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Abstract: Higher standards for reliability and efficiency apply to the connection between vehicle
terminals and infrastructure by the fifth-generation mobile communication technology (5G). A
vehicle-to-infrastructure system uses a communication system called NR-V2I (New Radio-Vehicle to
Infrastructure), which uses Link Adaptation (LA) technology to communicate in constantly changing
V2I to increase the efficacy and reliability of V2I information transmission. This paper proposes
a Double Deep Q-learning (DDQL) LA scheduling algorithm for optimizing the modulation and
coding scheme (MCS) of autonomous driving vehicles in V2I communication. The problem with
the Doppler shift and complex fast time-varying channels reducing the reliability of information
transmission in V2I scenarios is that they make it less likely that the information will be transmitted
accurately. Schedules for autonomous vehicles using Space Division Multiplexing (SDM) and MCS
are used in V2I communications. To address the issue of Deep Q-learning (DQL) overestimation in
the Q-Network learning process, the approach integrates Deep Neural Network (DNN) and Double
Q-Network (DDQN). The findings of this study demonstrate that the suggested algorithm can adapt
to complex channel environments with varying vehicle speeds in V2I scenarios and by choosing the
best scheduling scheme for V2I road information transmission using a combination of MCS. SDM not
only increases the accuracy of the transmission of road safety information but also helps to foster
cooperation and communication between vehicle terminals to realize cooperative driving.

Keywords: 5G; NR-V2I; automatic driving; DDQL; ultra-reliable

1. Introduction

Vehicles with autonomous driving capabilities are presently advancing quite rapidly.
Numerous developments and investigations have been conducted recently to enhance
the capacity of connected automobiles to transmit data about their surroundings. The
vehicles to everything (V2X) is a sizable interactive network made up of vehicle location
information including speed and location, and it involves four different types of com-
munication: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network
(V2N), and vehicle-to-pedestrian (V2P) [1]. The intelligent transportation system (ITS),
which is intended to improve driving convenience and safety, includes V2I communication
technology as a key component. Vehicles can receive more comprehensive road information
from the infrastructure, like warnings about construction zones, traffic accidents, and traffic
congestion, enabling them to make better driving judgments. In order to increase traffic
efficiency and lessen congestion, the infrastructure can also alter the timing of signal lights
and optimize the timing of traffic signals through communication with vehicles [2].

Users have extremely high expectations for ultra-reliable and low-latency communi-
cation (URLLC) in the V2I scenario of the Internet of vehicles, which is also essential for
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maintaining road safety. The Internet of vehicles and fifth-generation mobile communi-
cation technology (5G) are both developing at the same time, and NR-V2X leverages link
adaptation (LA) to give URLLC more robust technical support. Through the use of the V2I
channel quality adjustment modulation and coding scheme (MCS) in NR-V2X, LA may
provide reliable transmission. Adaptive modulation and coding (AMC) make it possible
for ITS’s intelligent vehicle communications to have better spectrum awareness ability [3].

The AMC modifies the transmission parameters in accordance with the channel’s
quality at each given time. Data transmission rates can increase with faster modulation and
encoding rates. If the channel conditions are bad, some transmission rates can be sacrificed
to lower transmission mistakes, while the modulation methods and coding rates can be
decreased to retain reliability. Fixed lookup tables, inner loop link adaptation (ILLA), outer
loop link adaptation (OLLA), and no outer loop link adaptation (NoOLLA) technologies are
common components of traditional AMC solutions. In the realm of AMC, OLLA technology
is a higher-level adaptive technique that has the ability to dynamically modify the settings
in accordance with network resources and global performance indicators. While using a
predefined parameter configuration for data transmission, NoOLLA technology is a fixed
method that is easier and does not require the idea of outer ring adjustment [4]. The first
receiver provides feedback on the channel state information (CSI) in the conventional AMC.
The transmitter then examines the channel state data to determine the correlation between
the channel quality index (CQI) and the signal-to-noise ratio (SNR). The transmitter will
automatically modify MCS to achieve adaptive switching based on this relationship [5]. In
a V2I scenario, the vehicle’s fluctuating speed and the random scattering phenomenon in
a high-speed driving environment would cause the transmission signal to travel along a
number of different paths as it attempts to reach the base station (BS). Due to the separate
and quick temporal phase shifts caused by the various Doppler shift on these paths, the
channel rapidly fades (for instance, the amplitude and phase of the entire channel change
quickly over time). In this instance, a channel quality indicator based solely on SNR
has been unable to adequately depict the channel’s actual state. The effectiveness of
communicating information about road safety and the throughput of data communication
may suffer significantly as a result of the effects of rapid deterioration [6].

The use of machine learning (ML) technology in ITS has grown significantly in recent
years [7]. The literature [8,9] discusses the use of deep learning algorithms in AMC and
compares the effectiveness of algorithms, such as convolutional neural network (CNN),
ResNet, DenseNet, and convolutional long and short-term deep neural network (CLDNN),
in classifying signal modulation types. The ML technique of reinforcement learning (RL)
has also been used for a variety of issues, such as resource optimization, coverage and
capacity optimization, and backhaul optimization [10]. According to the literature [11],
when using RL in AMC, the received signal to interference-plus-noise ratio (SINR) is
used to determine the MCS, and because SINR is a continuous variable, the state space
is similarly continuous. When dealing with such a continuous state space, this enables
the learning algorithm to take a wider state space into consideration. According to the
literature [12], the MCS selection rules are modified using RL algorithms in order to take
into account the consequences of prior AMC judgments. According to the literature [4],
based on the Q learning algorithm, BS can independently investigate and choose the
best MCS schemes to maximize spectral efficiency while retaining a low bit error rate
(BER). In order to help agents deal with high-dimensional state spaces, learn complex
strategies, increase learning efficiency, and apply to the continuous motion space problem,
deep reinforcement learning (DRL) combines the benefits of deep learning and RL [13].
Based on this, a study [14] utilizing DRL developed an intelligent MCS selection algorithm
with outstanding transmission rate performance in the setting of cognitive heterogeneous
networks. The Deep Q-network (DQN) algorithm is a popular one for DRL. For the joint
scheduling of MCS and space division multiplexing (SDM) in the 5G massive MIMO-OFDM
system, the literature [15] suggests a DQN-based approach.
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Traditional DQN uses a single neural network for both action selection and Q value
estimation, which leads to an excessive Q value estimate [15]. Two neural networks
are introduced by the double deep Q-network (DDQN), one for action selection and the
other for Q value estimation [16]. By choosing an action and assessing its Q value at
each update, this dual-network structure can decrease the overestimation of Q value and
improve the stability and performance of DDQN [17]. Therefore, in order to improve
the performance of the DQN-based scheduling algorithm in the literature [14] and make
it more adapted to ultra-reliable intelligent downlink scheduling, this paper suggests
a massive MIMO intelligent scheduling technique based on DDQN for the 5G NR-V2I
scenario. This approach is employed for intelligent joint scheduling of MCS, precoding
matrix indicator (PMI), and SDM. This paper suggests a highly trustworthy intelligent
downlink scheduling technique based on DDQN for the 5G NR-V2I scenario. The following
are its specific contributions:

(1) Eliminate the overvaluation issue with Q value—when learning the Q value function
for the DQN algorithm, the Q value is prone to being overstated, which means that
for some state–action combinations, its Q value might overestimate. Due to this,
the DQN algorithm may occasionally choose ineffective actions, which will have an
impact on the scheduling efficiency. The overestimation problem of Q values can
be reduced by DDQN by using two Q networks, one for choosing actions and the
other for assessing the value of those activities, therefore enhancing the precision and
stability of downlink scheduling algorithm learning.

(2) More precise action choice—dual Q networks are utilized by the DDQN algorithm
to pick activities, which allows for a more precise assessment of the relative worth
of various actions. Due to this, DDQN may be able to choose actions with greater
precision, improving the downlink scheduling approach. The DDQN algorithm can
more precisely choose the actions that can optimize throughput or lower the BER,
thereby enhancing link performance, when compared to DQN, OLLA, and NoOLLA.

(3) Overcoming the issue of the local optimal solution—the OLLA algorithm may enter
the local optimal solution and fail to attain the global optimal by optimizing the
local action selection. The DDQN algorithm, in contrast, employs dual Q networks
throughout the learning phase, which can better avoid the local optimal solution
problem and more effectively explore the larger action space.

(4) Adapt to surroundings that are more complicated—by using two Q networks and rein-
forcement learning, the DDQN algorithm can adapt more flexibly to various channel
environments and network requirements under a dynamic, changing environment,
so as to improve the efficiency and reliability of communication links. This makes
DDQN have strong adaptability and superior performance in a complex environment.

This paper is organized as follows. The downlink adaptive scheduling model based on
the channel-state information reference signal (CSI-RS) is primarily established in Section 2.
The adaptive technique of V2I downlink scheduling based on DDQN is introduced in
Section 3, along with the measurement of the downlink channel, data processing, network
architecture, and training parameter setup. In Section 4, the simulation results are verified.
The conclusion is provided in Section 5.

2. Problem Formulation

Through the policy modification of the downlink communication, NR-V2I improves
the communication reliability and spectrum efficiency of the vehicle terminal. The applica-
tion scenario of NR-V2I [18] is given in Figure 1. A lower modulation scheme and coding
rate can be utilized when the edge-Internet of vehicles (E-IoV) server delivers signals to
the vehicle terminal through the road side unit (RSU), which will boost the robustness for
weak connections. In addition, the E-IoV Server increases spectral efficiency (SE) by using
a higher modulation scheme and coding rate.
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Figure 2. Scheduling for NR-V2I communication systems with reliable links. 

The vehicle terminal measures the CSI-RS sent from the RSU side and then feeds the 

signal back to the RSU through the physical uplink data channel. The E-IoV server chooses 

the downlink scheduling scheme based on the feedback value of the CSI-RS transmi�ed 

by the RSU, which provides an ultra-reliable and low-latency communication scheme for 

the current data transmission of in-vehicle terminals through the DDQN method. 

Consider how [20] may be employed to describe the channel capacity in a MIMO 
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Figure 1. Communication scenarios for NR-V2I.

The MIMO-OFDM communication system of NR-V2I [19] (Individual User 1) is used
as the research subject in this work. The intelligent link scheduling approach based on
DRL is used in the downlink adaptive scheduling of CSI-RS. In Figure 2, the scheduling is
displayed. The fundamental principles of NR-V2I communication are as follows.
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Figure 2. Scheduling for NR-V2I communication systems with reliable links.

The vehicle terminal measures the CSI-RS sent from the RSU side and then feeds the
signal back to the RSU through the physical uplink data channel. The E-IoV server chooses
the downlink scheduling scheme based on the feedback value of the CSI-RS transmitted by
the RSU, which provides an ultra-reliable and low-latency communication scheme for the
current data transmission of in-vehicle terminals through the DDQN method.

Consider how [20] may be employed to describe the channel capacity in a MIMO context.

V(H) = log2

{
det
[

ENr + η(WH)(WH)H
]}

(1)

where V is the channel capacity; H ∈ CNr×Nt is the channel matrix; Nt and Nr are, respec-
tively, the number of transmitting and receiving antennas; the letter ENr stands for the unit
matrix in Nr dimensions; η denotes the signal transmitting power to noise power ratio; W is
the beam fugitive matrix; (·)H indicates the conjugate transpose matrix of the solver matrix;
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and det(·) is the solver matrix’s determinant. The RSU’s downlink adaptive scheduling,
which is closely connected to the RSU’s downlink adaptive scheduling, has a significant
impact on the BER of the real downlink of the NR-V2I communication system.

The code elements in the NR-V2I communication system are encoded in an OFDM
resource block (RB) for cyclic redundancy check (CRC), and if the check is unsuccessful, all
of the RB’s code elements are retransmitted. You may obtain the downlink BER Bslot for a
single time slot by:

Bslot = Be/(l · c ·m · NRB · NRE) (2)

where Be refers to the number of downlink transmission error bits; l is the number of
downlink-scheduled layers for air-division multiplexing; c is the number of downlink-
scheduled bits for data transmission code; m indicates the number of modulated downlink-
scheduled data symbols; NRB denotes the number of downlink-scheduled resource blocks
(RBs); and NRE is in the name of the number of resource blocks (Res) that make up each RB.
When the subcarrier spacing is 15 kHz, there are 14 OFDM symbols and 12 subcarriers in
one RB in OFDM. NRB and NRE are treated as fixed values in this paper. They primarily
depend on the resource allocation and are independent of the link-adaptive downlink
scheduling policy.

A mathematical description of the downlink adaptive scheduling method based on
the CSI-RS may be obtained from (3):

argmin
Be, PSE

Bslot = Be/(PSENRBNRE) (3)

s.t. PSE = l · PU-SE = f (DCQI, DRI, DPMI, BP-slot) (3a)

1 ≤ l ≤ 4 (3b)

PU-SE = c ·m = M(DMCS) (3c)

m ∈ {1, 4, 6, 8} (3d)

The intention of the downlink adaptation based on the CSI-RS is to reduce the BER.
Bslot represents the number of incorrect bits following the current time slot scheduling. The
state variables are the CQI, RI and PMI determined by the E-IoV Server based on the CSI-RS
fed back from the vehicle terminals delivered by the RSU and the BER BP-slot obtained
through statistics after the prior time slot has been scheduled. The decision variables l are
and DMCS.

PSE = r · PU-SE = l ·M(DMCS) = f (DCQI, DRI, DPMI, BP-slot) (4)

where, as indicated in Equation (4), the spectral efficiency is PSE. Furthermore, the DCQI,
DRI and DPMI stand for, respectively, the CQI, RI and PMI calculated by the E-IoV server.
f (·) stands for the downlink adaptive scheduling algorithm based on the CSI-RS, with
the SEs discounted by the l and DMCS as their outputs. The algorithm’s inputs are the
CQI, RI, PMI and Be supplied by the E-IoV server.

In Equation (5), PU-SE stands for Unit-Spectral Efficiency, or U-SE.

PU-SE = l ·m = M(DMCS) (5)

where the M(DMCS) function represents the U-SE acquired at a certain order DMCS that
corresponds to the current order. The primary scheduling parameters produced by the
downlink adaptive method are the number of downlink air-division multiplexing layers
l, the downlink data coding rate c, and the downlink symbol modulation order m. (c ·m)
symbolizes the number of bits that are acceptable on a single RE.
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When the scheduling of l and DMCS grows more than the current channel conditions of
the vehicle terminal support demodulation capacity, Be and Bslot shall grow. The downlink
space division multiplexing layer number l and MCS order DMCS two parameters primarily
reflect the transmission data density. In addition, even when Be is reduced, the system’s
Bslot will not reach the minimum value of Bslot due to the excessively conservative amount
of scheduling data when l and DMCS scheduling tend to be significantly less than the
demodulation capability supported by the vehicle terminal under the current channel
conditions. With the goal of bringing the system into balance with the Be while minimizing
the system’s Bslot, the number of layers l of downlink space division multiplexing and the
order of MCS DMCS scheduling must be closely matched to the current channel state and
the demodulation capability of the vehicle terminals.

3. DDQN-Based V2I Downlink Scheduling Adaptation
3.1. Downlink Channel Measurement

For the purpose of downlink channel measurement in the NR-V2I communication
system depicted in Figure 2, the RSU periodically inserts the CSI-RS into the downlink
data frame and then transmits it to the onboard terminal. The scheduling strategy for the
downlink will ultimately be influenced by the measuring results of the feedback from the
onboard terminal to the RSU. If the onboard terminal has Nr receiving antennas and Nt
transmitting antennas at the RSU, and the signal flow during transmission is described as

yCSI-RS = SCSI-RShDL + nDL (6)

the remaining ports transmit zero pilot because the CSI-RS is mapped to various time-
frequency domain positions on various transmitting antennas. We can therefore infer that
CSI-RS per transmitting antenna is:

SCSI-RS= diag(sCSI-RS) (7)

The emitted CSI-RS vector can be expressed as sCSI-RS =
[
s1 s2 . . . sq . . . sNr

]T

because diag(·) indicates building sCSI-RS as a diagonal matrix. The CSI-RS vector
of each transmitting antenna to the receiving antenna q may be expressed as sq =[
sq,1 sq,2 . . . sq,p . . . sq,Nt

]
.

The received CSI-RS vector is expressed as yCSI-RS =
[
yT

1
yT

2
. . . yT

q . . . yT
Nr

]T
;

however, the CSI-RS vector received by the receiving antenna may be expressed as yq =[
yq,1 yq,2 . . . yq,p . . . yq,Nt

]
. Additionally, the channel response on the receiving

antenna q is represented as hq =
[
hq,1 hq,2 . . . hq,p . . . hq,Nt

]
; hence, the downstream

channel’s channel response is hDL =
[

hT
1

hT
2

. . . hT
q . . . hT

Nr

]T
. A noise vector δ2

n

with a mean of 0 and a variance of nDL ∈ CNt Nr×1 is then used to represent the noise on
the channel.

Formula (6) and the CSI-RS of each transmitting antenna allow for the least square
(LS) estimation of the downstream channel response vector ĥDL:

ĥDL = (SCSI-RS)
−1yCSI-RS (8)

Additionally, obtain the downlink channel response matrix ĤDL:

ĤDL =
[

ĥT
1 ĥT

2 . . . ĥT
Nr

]
=


ĥ1,1 ĥ2,1 · · · ĥNr,1

ĥ1,2
. . .

...
...

. . .
...

ĥ1,Nt · · · · · · ĥNr,Nt

 (9)
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Then, the onboard terminal will obtain the RI, PMI, and CQI based on the estimated
ĤDL measurement and feed the above measurements back to the RSU. The vehicle terminal
will be based on the estimated ĤDL. The value of RI is usually related to the number of
antennas and the channel environment, and higher RI values indicate better space fraction
multiplexing capability. The eigenvalues of the channel matrix are obtained by performing
an eigenvalue decomposition of the channel matrix ĤDL.

ĤDL = UDLΣDLVH
DL (10)

In particular, the eigenvalues ΣDL reflect the singular values of the channel, which
reflect the capacity of the channel to transmit signals across its many layers. UDL and VDL
are unitary matrices. Consequently, the RI can be determined using the following equation:

DRI =

{
0 i f Z(ΣDL − NDL) = 0, 1

Z(ΣDL − NDL) else
(11)

The Z(·) function determines the number of diagonal elements in the matrix that are
greater than zero, where NDL = δ2

n INr is the noise matrix of each layer.
When RI values are known, they can be mapped to the corresponding precoded matrix

index using predefined PMI tables [21]. The collection of possible PMI matrices is SPMI, and
the values of Nt, Nr and DRI are known. If the PMI matrix corresponding to the PMI matrix
index DPMI is WDPMI , WDPMI ∈ SPMI, it will assume that element SPMI has NPMI elements.
The estimated SNR matrix ΓDPMI can be computed using the downlink precoding matrix
WDPMI , as follows:

ΓiPMI =

[
NDL

(
WDPMI

ĤH
DLĤDLWH

DPMI
+ NDL

)−1
]−1

(12)

To fully account for the influences between multiple levels, the SNRs of each layer
were merged to obtain an integrated SNR value. A second norm of ΓDPMI can be used to
produce the combined SNR ρPMI. There are various PMI matrices available in the collection
of PMIs, each of which corresponds to a distinct precoding technique. Because there are
fewer aggregate elements, the onboard terminal can poll (or traverse) each PMI index in
turn and determine the appropriate combined SNR value. The merged SNR value for each
candidate PMI index was calculated, and the PMI index that maximizes the SNR value
was then identified. The onboard terminal returns the index to the RSU in the following
manner after locating the ideal PMI index:

argmax
DPMI

ρPMI =
∥∥ΓDPMI

∥∥2
F (13)

The CQI is a channel quality indicator that is frequently used in communication
systems for adaptive modulation and encoding [22]. The mapping function DCQI can be
used to determine the appropriate CQI index MCQI(·) for the decibel representation of ρPMI:

DCQI = MCQI(log2(ρPMI − 1)) (14)

The onboard terminal will now encode the RI, PMI, and CQI measured data into a
feedback signal and transmit them back to the RSU. The RSU will decide the downlink
scheduling choice method based on the aforementioned facts after receiving this report.

3.2. Data Processing and Network Architecture

The direct application of the DQN algorithm will end up resulting in an overestimation
of the decision value [23] due to the complexity of the NR-V2I communication system, the
analog nature of the states and actions, and the volume of data. As a result, in this paper,
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we use the DDQN for downlink scheduling and the DNN network for calculating the Q
value rather than the Q-Table. Figure 3 depicts the DDQN’s structural layout.
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Figure 3 depicts the network structure used in DDQN. It primarily consists of the
data preprocessing section, the Concat layer, and the DNN layer. The DNN layer is a Full
Convolutional Neural Network (FCN), where the input is the current state S and the output
is the Q value of the reward value corresponding to all of the actions in the current state.

The DCQI, DRI and DPMI from the measurement feedback of the vehicle terminal,
as well as the statistically obtained BP-slot, are the primary sources of information for
the DDQN used in this paper to output downlink adaptive scheduling. Because the
dimensionality of each variable varies, it is necessary to preprocess the data before inputting
them into the DNN network. The preprocessing of input data to the DNN network consists
of the following parts:

1. Matrix processing: Equation (15) illustrates how one may acquire the precoding matrix
WDPMI ∈ CNt×Nr for the precoding matrix and obtain W

′
DPMI

∈ R2Nt×Nr following the
same matrix processing:

W
′
DPMI

=

[
Re(WDPMI)
Im(WDPMI)

]
(15)

where Re(·) and Im(·) are shown as taking, respectively, the real part function and the
imagistic part function.

2. Embedding layer: As a result of DCQI = (0, 15) ∈ Z, DRI = (0, 3) ∈ Z, the CQI
encoding vector and RI encoding vector must be obtained to satisfy the network input
conditions. These vectors can be obtained by the embedding layer network in deep
learning, and the embedding layer can transform the input’s index value into a vector
of a specific dimension size. The embedding layer, in particular, is essentially made
up of several fully connected networks, but it has a different focus. The output of the
embedding layer is equivalent to the weights in the fully connected network, which
acquires the network weights.

Given that there are 16 and 4 CQI and RI values in this research, respectively, and that
each coding vector possesses a dimension of Nr, the embedding matrix may be represented
as follows:

ECQI =
[
eCQI

1 , eCQI
2 , · · · , eCQI

16

]T
(16)

ERI =
[
eRI

1 , eRI
2 , · · · , eRI

4

]T
(17)

where ECQI ∈ R16×Nr and ERI ∈ R4×Nr . Before training, the data in the embedding matrix
are set up at random. During training, the embedding layer can obtain the specified row
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vector in the embedding matrix as the coding vector according to the given input index
value by simply applying the values of DCQI and DRI, whose expressions are, respectively:

CCQI = S(ECQI, DCQI) (18)

CRI = S(ERI, DRI) (19)

where DCQI ∈ R1×Nr and CRI ∈ R1×Nr are the CQI encoding vector and the RI encoding
vector under the input DCQI and DRI values, respectively; S(·) indicates that the specified
row vector in the matrix is picked as the encoding vector based on the index value.

3. Fully Connected Layer: To be able to obtain the mapping vector CP-slot ∈ R1×Nr of
BER, high-dimensional mapping will be executed by applying the FCN network’s
BP-slot because BP-slot = (0, 1) ∈ Q.

4. Concat operation: Following the previously mentioned process, the processed data
must be concatenated into a single dimension to receive the DNN layer’s input.

S = Concat


W
′
DPMI

DCQI
DRI
DP-slot

 ∈ R(3+2Nt)×Nr (20)

where Concat(·) denotes the splicing function and S is the input to the DNN layer.
In this paper, the basic elements of the Q-learning algorithm in a DDQN system are

represented as:

(1) Environment (environment): communication system with adaptive scheduling for
NR-V2I downlink;

(2) Intelligent body (agent): vehicle-mounted terminal;
(3) Action: the quantity of space division multiplexing layers RI and MCS used by

downlink scheduling by RSU, which is referred to as action a = (r, DMCS) in DDQN;
(4) State: states are defined as those that are explicitly specified, as indicated in

Equation (20), such as the DCQI acquired from downlink measurement, the precoding
matrix WDPMI corresponding to DPMI and DRI , and the state matrix S produced from
BP-slot after data preprocessing;

(5) Reward: B, which is specified as indicated in Equation (5), is defined as the BER
following downlink adaptive scheduling.

A neural network is utilized to estimate the Q value rather than a Q-Table in the down-
link scheduling technique based on DDQN, which was created by fusing the DNN network
illustrated in Figure 4 with the Q-learning algorithm. The problem of overestimation in
DQN is resolved by the reinforcement learning technique known as DDQN by splitting the
computation of the desired Q value into two steps: action selection and value evaluation.
The overestimation issue in DQN is resolved by DDQN, a reinforcement learning technique,
by splitting the computation of target Q values into two steps: action selection and value
evaluation. A memory database is inherited by the DQN to solve the relevance problem
of consecutive samples. The memory database stores past experiences, such as a specific
number of (state, action, reward, and next state) sample data acquired in the setting of the
NR-V2I communication system, and it randomly selects a small batch of sample data to
train the network in the training phase. This enables a more effective training of the DNN
by using both the old and new data.



Sensors 2023, 23, 8454 10 of 18
Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

DDQN Lossfunction

Environment

Memory 
database

...

...

...

...

...

...

Estimation networkTarget network

Copy

Agent
E-IoV server

Update

Small batch experience

(state, action, reward, 
next state)

State
Policy

ECIoV  Server

RSU

RSU

ECIoV  Server

RSU

RSU

RSU

RSU

ECIoV  Server

ECIoV  Server
RSU

RSU

ECIoV  Server

RSU

ECIoV  Server

 

Figure 4. Reliable link scheduling structure based on DDQN. 

A nonlinear approach is used in DDQN to represent the Q estimator function 

( )Q S,a;θ , where θ  is a parameter of the neural network, and then the loss function in 

the DNN network is defined as: 

2( ) E[ ( ) ( )]L θ Q S,a Q S,a;θ   (21)

The parameter update of the neural network can be expressed as: 

(i+1) (i) (i)( )θ θ L θ    (22)

Both the computational network and the target network are neural networks. How-

ever, they have distinct parameters while sharing the same topology. The Q-estimated 

value of ( )Q S ,a  for the current state–action pair is generated by the computational net-

work, which uses the most recent parameters. The Q-estimated value of 
+( )Q S,a  is used 

to assess the DDQN loss function under the current channel condition–downlink sched-

uling mode. The target network does not update the parameters in real time, instead cop-

ying them from the computational network to the target network every specific iteration 

step c  during the training time. Backpropagation and stochastic gradient descent (SGD) 

methods can be used to change the network parameters. DDQN loss function occurs un-

der the current channel condition–downlink scheduling strategy. When the system is in 

the current channel uplink and downlink measurement state matrix S , the optimal state–

action reward function ( )Q S,a  in the downlink scheduling model, indicates the largest 

cumulative discount gain of completing scheduling action 
'a  to enter the next state, 

'S
. The revised phrase is wri�en as follows: 

Figure 4. Reliable link scheduling structure based on DDQN.

A nonlinear approach is used in DDQN to represent the Q estimator function Q(S, a; θ),
where θ is a parameter of the neural network, and then the loss function in the DNN
network is defined as:

L(θ) = E
[
Q+(S, a)−Q(S, a; θ)]

2 (21)

The parameter update of the neural network can be expressed as:

θ(i+1) ← θ(i) − δ∇L
(

θ(i)
)

(22)

Both the computational network and the target network are neural networks. However,
they have distinct parameters while sharing the same topology. The Q-estimated value of
Q(S, a) for the current state–action pair is generated by the computational network, which
uses the most recent parameters. The Q-estimated value of Q+(S, a) is used to assess the
DDQN loss function under the current channel condition–downlink scheduling mode. The
target network does not update the parameters in real time, instead copying them from
the computational network to the target network every specific iteration step c during the
training time. Backpropagation and stochastic gradient descent (SGD) methods can be
used to change the network parameters. DDQN loss function occurs under the current
channel condition–downlink scheduling strategy. When the system is in the current channel
uplink and downlink measurement state matrix S, the optimal state–action reward function
Q(S, a) in the downlink scheduling model, indicates the largest cumulative discount gain
of completing scheduling action a

′
to enter the next state, S

′
. The revised phrase is written

as follows:

Q(S, a)← Q(S, a) + δ
[
r(S, a) + γQ

(
S
′
, maxa’ Q

(
S
′
, a
′
))−Q(S, a)] (23)

where γ= (0, 1) ∈ Q stands for the pace at which future incentives will diminish and
δ= (0, 1) ∈ Q represents the learning rate. A computational network is utilized to imple-
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ment the downlink adaptive scheduling procedure for NR-V2I communication once the
network has been trained.

The DDQN-based downlink scheduling algorithm in this paper is shown in Algorithm 1:

Algorithm 1: Intelligent DDQN-based link scheduling algorithm for NR-V2I

Input: Calculate network weights θ; target network weights θ̂ = θ.
Initialization: Memory database size N;

Step 1: Repeat the number of iterations episode = 1 toM do;
Step 2: Initialize the state S1;
Step 3: for the number of subframes t = 1 to F do;
Step 4: The action at that fulfills at = argmaxaQ(St, a; θ) with probability ε, or the number of

air division multiplexing layers r and the order DMCS of MCS, is chosen by the E-IoV server;
Step 5: E-IoV server schedules the corresponding number of layers r and the order of the

MCS DMCS for the downlink, and then calculates the reward value BER B(St, at), and the system
enters a new state St+1 = S

′
t;

Step 6: The memory database stores the previous iteration experience
(

St, at, B(St, at), S
′
t

)
;

Step 7: Randomly select a small batch of sample data
(

St, at, Bt, S
′
t

)
from the memory

database and train the network; the target network obtains Q target value Q+(S, a), and the
computational network obtains Q estimated value Q(S, a);

Step 8: If the final state is reached;
Step 9: Then Q+(S, a) =r(St, at) ;

Step 10: Otherwise, Q+
(

S, a) =r(S, a) + γQ
(

S
′
, maxa′Q

(
S
′
, a
′
)) , γ is the decay rate of

future rewards.
Step 11: Calculate the loss function according to Equation (21) and update the weights of the

computational network according to Equation (22);
Step 12: Every certain number of iterations, update the parameters of the target network with

the parameters of the computational network, setting θ̂ to θ̂ = θ;
Step 13: end;
Step 14: until the iteration termination condition is reached.

Output: DDQN downlink adaptive scheduling model.

3.3. Training Parameter Settings

The structure of the online learning and offline deployment phases of the DRL-based
intelligent link scheduling method for NR-V2I cooperation is depicted in Figure 5.
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Figure 5. DQN-based reliable link scheduling framework.

Offline learning phase: The core of DDQN is training the neural network. To make the
DDQN model applicable to various scenarios, sample downlink adaptive data from the
NR-V2I communication system under various scenarios and parameters must be obtained.
The DDQN model is then trained using these sample data.

This work considers two prominent cases—NR-V2I high-speed movement scenarios
and scenarios with significant noise interference—where the performance of standard
methods is more constrained for training and learning. Two different vehicle terminal
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moving speeds are taken into consideration during the training process, and the data
sets of these speeds are (60 km/h, 120 km/h), which used to train the DDQN downlink
adaptive network for high-speed mobile scenarios. Different delay value data sets are also
given consideration, with configured delays ranging from 0 to 15 with a step size of 1.
The NR-V2I communication environment must be represented in an appearance that is
consistent with the reinforcement learning environment in order to apply reinforcement
learning techniques to the downlink adaptation challenge.

In this paper, the NR-V2I communication environment is constructed by using the
matlab platform, and pytorch, an open-source deep learning framework, is employed to
build and deploy the reinforcement learning component. The interaction between the data
and the environment may be realized by using the python and matlab platforms. The
training process can be described as a continuous interaction between the intelligent body
and the environment for the intelligent body to choose the best course of action. An Intel(R)
Xeon®E5-2678V3 CPU with 64 GB of RAM, an NVIDIA GeForce RTX2080Ti graphics card,
and Python 3.9 and Pytorch 1.13 deep learning framework serve as the hardware and
software platforms for the training. The training settings for the DQN system and the
simulation parameters for the NR-V2I communication system are specified as indicated in
Tables 1 and 2, respectively.

Table 1. Communication system parameter settings.

Parameter Name Parameter Value

Carrier Frequency 5.925 GHz
Carrier Interval 30 kHz

Number of subcarriers 624
FFT Points 1024

Modulation mode QPSK, 16 QAM, 64 QAM, 256 QAM
Channel model TDL

Number of antennas of road test unit 32
Number of vehicle terminal antennas 4

Number of subframes 300

Table 2. DQN system training parameter settings.

Parameter Name Parameter Value

Iteration number 1000
Memory size 1000

Frequency of update of target network parameters 150
Activation function Tanh

Loss function Huber
Learning rate 0.01

Batch size 16
Number of vehicle terminal antennas 0.9

The DNN is an input layer with σ nodes that are connected to the components of S;
there are five hidden layers with 64, 128, 256, 128, and 64 nodes, respectively; each hidden
layer has a Tanh activation function; and there is an output layer with τ nodes. The structure
is shown in Figure 6, where ai denotes the value of the optimal downstream scheduling
plan that the DNN has obtained. The last layer of the output adopts a fully connected layer,
and the number of output nodes corresponds to the quantity of communication decisions
given by the E-IoV server to the vehicle terminal.
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In this paper, the learning rate is specified in this study to be 0.01, and the future
reward decay γ is specified to be 0.9. The modulation methods employed in the present
investigation are QPSK, 16 QAM, 64 QAM, and 256 QAM. The channel model is the
tapped delay line (TDL). The Adaptive Moment estimation (ADAM) technique, which
can adaptively update the learning rate and SGD, can be employed to update the network
parameters of the DQN network. The training of the network occurs when the sample data
in the memory database reach 300 and continues until the network converges. A batch
size of 16 indicates that 16 sample data are randomly selected from the memory database
for training each time. The DQN network outputs the BER magnitude for all downlink
transmission modes after network training is complete. The RSU then chooses the MCS
and the number of air-division-multiplexing layers that, through the Q-learning principle,
will yield the BER that is most suitable for downlink communication.

4. Simulation Results and Analysis

In this section, we compare the proposed algorithm to the OLLA, DQN, and NoOLLA
algorithms in a typical high-speed moving scenario in order to assess how well the proposed
algorithm performs in terms of average BER and throughput when used to schedule highly
reliable intelligent downlinks in a 5G NR-V2I scenario. After simulating the algorithm
using the primary communication system and DDQN network characteristics as described
in Tables 1 and 2, Figures 7 and 8 display the simulation results for the average BER and
throughput. Last, we compare the average number of iterations between DQN and DDQN.

In a 5G NR-V2I scenario, the vehicle often needs high data transmission reliability,
particularly for security-related data transmissions, like traffic information and vehicle
state updates. Because of the algorithm’s low average BER performance, it may effectively
lower the error rate of data transmission even when there is a high signal-to-noise ratio
and a complex channel, increasing the dependability of data transmission. Signals may
experience multiple path propagation in high-speed movement circumstances, leading to
multipath effects. Signals can interpolate due to multipath effects, increasing the likelihood
of intersymbol interference (ISI) and raising the BER. Different frequency components can
result from high-speed movement due to selective fading of the signal at the frequency. This
increases the BER of signal transmission and results in frequency-selective distortion. The
BER performance of the methods at the same delay when the delay is in 0 or 10 µs is shown
in Figure 7a,b, respectively. The suggested method is 0.05, 0.07, and 0.1 lower than the
average BER using DQN, OLLA, and NoOLLA, respectively, when the delay and frequency
bias are 0 us and 436 Hz. The average BER performance of several algorithms under
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doppler shifts of 250 Hz and 500 Hz, respectively, is shown in Figure 7c,d. In particular,
the suggested DDQN method greatly improves the average BER performance at the same
multispectral frequency shift. The suggested algorithm is 0.04, 0.08, and 0.1 lower than
the average BER using the DQN algorithm, OLLA algorithm, and NoOLLA algorithm,
respectively, when the frequency bias and time delay are 250 Hz and 9 µs, respectively.
Continuous action space issues can be handled with the OLLA algorithm. In order to avoid
the complexity of directly searching for globally optimal actions, it separates the continuous
action space into discrete local action spaces and employs local action selectors to choose
actions. In contrast, using the continuous action space directly instead of the OLLA method
typically entails spending more time and processing resources looking for global optimal
actions. In order to develop better scheduling strategies in the high-dimensional state space
and complex continuous action space of high-speed moving scenes, the OLLA algorithm
can converge more quickly when compared to the NoOLLA algorithm.

The type of action space may affect how the OLLA and DQN algorithms affect the
BER performance of communication link scheduling. The OLLA algorithm may be more
appropriate if a continuous action space is involved because it can handle the problem of
the continuous action space more effectively. However, due to the way the DQN algorithm
handles the discrete action problem, it may be a superior fit for the discrete action space.
Because the action space for the communication link scheduling problem is discrete, the
DQN method may be a preferable choice for scheduling decisions because it performs better
on average than the OLLA algorithm in terms of BER. The DQN algorithm is appropriate
for the discrete action space problem because it uses knowledge of the Q value function to
choose actions that can reduce average BER. The DDQN algorithm is an enhancement to
the DQN method that may select the action strategy in the situation of discrete action space
more correctly, thereby lowering the average BER even more.
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A highly efficient scheduling algorithm can optimize resource allocation, increase anti-
interference performance, increase resource utilization, and adapt to dynamic environments,
resulting in a significant increase in communication link throughput. A system with high
throughput can process data transmission more quickly and boost the network’s data
transmission effectiveness. The algorithm’s average BER performance benefits in 5G
NR-V2I scenarios are primarily seen in the high dependability, potent anti-interference,
self-adaptability, and high throughput it offers. These benefits will improve the efficiency
and reliability of 5G vehicle communication, enabling stable and reliable data transmission
between vehicles and infrastructure in a challenging wireless communication environment.
Figure 8a,b depict the throughput performance of the various methods for delays of 0 µs
and 10 µs, respectively, and the effectiveness of the suggested DDQN algorithm at a
certain delay. The suggested algorithm is 22 Mbps, 61 Mbps, and 88 Mbps higher than the
throughput of the DQN algorithm, OLLA algorithm, and NoOLLA algorithm, respectively,
when the delay and frequency bias are 0 µs and 281 Hz. The throughput performance
of several methods under doppler shifts of 250 Hz and 500 Hz is shown in Figure 8c,d,
respectively. Among these, the suggested DDQN algorithm’s throughput performance
at the same multispectral shift is much enhanced. The throughput using the suggested
method is 26 Mbps, 51 Mbps, and 78 Mbps higher than the throughput using the DQN
algorithm, OLLA algorithm, and NoOLLA algorithm, respectively, when the frequency bias
and time delay are 250 Hz and 0 µs, respectively. The OLLA algorithm has the flexibility to
optimize local action selection under dynamic channel and network conditions, improve
resource consumption efficiency, and increase throughput. If the OLLA algorithm is not
used when scheduling the communication connection or if the search in the continuous
action space or discrete action space is not efficient or flexible enough, the throughput
of the link may be impacted. For the discrete action space problem, the DQN algorithm
works better. It is better suited for highly reliable intelligent downlink scheduling in 5G
NR-V2I scenarios by learning the Q value function to choose the actions that can maximize
throughput. The DDQN algorithm used in this research may better optimize the link
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resource allocation and increase the throughput of communication lines by lowering the
overestimation of the Q value.

Finally, the average iterations of DQN and DDQN are compared. Comparing the
average number of iterations helps identify which algorithms converge faster to a suitable
performance level under the same training conditions. Fewer iterations usually indicate a
more efficient training process. In addition, fewer iterations may mean that the training
process is more stable, which also means that the algorithm requires fewer computational
resources. As shown in Table 3, although DQN is less than DDQN in the number of
iterations, DDQN is more stable when the environment deteriorates, because its number of
iterations changes more slowly.

Table 3. System training duration.

Parameter Name Performance Name DQN Average Iterations DDQN Average Iterations

Time delay = 0 µs Average BER 732 761
Time delay = 10 µs Average BER 775 784

Frequency offset = 250 Hz Average BER 753 789
Frequency offset = 500 Hz Average BER 794 810

Time delay = 0 µs Average Throughput/(Mbps) 703 732
Time delay = 10 µs Average Throughput/(Mbps) 731 747

Frequency offset = 250 Hz Average Throughput/(Mbps) 726 752
Frequency offset = 500 Hz Average Throughput/(Mbps) 765 773

5. Conclusions

This article suggests an ultra-reliable intelligent downlink scheduling technique based
on DDQN for the 5G NR-V2I autonomous driving scenario. With DCQI, DRI, and DPMI
from the measurement feedback of the vehicle terminal and the statistics BP-slot as input
variables, this approach combines the DNN network and Q-learning algorithm. The BER
for all downstream transmission modalities is the output. According to the Q-learning
concept, the RSU chooses the MCS and the number of multiplexing layers with the lowest
BER for downlink transmission. In order to avoid imperfection in the learning process
or noise in the data that may lead to bias, this paper uses appropriate data preprocessing
methods to reduce the impact of noise, such as filtering or smoothing. In this paper, the
empirical replay mechanism is used to reduce the problem of high Q overestimation. In
order to reduce the cost of two independent networks, this paper adopts some techniques
to reduce the training cost, such as sharing some parameters and reducing the network
size. In order to avoid a DDQN that may lead to over-exploitation and less exploration,
this paper uses appropriate exploration strategies, such as the ε-greedy strategy, to ensure
that the algorithm maintains a certain degree of exploration. In order to avoid policy
oscillations that may be caused by managing two Q networks, this paper uses a soft update
or progressive update to smooth the policy update process. In order to avoid overfitting
problems, this paper uses techniques, such as regularization and stopping training in
advance, to avoid overfitting.

The simulation demonstrates that the ultra-reliable intelligent downlink scheduling
algorithm based on DDQN outperforms the NoOLLA, OLLA, and DQN algorithms in
terms of average error rate and throughput performance, ensuring the ultra-reliability and
efficiency of communication between vehicles and infrastructure. In addition, although
DQN is less than DDQN in the number of iterations, DDQN is more stable when the
environment deteriorates, and its number of iterations changes more slowly. In future
research, we will consider the use of appropriate state representation methods by using
recurrent neural network (RNN) or other timing models to deal with dynamic environments
to cope with the training difficulties that may be caused by highly dynamic environments.
Considering that the algorithm update under the condition of real-time change may require
a lot of computing resources, the use of distributed computing can be considered to improve
computing efficiency. In order to ensure the stability of the system quickly adapted to new
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conditions, a buffer zone or sliding window can be considered to slow down the adaptation
speed of the model to maintain the stability of the system.
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