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Abstract: One of the key challenges in laser powder bed fusion (LPBF) additive manufacturing of
metals is the appearance of microscopic pores in 3D-printed metallic structures. Quality control in
LPBF can be accomplished with non-destructive imaging of the actual 3D-printed structures. Thermal
tomography (TT) is a promising non-contact, non-destructive imaging method, which allows for
the visualization of subsurface defects in arbitrary-sized metallic structures. However, because
imaging is based on heat diffusion, TT images suffer from blurring, which increases with depth. We
have been investigating the enhancement of TT imaging capability using machine learning. In this
work, we introduce a novel multi-task learning (MTL) approach, which simultaneously performs the
classification of synthetic TT images, and segmentation of experimental scanning electron microscopy
(SEM) images. Synthetic TT images are obtained from computer simulations of metallic structures
with subsurface elliptical-shaped defects, while experimental SEM images are obtained from imaging
of LPBF-printed stainless-steel coupons. MTL network is implemented as a shared U-net encoder
between the classification and the segmentation tasks. Results of this study show that the MTL
network performs better in both the classification of synthetic TT images and the segmentation
of SEM images tasks, as compared to the conventional approach when the individual tasks are
performed independently of each other.

Keywords: multi-task learning; deep learning; computer vision; thermal tomography; scanning
electron microscopy; additive manufacturing of metals; regression–classification; semantic segmentation

1. Introduction

Laser powder bed fusion (LPBF) is an emerging metal additive manufacturing (AM)
method for the fabrication of custom, complex shape structures from high-strength alloys
for applications in harsh environments [1]. The LPBF process involves developing a 3D
drawing of a structure using either computer-aided design (CAD) or 3D scans of an object to
be replicated. The CAD file is then uploaded on a computer controlling the 3D metal printer.
The LPBF printer creates the structure by sequentially depositing layers of microscopic
grains and using high-power laser beams to selectively melt the powder grains in each
layer. Because of its features, LPBF is a promising enabling technology for nuclear energy
sustainability through the cost-efficient fabrication of replacement metallic components for
aging commercial light water reactors [2,3]. One of the main challenges to the acceptance
of LPBF for nuclear manufacturing is the appearance of microscopic porosity defects in
3D-printed metal structures. Such pores are an artifact of the metal AM process involving
rapid melting and solidification without well-defined boundary conditions [4]. Depending
on the size, shape, and orientation relative to structure surfaces, porosity defects could
be initiating sites for material crack formation, and thus lead to premature structural
failure [5–7].

Sensors 2023, 23, 8462. https://doi.org/10.3390/s23208462 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208462
https://doi.org/10.3390/s23208462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-3534-8774
https://orcid.org/0000-0002-8891-9323
https://doi.org/10.3390/s23208462
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208462?type=check_update&version=1


Sensors 2023, 23, 8462 2 of 17

The approaches to quality control of AM structures involve in situ monitoring of
structure layers during printing [8–11], and ex situ evaluation of the final printed struc-
tures [12–15]. Regardless of in situ monitoring results, the detection and classification of
material defects in the final structure prior to deployment in a nuclear reactor is necessary
because of the stringent safety requirements of nuclear energy. There exist several ap-
proaches to ex situ quality control of printed metallic LPBF structures based on destructive
analysis [16–18] and non-destructive evaluation (NDE) [19,20]. The goal of this paper is to
introduce a new machine learning algorithm that simultaneously performs analysis of the
images obtained from ex situ destructive and non-destructive sensing modalities. The joint
learning process results in a better performance compared to that for learning of individual
tasks separately.

Destructive testing typically involves examining coupons to obtain statistical repre-
sentation of the quality of the print process. Sectioning or chemically etching the specimen,
and imaging section surfaces with a scanning electron microscope (SEM) offers an efficient
approach to rapid imaging, with minimal specimen preparation time, of relatively large
sections of specimens with a spatial resolution as low as 10 nm/pixel [16,17]. Random sec-
tions of metallic specimens contain cavities, which correspond to cross-section cuts through
irregular-shaped microscopic pores. Cavity characteristics (size and shape) obtained from
the SEM images thus provide information about the quality of metal printing. Analysis of
SEM images can be performed with semantic segmentation, which performs pixel-wise
classification, outputting segmentation maps in which each pixel in the image belongs to a
pre-defined class.

Because of the low reproducibility of AM metals, as compared to conventional man-
ufacturing, the imaging of actual structures intended for service in a nuclear reactor is
needed for safety verification. In principle, NDE with high imaging resolution (on the order
of microns) can be performed with X-ray computed tomography (XCT) [13,14]. However,
XCT requires specimens with body-of-revolution symmetry (e.g., spheres and cylinders),
and high resolution is limited to small metallic coupons with dimensions on the order of
millimeters. Ultrasonic testing (UT) is an NDE method scalable to arbitrary structure sizes
and shapes, but requires direct contact with the structure surface [19,20]. This limits the
applicability of UT because LPBF-printed metals have rough surfaces due to the specifics of
the manufacturing process. Pulsed infrared thermography (PIT) or the active thermography
NDE method use non-contact sensors for the imaging of subsurface defects in optically
opaque materials [21–28]. PIT uses a flash lamp to deposit a thermal pulse on a material
surface. As heat diffuses into the material bulk, a fast frame infrared camera records the
surface temperature transients, via capturing the emission of blackbody radiation from the
solid [12]. The presence of internal pores in the material is revealed via the appearance
of temperature “hot spots” on the material surface above the flaw due to slower heat
decay caused by air-filled pore with higher thermal resistance. Typically, mid-wave IR
cameras with a 3–5 µm spectral band are used for imaging, which, in principle, allows for a
diffraction-limited resolution of 5 µm per pixel.

The resulting data cube in PIT consists of sequential frames of temperature distribution
in mixed spatial and temporal coordinates (x,y,t). The thermal tomography (TT) compu-
tational method uses PIT data to obtain the reconstruction of the thermal effusivity of
spatial-only coordinates (x,y,z). Spatial depth reconstruction allows for the visualization of
material defects [29]. The interpretation of TT images is not trivial, in part because imaging
is based on heat diffusion, and thus images suffer from blurring, which increases with
depth. Machine learning algorithms including K-Means Singular Value Decomposition
and sparse dictionary learning [30] have been developed to compensate for the blurriness
of TT reconstructions. To classify material defects (size and orientation) from TT images,
we have recently developed a machine learning approach based on a convolutional neural
network (CNN) [31]. A CNN is an image analysis algorithm, where input data is paired
with corresponding labels in a supervised manner. Consisting of multiple hierarchical
convolutional layers, the CNN networks efficiently identify distinctive patterns and fea-
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tures within images by performing classification and regression tasks. In classification
tasks, features extracted from images are used to assign a predefined class value to the
input image, and in regression tasks, the features extracted from CNNs are used to predict
appropriate continuous values. In prior studies, CNN was shown to be an efficient method
for analysis of images for in situ monitoring of AM [8–12], and NDE of AM [23–28].

This paper presents a novel approach to improving the accuracy of parameter pre-
diction of TT images by using joint multi-task learning (MTL) on two disjoint databases
of TT and SEM images of material defects [32]. In the MTL approach, the same network
is employed to perform multiple tasks simultaneously, taking inputs from separate yet
related tasks, to make the predictive ability of the network more robust. The presence
of multiple tasks enables the network to leverage enhanced extracted features, leading
to improved multitasking abilities. This is analogous to the increase in human cognitive
performance resulting from learning to play a new instrument [33,34], or the increase in
the human academic performance with increased gross motor skills [35]. Recent work
on MTL has been primarily in the medical applications domain, such as development of
MTL models for the segmentation of ultrasound and magnetic resonance images (MRI) of
tumors [36–38]. There has been a limited number of studies of MTL for AM applications,
with examples that include multi-task Gaussian processes for modeling shape deviations
and surface modeling of manufactured parts [39–41].

Advantages of the MTL include relative simplicity of the network architecture, where
a shared encoder for the classification of TT images and segmentation of SEM images
tasks. In the MTL network in this paper, a CNN-based regression is performed on a
dataset of synthetic TT images of elliptical defects in stainless steel, developed in the prior
study [31]. In practice, experimental measurement datasets typically have a moderate size
with limited variance. However, extensive datasets encompassing large variance in the
data are needed for machine learning (ML) model training to achieve sufficient accuracy
in predictions. Recent research approaches to address this challenge have investigated
the use of synthetic (simulated) and augmented (modulated) NDE data for ML model
development [42–47]. In line with this approach, future work with experimental TT data
will involve the use of synthetic and augmented data for ML model development. Therefore,
the present study with synthetic TT images provides valuable benchmarking results of MTL
algorithm performance.

MTL network segmentation is performed on a set of SEM image sections of LPBF-
printed stainless steel 316 specimens. Current state of the art in segmentation includes
fully convolutional neural networks (FCNNs) [48]. However, FCNNs typically require a
large volume of training data. Because the sectioning of specimens represents the random
sampling of sparse internal pores in the meta, the fraction of SEM images containing
material defects is relatively small. Because of the limited training data, we perform
segmentation of SEM images using the traditional U-Net architecture better suited for
“from-scratch” training on smaller datasets [49]. By jointly training the MTL network on
the regression of TT images and segmentation of SEM images tasks, we exploit shared
knowledge and feature representations, enabling the MTL network to acquire a deeper
understanding of image processing. To the best of our knowledge, the work in this paper
is the first demonstration of using MTL utilizing U-Net for simultaneous information
processing from disjoint datasets of images of material defects. The results of this study
demonstrate the efficiency of the MTL approach, which results in improvements in image
processing performance, as compared to performance of the individual regression and
segmentation tasks separately.

2. Multi-Task Learning Network for Classification and Segmentation of Images
2.1. Datasets of Synthetic Thermal Tomography and Scanning Electron Microscopy Images

The dataset for the regression–classification task consists of synthetic TT images of 2D
stainless steel structures (thin plates) containing elliptical air voids. The procedure for the
generation of the dataset is described in our previous work [31]. To give a brief description,
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PIT data was obtained with MATLAB heat transfer simulations using the parameters of
an experimental system where a triggered capacitor discharge through Balcar ASYM 6400
white light lamp delivers a pulse of 6400 J/2ms thermal energy to the materials surface,
and a FLIR x8501sc camera (FLIR Systems Inc., Wilsonville, OR, USA) acquires images with
342 pixels spatial sampling resolution at 540 Hz frame rate (180 Hz at full frame rate of
1280× 1024 pixels). Schematic depiction of the PIT system is shown in Figure 1a. Heat trans-
fer computer simulations generate a database of plate surface temperature transients T(y,t).
The plates with stainless steel 316 thermophysical properties have physical dimensions
of 5 mm × 5 mm, with a mesh spatial resolution of ∆x = ∆y = 10 µm, which corresponds
to 500 × 500 elements in the computational grid. Elliptical defects are characterized by
semi-major and semi-minor axes Rx and Ry, and the angular orientation θ is measured for
counterclockwise rotation from the x-axis (the x-axis is along the depth of the plate, and the
y-axis is along the face of the plate). A diagram of an elliptical material defect is shown in
Figure 1b. The range of values for both Rx and Ry is 10–310 µm, with angular orientations
θ in the range of 0–45◦. The centers of the microscopic elliptical voids were centered along
the face of the plate and placed at 1.5 mm depth from the edge of the plate.
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The TT algorithm processes the PIT data to obtain reconstructions of the thermal
effusivity e(x,y), which is a measure of how a material exchanges heat with its surround-



Sensors 2023, 23, 8462 5 of 17

ings [31]. Spatial distribution of thermal effusivity allows for the visualization of material
defects. The reconstruction algorithm assumes one-dimensional heat diffusion along the
x-axis (depth of the plate), and obtains x or depth dependence of thermal effusivity at each
location y along the surface of the plate as

e(x, y) = x
2Q

π
√

α

d
dt

(
1

T(t)

)
t=x2/πα

(1)

where Q is the instantaneously deposited surface thermal energy density, and α is thermal
diffusivity. Equation (1) shows that the spatial reconstruction of effusivity e(x,y) is given
as a product of depth function x and time derivative of the inverse of surface temperature
T(t) evaluated at time t. To calculate e(x,y) at a particular value of x, we first calculate
the corresponding time t = x2/πα, and then take the time derivative of the inverse of
T(t) at this time t. An example of pseudo color image visualization of simulated thermal
effusivity e(x,y) [J·m−3/2·(mK·s)−1/2] reconstruction for an elliptical defect with Rx = 60 µm,
Ry = 310 µm, and θ = 15o is shown in Figure 1c. The total size of the TT database generated
with this procedure is 329 images, where each image has 500 × 342 pixels.

The dataset for the segmentation task consists of SEM images of sections of LPBF
printed stainless steel 316L specimens. Several selected examples from this dataset were
used for creating irregular-shaped defect templates in our previous work [31]. The sections
contain microscopic irregular-shaped cavities, which are randomly chosen cross-section
cuts through irregular-shaped lack-of-fusion pores. Images were acquired with Hitachi
S-4700 SEM (Hitachi America Ltd., Santa Clara, CA, USA) with a spatial resolution of
15 nm/pixel. A representative SEM image is shown in Figure 2. The dataset consists of a
total of 212 SEM images, but with only 49 images (23% of the total set) containing a material
defect. The 163 featureless images were not used in this study. Images were cropped
to 224 × 224 pixels size, which is a standard size for deep learning training. The defects
were hand labeled using an open source label-studio [50]. The images were converted to a
PyTorch tensors format for use in the deep learning library.
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2.2. Multi-Task Network Architecture

The MTL network developed for simultaneous regression–segmentation analysis of
the TT and SEM images is shown in Figure 3. The TT and SEM images are jointly fed
into the network, and the outputs for each task are assessed with the loss functions and
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evaluation metrics defined in Section 2.6. To implement the MTL, we leverage shared
network parameters through a “from-scratch” U-Net encoder. The encoder is trained on
images from two different datasets for different tasks, allowing the encoder to learn and
extract latent representations shared between the tasks. Subsequently, the MTL network
information flow splits into two branches for each specific task, generating a segmenta-
tion mask for material defects analysis in the SEM images, and predicting characteristic
parameters for the elliptical defects in simulated TT images.
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Figure 3. MTL network for simultaneous segmentation of SEM images and parameter classification
in TT images. MTL uses a shared U-Net encoder for joint learning.

Training of the joint task model occurred over 500 epochs, where both tasks were
optimized using Adam optimizer and a learning rate of 10−5, a standard rate used with
this optimizer [51]. We paired each TT image with one SEM image and used a 65/15/20
training/validation/testing percentage split, with 210 image pairs in training, 53 image
pairs in validation, and 66 image pairs in holdout testing. Because the dataset of SEM
images contains only 49 entries, to match the size of the database of TT images, we sampled
with replacements from the SEM dataset. We also applied data augmentation techniques,
such as random rotations of the images.

2.3. U-Net Shared Encoder

A shared U-Net encoder is employed in the MTL network, where images from the
distinct datasets are jointly fed into the network, as shown in Figure 4. The encoder is
designed to progressively down-sample the input images through the repeated application
of double 3 × 3 convolutional layers, with each convolutional layer followed by a recti-
fied linear unit (ReLU) activation function. The integration of ReLU activation functions
introduces non-linearity to the model, allowing the encoder to learn the complex and
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abstract patterns present in the data. Inserted between the double convolutional layers are
max-pooling layers. Max-pooling serves as a down-sampling mechanism to reduce the
spatial dimensions of the feature maps, while retaining the most relevant information. The
repeated application of double convolutional layers and max-pooling operations enables
the U-Net encoder to progressively reduce the spatial dimension of the feature maps while
expanding the number of channels and retaining essential semantic information. One of the
key strengths of the U-Net architectures lies in the incorporation of skip connections. Skip
connections establish links between the encoder and decoder at various spatial resolutions.
Skip connections that connect down-sampled layers to up-sampled layers are shown as
dashed lines. As a result, the encoder produces a compact, high-level representation of the
input images from both SEM and TT domains, which will be subsequently leveraged by
the corresponding task-relevant decoder.
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Figure 4. Schematics of the shared U-Net encoder. Each 3-channel image is fed into a double
convolutional layer with added non-linearity via ReLU activation to expand the number of channels.
Each green arrow represents a max-pooling layer, responsible for reducing the size of the image. Skip
connections that connect down-sampled layers to up-sampled layers are shown as dashed lines. For
brevity, the double convolutions are combined, and only 2 of the 4 layers are shown.

2.4. U-Net Segmentation Decoder

After the SEM images are down-sampled by the shared U-Net encoder, the images are
sent through the U-Net decoder, shown in Figure 5. The structure of the U-Net decoder
utilizes a combination of double convolutional layers and rectified linear unit (ReLU)
activation functions, mirroring the structure of the U-Net encoder. In addition to the
convolutional layers, the U-Net decoder incorporates transpose convolutional layers (also
known as deconvolutional or up-convolutional layers). These transpose convolutional
layers serve as an up-sampling mechanism, restoring the resolution lost during the encoders
down-sampling phase. This enables the expansion of the channel latent representation
and provides a richer spatial context for accurate segmentation. Skip connections that
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connect down-sampled layers to up-sampled layers are shown as dashed lines. During the
down-sampling process, feature maps are copied and concatenated with their mirrored
up-sampling feature maps, allowing the decoder access to low- and high-level information
simultaneously. This avoids the common issue of vanishing gradients in many machine
learning problems. In addition, these features allow the U-Net to perform well in instances
with low amounts of training data, as compared to other, more complex algorithms, such as
attention transformers. The output of the U-Net decoder is a 1-channel binary segmentation
mask where every pixel is classified as either 0 (background), or 1 (feature/defect).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

an up-sampling mechanism, restoring the resolution lost during the encoders down-sam-
pling phase. This enables the expansion of the channel latent representation and provides a 
richer spatial context for accurate segmentation. Skip connections that connect down-sam-
pled layers to up-sampled layers are shown as dashed lines. During the down-sampling 
process, feature maps are copied and concatenated with their mirrored up-sampling feature 
maps, allowing the decoder access to low- and high-level information simultaneously. This 
avoids the common issue of vanishing gradients in many machine learning problems. In 
addition, these features allow the U-Net to perform well in instances with low amounts of 
training data, as compared to other, more complex algorithms, such as attention transform-
ers. The output of the U-Net decoder is a 1-channel binary segmentation mask where every 
pixel is classified as either 0 (background), or 1 (feature/defect). 

 
Figure 5. Schematics of the segmentation task U-Net decoder. Spatial information is recovered via 
several layers of double convolutional layers with ReLU activation, as well as with transpose con-
volutional layers displayed with purple arrows. A 1-channel segmentation map is output for anal-
ysis. For brevity, double convolutions are combined, and only 2 of the 4 up-sampling layers are 
shown. Skip connections that connect down-sampled layers to up-sampled layers are shown as 
dashed lines. 

2.5. Fully Connected Layer Decoder 
In designing the elliptical parameter prediction decoder for the TT images, we draw 

motivation from the previous research where we developed a CNN for the classification 
of defects in TT images [31]. The CNN takes effusivity reconstruction images as input, and 
returns characteristic dimensions Rx, Ry, and θ of the elliptical defect. To develop the CNN 
network, in the prior work we used AutoKeras� image classification module. In this paper, 
after encoding the TT images with the U-Net encoder, we further process the encoded 
representations through a series of fully connected layers composed of linear layers and 
Exponential Linear Unit (ELU) activation functions. ELU activation functions are chosen 

Figure 5. Schematics of the segmentation task U-Net decoder. Spatial information is recovered
via several layers of double convolutional layers with ReLU activation, as well as with transpose
convolutional layers displayed with purple arrows. A 1-channel segmentation map is output for
analysis. For brevity, double convolutions are combined, and only 2 of the 4 up-sampling layers
are shown. Skip connections that connect down-sampled layers to up-sampled layers are shown as
dashed lines.

2.5. Fully Connected Layer Decoder

In designing the elliptical parameter prediction decoder for the TT images, we draw
motivation from the previous research where we developed a CNN for the classification
of defects in TT images [31]. The CNN takes effusivity reconstruction images as input,
and returns characteristic dimensions Rx, Ry, and θ of the elliptical defect. To develop
the CNN network, in the prior work we used AutoKeras’ image classification module.
In this paper, after encoding the TT images with the U-Net encoder, we further process
the encoded representations through a series of fully connected layers composed of linear
layers and Exponential Linear Unit (ELU) activation functions. ELU activation functions
are chosen for their ability to introduce non-linearity, and to prevent vanishing gradient
problems. This promotes efficient learning and better representation of complex patterns in
the data. The output of the fully connected layers is a compact representation containing
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three characteristic parameters of the elliptical defect, as shown in Figure 6. To improve
generalization and mitigate overfitting, we employ dropout regularization with a probabil-
ity of 0.2 during training. Dropout randomly deactivates a fraction of neurons during each
forward pass, encouraging the network to learn more robust and invariant features. The
incorporation of linear layers, ELU activation, and dropout results in a simple yet efficient
decoder that can efficiently process the encoded TT images.
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Figure 6. Schematics of the fully connected decoder developed for TT images regression task.
The 1024-channel output from the shared encoder is flattened, and then fed through several fully
connected linear layers with added exponential linear unit non-linearity. The final layer has
a size 3 output, with the corresponding parameters of the best fit ellipse, Rx, Ry, and θ.

2.6. Loss Functions and Evaluation Metrics

The prediction of elliptical defect parameters in the TT images is a regressive task.
Therefore, we assess the performance of this task with mean squared error (MSE), defined
in Equation (2). Here, Yi represents the ground truth value, and Ŷi represents the pre-
dicted value. The MSE allows us to quantify the extent to which predictions deviate from
the true values, providing an overall prediction accuracy. A lower MSE value indicates
better performance.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi)

2 (2)

Another metric used to assess the performance of the TT images regression task is the
area error (AE), defined in Equation (3), as the absolute value in the difference between
the areas of the predicted ellipses (P), and the actual ellipses (A). Here, |P| represents
the absolute value of the area of the predicted eclipse, and |A| represents the absolute
value of the area of the ground truth ellipse. Like MSE, a lower AE value indicates better
model performance, suggesting that the predicted ellipse area closely matches the actual
ellipse area.

AE =
||P| − |A||
|A| (3)

To quantify the predictive power of our model, we evaluated performance using the
Pearson correlation coefficient and the Spearman rank correlation coefficient statistical
metrics. The Pearson correlation coefficient, denoted as Pearson r defined in Equation (4),
measures the linear relationship between predicted values and ground truth values. This
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coefficient is quantifying the degree of linear dependence between the two variables, where
xi is the predicted values for each variable, x is the mean of the variables in the sample, yi
is the ground truth for each variable in the sample, and y is the mean of the ground truth
for each sample. The range of values of Pearson r coefficient is from −1 to 1, with values
closer to 1 or −1 indicating a stronger positive or negative linear relationship between the
variables, respectively.

Pearson r = ∑ (xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(4)

The Spearman rank correlation coefficient, denoted as Spearman r, assesses the mono-
tonic relationship between predicted and ground truth values. Unlike Pearson r, Spearman r
does not assume linearity in the relationship. Instead, Spearman r considers the rank orders
of the values, not the raw values of ground truth and prediction. Spearman r is defined
in Equation (5), where d is the difference between the ranks of each sample, and n is the
number of samples.

Spearman r = 1−
6∑ d2

i
n(n2 − 1)

(5)

Given the binary nature of the segmentation task, we assess performance using the
binary cross entropy (BCE) loss, defined in Equation (6). Here, y is the ground truth pixel
value (y = 1 or y = 0), and p is the predicted probability from the model that the pixel
belongs to the foreground class (i.e., probability given pixel is a defect, y = 1). We utilize
BCE due to its heavy penalization on misclassified pixels. This allows the model to focus on
the most challenging image regions, placing more emphasis in image regions where defects
may occur. Calculating BCE in PyTorch allows us to define the pos_weight parameter. This
is a parameter that places more weight on the positive class within each image, which is
helpful for the SEM image segmentation task where the distribution of background and
foreground pixels is generally unequal.

BCE = −(ylog(p) + (1− y)log(1− p)) (6)

Finally, a segmentation metric used for better interpretation of each pixel is intersection-
over-union (IoU), defined in Equation (7). IoU is interpreted as the ratio of overlap be-
tween the model output and the ground truth label over the total surface area of the
two parameters.

IoU =
(prediction∩ truth)
(prediction∪ truth)

(7)

3. Multi-Task Learning Image Analysis Results
3.1. Classification of the Synthetic TT Images

To evaluate the performance of the joint MTL model, we begin the assessment by
individually analyzing each task. First, we assess the performance on the encoder and fully
connected layer multitasking model for parameter prediction in synthetic TT images by
comparing it to the performance of the single-task model, i.e., the original “from scratch”
CNN method developed in prior work [31]. MSE loss values for training, validation, and
holdout testing for both multi-task and single-task approaches were calculated for the three
elliptical defect parameters (semi-major radius Rx, semi-minor radius Ry, and the angle
of rotation θ). As an additional metric, we calculated the area error (AE) loss for training,
validation, and holdout testing for the single and MTL networks as well. The MSE and
AE loss values are listed in Table 1. While the single-task network performs better during
training, the stark increase of the testing loss indicates overfitting during training. Despite
shuffling the data, applying augmentation techniques, and applying dropout (discussed
in Section 2.5), the single task model suffers from overfitting due to lack of variance in
the limited size dataset. This further highlights the advantages of multi-task models with
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disjoint datasets. The steady decrease in the loss values of the multi-task network implies
better learning of the underlying trends present in the data. Due to the overfitting, the
single-task network has better performance in the AE metric as well. Overall, the multi-task
network has better performance when we consider the general trend of predictions.

Table 1. Evaluation of mean square error (MSE) loss and area error (AE) for the MTL network
compared to the original “from scratch” CNN method for elliptical defect parameters prediction.

Loss Single-Task Multi-Task

Train MSE 12.56 84.23
Validation MSE 21.66 42.06

Test MSE 98.48 38.54
Train AE 0.259 0.09

Validation AE 0.20 0.64
Test AE 0.23 0.47

For further visualization of the results, we show the scatterplots for the holdout
testing data predictions vs. labels (i.e., true values) for the angle of rotation θ (measured in
degrees), semi-major axis Rx, and semi-minor axis Ry (measured in microns) in Figure 7a,b,c,
respectively. Each point in the scatterplot represents a single testing instance from the test
dataset. In all figures, the results obtained with MTL and single-task networks are indicated
with red and blue circles, respectively. The values of Pearson r and Spearman r correlation
coefficients for predictions of θ, Rx, and Ry with single-task and multi-task networks for
the scatterplots in Figure 7 are listed in Table 2. For reference, a dashed line indicating
prediction = labels is drawn in all figures. As can be seen in Figure 7a and the corresponding
entries in Table 2, there is a substantial improvement in predicting θ by utilizing the
MTL network. The angle θ was poorly predicted by a single-task CNN, while the MTL
network produces a much stronger linear correlation between predictions and labels. From
Figure 7a, the most challenging cases for prediction for the MTL network are those with
θ < 10o and θ > 35o. For smaller angles, MTL overpredicts, while for larger angles, MTL
underpredicts the results. The same pattern of errors angle predictions is observed for the
performance of a single-task network. Results for the predictions of Rx and Ry with multi-
task and single-task networks are shown in scatterplots in Figure 7b,c. Corresponding
values of the Pearson r and Spearman r correlation coefficients in Table 2 indicate that
while the single-task network was able to perform reasonably well in predicting the radii,
the multi-task network provides a further performance improvement. From Figure 7b,c,
performance of the MTL network gradually decreases with increasing length for both
Rx and Ry. The error in MTL for both Rx and Ry is mostly under -prediction of true
values, while for single-task CNN networks the error is mostly over-prediction for Rx and
under-prediction for Ry.

Table 2. Values of Pearson r and Spearman ρ correlation coefficients for predictions of elliptical defect
angle of rotation θ, semi-major axis Rx, and semi-minor axis Ry.

Variable θ Rx Ry

Network Single-Task Multi-Task Single-Task Multi-Task Single-Task Multi-Task

Pearson r −0.34 0.82 0.89 0.96 0.92 0.97
Spearman ρ −0.28 0.8 0.92 0.96 0.93 0.96



Sensors 2023, 23, 8462 12 of 17Sensors 2023, 23, x FOR PEER REVIEW 12 of 18 
 

 

 
(a) 

 
(b) 

Figure 7. Cont.



Sensors 2023, 23, 8462 13 of 17
Sensors 2023, 23, x FOR PEER REVIEW 13 of 18 
 

 

 
(c) 

Figure 7. Scatterplot of all holdout testing data predictions vs. labels (true values), where each point 
represents a single testing instance from the test dataset. Results obtained with multi-task (MTL) 
and single-task (CNN) networks are plotted with red and blue circles, respectively. (a) Angle of 
rotation θ (o); (b) semi-major axis Rx; (c) semi-minor axis Ry (µm). 

3.2. Segmentation of SEM Images 
To evaluate the efficiency of our method in the segmentation of SEM images, we com-

pare the performance of a single-task U-Net model trained “from scratch”, and the MTL 
network that employs the same U-Net encoder. Values of the binary cross entropy (BCE) 
loss and mean intersection-over-union (IoU) for training, validation, and testing data for 
single-task and multi-task networks are summarized in Table 3. While the single-task U-Net 
model performs reasonably well, we observe an improvement in performance for all da-
tasets when using the MTL model. For example, for the holdout testing data, the single-task 
U-Net model attained a mean IoU score of 0.81 and a BCE loss value of 0.31. It should be 
noted that the single-task U-Net model underwent training for 155 epochs before early stop-
ping was implemented, so that the increase in validation IoU score was potentially satu-
rated. For the MTL network processing the holdout data, the IoU score is 0.87 and BCE test-
ing loss is 0.03. These results were obtained after training the MTL for 500 epochs, a com-
paratively longer training duration for a more complex multi-task model than the single-
task model. 

Table 3. Binary cross entropy (BCE) loss and mean intersection-over-union (IoU) for a single-task 
U-Net model, and multi-task learning network that includes U-Net model. 

Dataset Metric Single-Task Multi-Task 
Training  BCE 0.03 0.01 

Validation BCE 0.03 0.02 
Testing BCE 0.31 0.03 

Training IoU 0.88 0.92 
Validation IoU 0.79 0.92 

Figure 7. Scatterplot of all holdout testing data predictions vs. labels (true values), where each point
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3.2. Segmentation of SEM Images

To evaluate the efficiency of our method in the segmentation of SEM images, we
compare the performance of a single-task U-Net model trained “from scratch”, and the
MTL network that employs the same U-Net encoder. Values of the binary cross entropy
(BCE) loss and mean intersection-over-union (IoU) for training, validation, and testing data
for single-task and multi-task networks are summarized in Table 3. While the single-task
U-Net model performs reasonably well, we observe an improvement in performance for
all datasets when using the MTL model. For example, for the holdout testing data, the
single-task U-Net model attained a mean IoU score of 0.81 and a BCE loss value of 0.31.
It should be noted that the single-task U-Net model underwent training for 155 epochs
before early stopping was implemented, so that the increase in validation IoU score was
potentially saturated. For the MTL network processing the holdout data, the IoU score is
0.87 and BCE testing loss is 0.03. These results were obtained after training the MTL for
500 epochs, a comparatively longer training duration for a more complex multi-task model
than the single-task model.

Table 3. Binary cross entropy (BCE) loss and mean intersection-over-union (IoU) for a single-task
U-Net model, and multi-task learning network that includes U-Net model.

Dataset Metric Single-Task Multi-Task

Training BCE 0.03 0.01
Validation BCE 0.03 0.02

Testing BCE 0.31 0.03
Training IoU 0.88 0.92

Validation IoU 0.79 0.92
Testing IoU 0.81 0.87
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Several examples of the segmentation maps are shown in Figure 8. The first column
in Figure 8 shows the original SEM images. The second column shows the visual labels.
The third column shows the segmentation model predictions, with corresponding testing
IoU scores.
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Future work on the segmentation of SEM images could involve more sophisticated la-
beling techniques, such as incorporating self-training semantic segmentation techniques [52].
By leveraging the potential of self-training, the model can iteratively improve its segmenta-
tion performance by utilizing its own predictions as pseudo-labels.

4. Conclusions

The TT is a promising method for non-destructive imaging of subsurface defects in
additively manufactured metals. Because the method is based on heat diffusion, limitations
of TT images include blurring, which increases with depth of the defect inside the metal.
We have been investigating the enhancement of TT imaging capabilities using machine
learning, focusing on CNN-based classification of defects in prior work. In this paper, we
have introduced a novel multi-task learning (MTL) approach to simultaneously perform
the classification of elliptical defects in synthetic TT images, and the segmentation of
SEM images of sections of LPBF-printed SS316 specimens. The results of the MTL model
developed in this paper demonstrate improved performance relative to classification and
segmentation tasks performed independently. The improved performance indicates the
advantages of integrating diverse yet related tasks into a comprehensive framework for
the detection of material defects in images. The MTL methodology demonstrated in this
work is novel, as MTL models are traditionally designed to process similar datasets, while
our methodology applies a unified model to disjoint datasets. While the idea of combining
tasks with disjoint datasets is initially counterintuitive, the similarity between the tasks,
i.e., that both tasks aim to detect defects within images, becomes apparent at the feature
level. The enhanced performance of the MTL model can be attributed to its ability to
leverage shared information and feature representations from both tasks, leading to a
more comprehensive understanding of defect patterns and, consequently, more accurate
classification and segmentation results.

In future work, we plan to extend the MTL model analysis to experimental TT data.
Although the study in this paper was based on synthetic TT images, it should be noted that
recent research approaches to ML of NDE data involve a combined use of experimental,
augmented, and synthetic data. The reason is that, in practice, it is difficult to acquire an
experimental NDE database that exhibits sufficient variance to train an ML model that
achieves high prediction accuracy. Therefore, the results of the present study provide
a valuable benchmark for MTL network performance, which will guide future work on
experimental TT data. Another direction for future research could involve analysis on other
datasets of images of defects in AM metals obtained with high-resolution methods, such
as X-Ray CT, and with different lower-resolution NDE modalities, such as ultrasonic and
Eddy current imaging.
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