation
to aggregate feature information from multiple convolution kernels. SKNet [31] introduces
multiple convolution kernels and aggregates feature information along the channel di-
mension. Therefore, this paper proposes the inclusion of a dynamic large-convolution
kernel selection mechanism, known as LSK-attention [32], as an output layer following the
backbone. Unlike SKNet, LSK-attention adaptively aggregates feature information from
large kernels in the spatial dimension, rather than utilizing the channel dimension. Figure 5
illustrates the structural comparison.
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The working principle of LSK-attention is depicted in Figure 6. The key advantage of
LSK-attention is its utilization of multiple large convolutional kernels to generate features
with a wide receptive field. These large convolutional kernels are decomposed using
multiple depthwise separable convolutions, leading to a reduction in the number of model
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parameters. Additionally, the LSK-attention dynamically selects an appropriate convolution
kernel by considering the local information of the input feature map in order to adapt to the
contextual information of various target types. It also adapts its receptive field dynamically
to accommodate diverse target types and backgrounds. The spatial selection mechanism is
an adaptive weight allocation method that dynamically selects the most relevant feature
maps from a large convolution kernel and spatially combines them. This enables enhanced
focus on the most relevant spatial regions of detected targets, ultimately improving the
success rate of target detection.
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To dynamically select suitable spatial kernels, the input feature map is divided into
multiple sub-feature maps. Subsequently, various convolutional kernels of different sizes
are applied to each sub-feature map, resulting in the generation of multiple output fea-
ture maps. Afterward, these sub-output feature maps are concatenated, as depicted in
Equation (4). This concatenation results in an output feature map with increased channel
dimensions.

Ũ = [Ũ1; . . . ; Ũi] (4)

Subsequently, the concatenated feature map undergoes average pooling and max
pooling operations along the channel dimension to extract spatial relationship descriptors,
namely SAavg and SAmax. The specific operation is illustrated in Equation (5).

SAavg = Pavg(Ũ), SAmax = Pmax(Ũ), (5)

Subsequently, following the concatenation of SAavg and SAmax, convolutional layers
are utilized to transform them into spatial attention maps, ensuring they possess the
same number of depth convolutions N. This conversion is mathematically expressed by
Equation (6).

ˆSA = F 2→N([SAavg; SAmax]) (6)

By applying the sigmoid activation function to each spatial attention map, the spatial
selection weights for each depth convolution are obtained. The weighted depth convolution
feature maps are subsequently acquired by element-wise multiplication of the weights and
the corresponding depth convolutions. Ultimately, a convolutional layer is employed to fuse
these feature maps and produce the final attention feature. This process is mathematically
demonstrated by Equations (7) and (8).

S̃Ai = Sigmoid(ŜAi) (7)

S = F (
N

∑
i=1

(S̃Ai · Ũi)) (8)
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3.4. Network Structure and Parameters

Table 1 presents the pertinent information to offer readers a comprehensive under-
standing of the network structure and detailed parameters of BL-YOLOv8s.

Table 1. Network structure and parameters of BL-YOLOv8s.

Layers From N Params Module Arguments

0 −1 1 928 Conv [3, 32, 3, 2]
1 −1 1 18,560 Conv [32, 64, 3, 2]
2 −1 1 29,056 C2f [64, 64, 1, True]
3 −1 1 73,984 Conv [64, 128, 3, 2]
4 −1 2 197,632 C2f [128, 128, 2, True]
5 −1 1 295,424 Conv [128, 256, 3, 2]
6 −1 2 788,480 C2f [256, 256, 2, True]
7 −1 1 1,180,672 Conv [256, 512, 3, 2]
8 −1 1 1,838,080 C2f [512, 512, 1, True]
9 −1 1 656,896 SimSPFF [512, 512, 5]
10 −1 1 433,350 LSK [512]
11 4 1 16,640 Conv [128, 128]
12 6 1 33,024 Conv [256, 128]
13 10 1 65,792 Conv [512, 128]
14 −1 1 0 Upsample [None, 2, ’nearest’]
15 [−1, 12] 1 2 Fusion [[128, 128], ’bifpn’]
16 −1 1 115,456 C2f [128, 128, 1]
17 −1 1 0 Upsample [None, 2, ’nearest’]
18 [−1, 11] 1 2 Fusion [[128, 128], ’bifpn’]
19 −1 1 115,456 C2f [128, 128, 1]
20 2 1 73,984 Conv [64, 128, 3, 2]

21 [−1, 11, 19] 1 3 Fusion [[128, 128, 128],
’bifpn’]

22 −1 1 115,456 C2f [128, 128, 1]
23 −1 1 147,712 Conv [128, 128, 3, 2]

24 [−1, 12, 16] 1 3 Fusion [[128, 128, 128],
’bifpn’]

25 −1 1 115,456 C2f [128, 128, 1]
26 −1 1 147,712 Conv [128, 128, 3, 2]
27 [−1, 13] 1 2 Fusion [[128, 128], ’bifpn’]
28 −1 1 115,456 C2f [128, 128, 1]
29 [22, 25, 28] 1 1,262,272 Detect [80, [128, 128, 128]]

summary (fused): 204 layers, 7829,394 parameters, 7829,378 gradients, 25.5 GFLOPs

The structure of the final implemented YOLOv8 is shown in Figure 7.
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4. Results and Analysis
4.1. Experimental Environment

In order to verify the efficacy of the proposed approach, an experimental platform
was set up employing Ubuntu 18.04 as the operating system and PyTorch as the deep
learning framework. YOLOv8s was employed as the baseline network model. The specific
configuration of the experimental environment is elaborated in Table 2.
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Table 2. Configuration and training environment.

Environmental Parameter Value

Operating system Ubuntu18.04
Deep learning framework Pytorch
programming language Python3.8

CPU Intel(R) Xeon(R) Platinum 8255C
GPU RTX 3090 (24 GB)
RAM 30 GB

Consistent hyperparameters were applied throughout the training process across
all experiments. Table 3 displays the precise hyperparameters employed during the
training process.

Table 3. Hyperparametric configuration.

Hyperparameters Value

Learning Rate 0.01
Image Size 640 × 640
Momentum 0.937
Optimizer SGD
Batch Size 64

Epoch 160
Weight Decay 0.0005

4.2. Dataset and Evaluation Metrics

In this study, we utilized the open-source dataset RDD2022 [13], consisting of road
images from various countries. For experimental validation, a total of 4398 road images
from China were selected. These images include 2401 captured by a drone and 1977
captured by a vehicle-mounted camera. Five types of road defects are considered in this
study: longitudinal cracks (D00), transverse cracks (D10), grid cracks (D20), potholes (D40),
and road repairs (Figure 8). Due to the absence of the five types of road defects considered in
this study in certain photos of the training set, it becomes necessary to process and filter the
dataset to exclude images that do not depict the detection targets of this study. Following
analysis and processing, the dataset comprises 4373 images depicting the detection targets
of this study. The quantity of different types of road defects in the dataset is presented in
Table 4. The images are divided into training, validation, and test sets in an 8:1:1 ratio.

Table 4. Types and quantities of defects in the dataset.

Pavement Distress Distress Class Quantity

grid cracks D20 756
longitudinal cracks D00 3270
transverse cracks D10 1895

potholes D40 255
road repair Repair 821

To provide an objective assessment of the performance of road defect detection models,
the evaluation metrics employed encompass GFLOPS (giga floating-point operations per
second), which quantifies the execution time of the network model in terms of billions of
floating-point operations per second. The parameters, which assess the size and complexity
of the model. FPS (Frames Per Second), which gauges the detection speed of the model
in frames transmitted per second. mAP (mean average precision), utilized to evaluate
the model’s accuracy, is computed using Equation (9). The F1-score, which is a weighted
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average of precision and recall, serves as a measure of the model’s overall performance and
stability. The calculation formula for the F1-score is provided in Equation (10).

mAP =
∑ PA

N
(9)

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

In Equation (9), N represents the summary of categories. PA is the area under the curve
formed by plotting recall on the x-axis against precision on the y-axis. mAP@0.5 represents
the average precision at a threshold of 0.5. Equation (10) demonstrates how precision
represents the model’s capability to differentiate negative samples. A higher precision
value indicates a more effective distinction among negative samples. Recall showcases
the model’s capability to identify positive samples. A higher recall value indicates a
more accurate identification of positive samples. The F1-score represents a combination
of precision and recall, with a higher value indicating a model with stronger performance
and robustness.
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4.3. Comparison of Different Spatial Pyramid Pooling Effects

The impact of various spatial pyramid pooling layers, namely SPP, SPPF, SimSPPF,
ASPP, SPPCSPC, and SPPFCSPC, on model size and accuracy is compared in Table 5.
Among them, SPPCSPC achieves the highest accuracy, but it also significantly increases the
model’s parameter count and computational complexity, resulting in a longer processing
time compared to other modules. However, the SimSPPF module enhances the model’s
speed without increasing the computational and parameter count. It only exhibits a 0.7%
difference in accuracy compared to SPPCSPC but is four times faster in computation speed
and 1.2 times faster than the original SPPF module in YOLOv8. For this reason, SimSPPF is
adopted in subsequent research because it improves the accuracy and speed of the object
detection model with minimal modifications to the network.
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Table 5. Performance table of different spatial pyramid pooling layers under multiple metrics.

Models mAP@0.5/% Para (M) GFLOPs Time (ms)

Yolov8s + SPP 86.9 11.16 28.8 16.40
Yolov8s + SPPF 87.4 11.16 28.8 6.93

Yolov8s + SimSPPF 87.4 11.16 28.8 5.73
Yolov8s + ASPP 86.8 14.44 31.2 11.12

Yolov8s + SPPCSPC 88.1 17.59 34.0 29.72

4.4. Comparison of Different Attention Mechanism Effects

The impact of integrating different attention modules at the end of the backbone on
the model’s detection accuracy is presented in Table 6. This set of experiments is conducted
on the YOLOv8s model, with the neck part reconstructed as illustrated in Figure 4. From
Table 4, it is evident that incorporating various attention modules leads to a slight increase
in the computational and parameter count of the model, while the MAP@0.5 value of
the model shows some variation. Adding the channel attention module alone results in
a modest enhancement in mAP@0.5, although in certain cases, a decrease in accuracy is
observed (e.g., CA [33]). However, when both channel attention and spatial attention are
combined within the CBAM module in YOLOv8, the network’s accuracy improves even
further compared to YOLOv8 with only channel attention, with an improvement of up
to 0.9%. Consequently, the inclusion of spatial attention contributes to a higher accuracy
in the network. Additionally, the introduced spatial attention mechanism, LSK-attention,
achieves an impressive model accuracy of 90.5%, with a remarkable improvement rate of
1.2%. Moreover, it demonstrates faster detection speed compared to the model with the
CBAM module incorporated.

Table 6. Performance table of different attention modules.

Models mAP@0.5/% Para (M) GFLOPs FPS

YOLOv8s + BiFPN 89.3 7.39 25.2 108
+SE 89.3 13.82 30.1 83

+Biform [34] 89.4 8.42 25.2 98
+CBAM 90.2 7.39 25.1 91

+EMA [35] 89.3 7.40 25.3 98
+CA 89.0 7.42 25.1 111

+LSK-attention 90.5 7.83 25.7 103

4.5. Ablation Experiment

Based on the data presented in Table 7, reconstructing the neck part of YOLOv8s with
the BiFPN concept led to a 33.78% reduction in the parameter count and a 12.5% decrease
in computational complexity. Furthermore, the model’s accuracy (MAP@0.5) improved
by 1.9%. Replacing SPPF with SimSPPF had minimal effects on the model’s accuracy,
parameter count, and computational complexity. However, it did increase the detection
speed of the model by 2 FPS. Introducing the LSK-attention module resulted in a slight
increase in the parameter count and computational complexity, but it yielded an additional
improvement of 1.3 percentage points in accuracy (mAP@0.5). Combining BiFPN with the
SimSPPF module enhanced the model’s accuracy while reducing the computational and
parameter count of the network. Overall, the improved version of YOLOv8, incorporating
BiFPN, SimSPPF, and LSK-attention modules, surpassed the original YOLOv8 model in
terms of detection accuracy, computational complexity, and parameter count. On the same
dataset, the enhanced YOLOv8 model achieved a 3.3% improvement in mAP@0.5, a 29.92%
reduction in parameter count, and an 11.45% reduction in computational complexity. For a
comparison of accuracy between the original and improved models, please refer to Figure 9.



Sensors 2023, 23, 8361 13 of 22

Table 7. Ablation experiments with the modules.

BiFPN SimSPPF LSK-Net mAP@0.5/% Para (M) GFLOPs FPS

87.4 11.16 28.8 128√
89.3 7.39 25.2 115√
87.4 11.16 28.8 130√
88.7 11.58 29.0 120√ √
89.5 7.39 25.2 117√ √ √
90.7 7.82 25.5 98
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The analysis of Figure 9 indicates that the BL-YOLOv8s model, as proposed, exhibits
significantly higher values for mAP@0.5 and mAP@0.5:0.95 in comparison to the original
YOLOv8 model.

4.6. Interpretability Experiment

Deep learning models are often regarded as black-box models, making it challenging
to interpret their decision-making and reasoning processes, despite their outstanding
performance in different tasks. Understanding the interpretability of deep learning models
is crucial in vital domains like medical diagnosis, autonomous driving, and financial
prediction. Thoroughly exploring the interpretability of deep learning models is essential
for developing an intuitive understanding of their performance. In this experiment, we
selected the BL-YOLOv8 model and the YOLOv8 model as the models for verification.
We thoroughly examined their performance by analyzing the confusion matrices of both
models. Figure 10 displays the confusion matrices of the two models.

The confusion matrices indicate that both models exhibit high rates of false negatives
(i.e., misclassifying targets as background categories) and false positives. Detailed analysis
demonstrates the strong performance of both models in recognizing D20 (grid cracks) and
repair (road repair). The original YOLOv8 model exhibited subpar recognition performance
for D10 (transverse cracks) and D40 (potholes), achieving an accuracy rate of only 84%.
In contrast, the BL-YOLOv8 model proposed in this paper significantly enhanced the
recognition accuracy of both D10 and D40, with improvements of 2% and 6%, respectively.
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4.7. Self-Built Data Performance Experiments

To enhance the validation of the BL-YOLOv8 model’s universality, specific perfor-
mance tests were conducted on the model using real road images. Shandong Jianzhu
University was selected as the shooting location with photography taking place at 15:00 in
the afternoon. Images were captured using an iPhone 14pro device. The camera settings
included an ISO value of 80 and an aperture of f/1.78. The captured images had dimen-
sions of 3024 × 4032 pixels. Various sets of sample images were captured to assess the
performance of the model. The specific detection results are presented in Figure 11.
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The detection results displayed in Figure 11 demonstrate the effectiveness of the
BL-YOLOv8 model by successfully identifying the majority of road defects. This also
highlights the model’s strong generalization capabilities and robustness. Nevertheless,
certain instances of missed and false detections persist. For instance, in Figure 11c situated
above the image, a longitudinal crack went undetected. This can be ascribed to the unclear
boundaries of road cracks in certain captured images, causing the detection bounding
boxes to only partially align with the crack boundaries, as depicted in Figure 11e.

4.8. Comparison of Performance of Different Models

To assess the performance of the enhanced model, this study conducted comparative
experiments between the enhanced model and various widely used object detection mod-
els. The chosen models encompass both two-stage anchor-based approaches, including
Faster R-CNN, and one-stage anchor-based approaches like SSD, YOLOv3, YOLOv5, and
YOLOv7. Additionally, one-stage anchor-free models such as YOLOv6 and YOLOX [36]
were examined, along with the Guo [37]-improved YOLOv5 model and the Pham V [38]-
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improved YOLOv7 model. The experiments were carried out on the same dataset and
under identical experimental conditions. For comparative analysis, two road condition
images captured by unmanned aerial vehicles (UAVs) and one road condition photo taken
by an onboard camera from the RDD2022 dataset were chosen for detection and recog-
nition. The figure illustrates the detection results, with detection boxes of various colors
that indicate distinct defect categories, accompanied by annotations for labeling various
types of defects. For instance, D10 signifies transverse cracks, D20 corresponds to grid
cracks, D00 denotes longitudinal cracks, D40 symbolizes potholes, and repair indicates
road repairs.

In Experiment 1, which involved drone-captured images, the detection results of
various models are displayed in Figure 12. Models such as SSD, YOLOv5s, YOLOv6s,
YOLOv3-tiny, and YOLOv8 demonstrate different levels of missed detections, with SSD
being the most severely affected, even leading to cases where all targets are missed. Despite
successfully detecting all targets, the YOLOv7-tiny model also exhibits false positive
detections. While the Faster-RCNN model does not suffer from false positive or missed
detection issues, its predicted bounding boxes are inaccurate and may even overlap. On
the other hand, the proposed BL-YOLOv8 model exhibits outstanding performance in this
particular scenario, with minimal missed detections or false positives, and its predicted
bounding boxes are more accurate compared to the other models.

The detection results of the different models in Experiment 2 (capturing images from
onboard cameras) can be seen in Figure 13. YOLOv8s, SSD, and Faster-RCNN models
exhibited recurrent instances of missed or falsely detected targets, whereas YOLOv5,
YOLOv6s, YOLOv7-tiny, YOLOv3-tiny, and our proposed BL-YOLOv8s model effectively
identified all targets. Conversely, YOLOv3-tiny encountered false detection problems. BL-
YOLOv8 outperformed the preceding three models by producing more precise bounding
boxes during target detection. The comprehensive results from both experiments reveal the
superior detection accuracy, lower missing detection rate, and decreased false detection
rate of the BL-YOLOv8s model compared to other models in various scenarios. These
findings serve as evidence for the outstanding performance of our model across diverse
scenarios, significantly enhancing target detection.
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Figure 13. Visualization results of comparative experiments for seven models conducted in scenes 
captured by a vehicle-mounted camera): (a) YOLOv8s; (b) YOLOv5s; (c) SSD; (d) YOLOv6s; (e) BL-
YOLOv8s; (f) YOLOv7-tiny; (g) Faster-RCNN; and (h)YOLOv3-tiny. 

As shown in Table 8, the BL-YOLOv8 model attained a high Map@50 accuracy of 
90.7% and an F1-score of 0.87, markedly higher compared to other object detection mod-
els. These results indicate the superior performance and stability of the BL-YOLOv8 
model. Moreover, apart from enhancing the mAP@50 and F1-score, the model witnesses 
reductions of 29.92% and 11.45%, respectively, when compared to the original YOLOv8 
model in terms of both parameter and computational overhead. 

  

Figure 12. Visualization results of comparative experiments for seven models in drone-captured
scenes: (a) YOLOv8s; (b) YOLOv5s; (c) SSD; (d) YOLOv6s; (e) BL-YOLOv8; (f) YOLOv7-tiny;
(g) Faster-RCNN; (h) YOLOv3-tiny.
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As shown in Table 8, the BL-YOLOv8 model attained a high Map@50 accuracy of
90.7% and an F1-score of 0.87, markedly higher compared to other object detection models.
These results indicate the superior performance and stability of the BL-YOLOv8 model.
Moreover, apart from enhancing the mAP@50 and F1-score, the model witnesses reductions
of 29.92% and 11.45%, respectively, when compared to the original YOLOv8 model in terms
of both parameter and computational overhead.

Table 8. Performance comparison of different models in detection.

Models mAP@0.5/% Para (M) GFLOPs FPS F1-Score

Faster R-CNN 73.2 28.31 940.97 11 0.60
SSD 72.7 26.28 62.74 76 0.61

YOLOv3-tiny 76.1 8.68 13.0 222 0.71
YOLOv5s 85.2 7.02 15.8 156 0.83
YOLOv6s 85.5 16.29 44.0 108 0.81

YOLOv5-MobileNetv3 [37] 87.1 7.39 9.9 82 0.84
YOLOX 89.0 5.06 15.4 77 0.86
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Table 8. Cont.

Models mAP@0.5/% Para (M) GFLOPs FPS F1-Score

Efficientdet [10] 49.8 3.87 5.2 27 0.46
YOLOv7-CA [38] 87.0 6.02 13.1 138 0.82

YOLOv7-tiny 88.3 6.02 13.2 144 0.84
YOLOv8s 87.4 11.16 28.8 120 0.83

BL-YOLO8s 90.7 7.82 25.5 98 0.87

5. Discussion

The accuracy in detecting road defects was improved in the proposed BL-YOLO
model compared to the original YOLOv8 model. Nonetheless, certain road defects remain
undetected, potentially attributed to the following factors. The first reason relates to the
characteristics of the images. Road defects may vary under different weather conditions and
road types. Moreover, blurred road images can arise from small cracks and long shooting
distances, leading to increased detection challenges. The second reason is the complexity
of road conditions, where acquired images encompass not only road information but also
interfering factors like pedestrians, vehicles, and obstacles. Consequently, these interfering
factors pose challenges to the detection of road cracks. The third reason pertains to the
BL-YOLOv8 model. Despite the enhanced ability of the BL-YOLOv8 model to detect small
targets compared to the original YOLOv8 model, it still encounters limitations in detecting
small targets that closely resemble the surrounding environment.

Furthermore, the proposed BL-YOLOv8 model exhibits substantial improvements in
accuracy, mAP@0.5, parameter quantity, and computational complexity when compared
to the original YOLOv8 model. Nevertheless, these enhancements are accompanied by in-
creased inference time. While the adoption of the BIFPN structure can decrease the model’s
parameter quantity and computational complexity, the integration of multi-level features
across scales in this structure inevitably heightens the computational complexity compared
to the original FPN-PAN structure. The experimental results revealed that the introduction
of the FPN structure prolongs inference time and reduces the model’s detection speed. To
tackle this problem, the SimSPPF structure was introduced to replace the original SPPF
structure. Through the implementation of a lower computational cost ReLU activation
function, SimSPPF aids in mitigating the model’s computational complexity. Experimental
findings indicate that the introduction of the SimSPPF structure can enhance the model’s de-
tection speed. Furthermore, experimental results suggest that the incorporation of attention
mechanisms can effectively enhance detection performance. Nonetheless, this approach
comes with the drawback of augmenting computational and parameter complexity, as well
as inference time, rendering it more demanding for real-time detection tasks.

The incorporation of the BiFPN structure enhances the feasibility of subsequent model
updates and fine-tuning. For instance, it enables the fusion of features across multiple
layers at varying levels. The LSK-attention is exclusively integrated after the backbone
of the YOLOv8 model, resulting in minimal disruption to the model’s original structure,
thereby preserving unaffected future updates and fine-tuning. Achieving precise detection
of road defects is of utmost importance for intelligent road maintenance and ensuring road
safety. To facilitate the application of this model in road intelligent maintenance equipment,
the BL-YOLOv8 model reduces both the number of parameters and computational com-
plexity in comparison to the original YOLOv8 model. This offers the potential to deploy
it on cost-effective embedded devices or mobile devices. Furthermore, this model relies
primarily on image data. When integrated with a camera on a development board, it can
establish a comprehensive visual recognition system, resulting in a significant reduction in
deployment costs.

6. Conclusions

Accurately detecting road defects is essential for implementing intelligent road main-
tenance. This paper presents a road defect detection model based on an enhanced version
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of YOLOv8s. In the proposed approach, the Neck structure of the original model is re-
constructed using the BiFPN method to reduce the model size and enhance its feature
fusion capability. Subsequently, the SimSPPF module is employed to optimize the spa-
tial pyramid pooling layer and enhance the model’s detection speed. Finally, the LSK
attention mechanism, which employs dynamic large convolutional kernels, is introduced
to enhance the model’s detection accuracy. Experimental results demonstrate the pro-
posed model’s effective performance in detecting road defects from images captured by
drones and vehicle-mounted cameras. This provides evidence that the model is suitable for
various detection scenarios. BL-YOLOv8 outperforms other mainstream object detection
models (e.g., Faster R-CNN, SDD, YOLOv3-tiny, YOLOv5s, YOLOv6s, and YOLOv7-tiny)
by achieving detection accuracy improvements of 17.5%, 18%, 14.6%, 5.5%, 5.2%, 2.4%,
and 3.3%, respectively. Additionally, the BL-YOLOv8s model enhances detection accuracy
while reducing computational and parameter demands. In comparison to the original
YOLOv8s model, the parameter size is reduced by 29.92%, and the computational load is
reduced by 11.45%. This makes the proposed model suitable for scenarios with memory
and computation constraints, such as embedded devices. In our future research, we intend
to gather diverse road images from multiple cities, including highway and urban arterial
road images. This will contribute to improving the model’s generalization and stability.
Furthermore, we aim to collect additional data, including wavelength, vibration, and other
parameters, to integrate with the image information. This integration will result in further
enhancements to the model’s reliability.
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