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Abstract: For autonomous driving, perception is a primary and essential element that fundamentally
deals with the insight into the ego vehicle’s environment through sensors. Perception is challenging,
wherein it suffers from dynamic objects and continuous environmental changes. The issue grows
worse due to interrupting the quality of perception via adverse weather such as snow, rain, fog,
night light, sand storms, strong daylight, etc. In this work, we have tried to improve camera-based
perception accuracy, such as autonomous-driving-related object detection in adverse weather. We
proposed the improvement of YOLOv8-based object detection in adverse weather through transfer
learning using merged data from various harsh weather datasets. Two prosperous open-source
datasets (ACDC and DAWN) and their merged dataset were used to detect primary objects on the
road in harsh weather. A set of training weights was collected from training on the individual
datasets, their merged versions, and several subsets of those datasets according to their characteristics.
A comparison between the training weights also occurred by evaluating the detection performance
on the datasets mentioned earlier and their subsets. The evaluation revealed that using custom
datasets for training significantly improved the detection performance compared to the YOLOv8
base weights. Furthermore, using more images through the feature-related data merging technique
steadily increased the object detection performance.

Keywords: autonomous driving; harsh weather; object detection; data merging; deep neural
networks; YOLOv8

1. Introduction

Autonomous driving has promised many benefits for society, with the most important
being safe transportation. The rapid development of computing technology and the low-
cost manufacturing of sensors have significantly impacted autonomous driving research.
An autonomous vehicle’s autonomy is divided into six levels based on the level of human
involvement during its operation [1]. It is inescapably reliant on autonomy subsystems
such as perception, localization, behavior prediction, planning, control, etc. Among these,
perception is a vital component of autonomous driving that deals with understanding
the ego vehicle’s environment using sensors. Then, the perception result helps to execute
consequent tasks through this environmental information. Due to dynamic objects and
ongoing environmental changes, perception can be challenging. Moreover, the quality of
perception becomes worse as a result of interruptions in the perception quality caused by
inclement weather such as snow, rain, fog, night light, sand storms, etc. In this instance,
studying weather conditions leads to achieving the weather invariant perception and
creating a research community to address the shortcomings. There are various seasonal
influences on vision and perception everywhere on the earth or, at the very least, varied
day and night circumstances in the periodic cycle. It is common for a sensor to be unable
to identify lane markings, road markings, landmarks, roadside units, traffic signs, and
signals in bad weather. Investigating the potential weather variation for the sensors to
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attain dependable autonomy is inevitable, since environmental awareness for vehicular
operation is crucial.

1.1. Object Detection

Among the typical sensors, a camera is necessary for perceiving cars, people walking
around, and, most importantly, environmental items with colors and signs, such as traffic
lights and their colors, traffic signals, road signs, and instructions for driving. However,
the camera is less likely to function consistently under varying weather circumstances.
Another notable sensor for the contemporary self-driving car is LiDAR (light detection and
ranging), which is growing in popularity due to cost reductions brought on by technological
advancements. However, it is still expensive and susceptible to weather conditions such
as snow or smoke. Conversely, radar (radio detection and ranging) is more dependable,
because it is less affected by bad weather [2]. In addition, consistent perception may
also benefit from an IMU (inertial measurement unit), a GNSS (global navigation satellite
system), and ultrasonic sensors. Fusing some of the above sensors is a popular strategy for
enhancing perception. Sensor fusion is quite helpful in the event of a sensor malfunctioning,
particularly in severe weather. Among notable works, ref. [3] proposed an adverse weather
dataset (DENSE) using various sensors containing a camera, LiDAR, radar, gated NIR
(near-infrared), and FIR (far-infrared) data in fog, snow, and rain conditions to improve
object detection results. Sensor fusion also enhanced detection outcomes in [4,5]. In order
to find lanes in bad weather, ref. [4] used a GPS (global positioning system), LiDAR, and
camera data. Ref. [5] combined complimentary LiDAR and radar data using the multimodal
vehicle detection network (MVDNet). The performances and difficulties of various sensors
in various weather conditions were covered in more detail through a systematic literature
review in [6].

Deep learning approaches are replacing traditional perception tasks, such as object
detection, tracking, etc., with newer, more potent ones as a result of the development of
machine learning and AI (artificial intelligence) technologies. Deep learning frameworks
were utilized by [7] to detect vehicles in foggy conditions. Ref. [7] used an attention
module to better concentrate on prospective information during feature extraction. Ref. [8]
offered the ZUT (Zachodniopomorski Uniwersytet Technologiczny) dataset and employed
well-known YOLOv3 [9] techniques to identify pedestrians in adverse weather conditions,
including rain, fog, frost, etc. There are further examples of the YOLO (you only look once)
approach being used to detect pedestrians. For example, ref. [10] used YOLOv3 (and a
modified version of it) to detect pedestrians in hazy weather, while [11] used the YOLO
method in regular weather after enhancing the YOLOv2 model to YOLO-R for greater
accuracy. Ref. [12] proposed Gaussian-YOLOv3 by reformatting the loss function of the
YOLOv3 and additionally predicting the localization uncertainty of the bounding box
during object detection. After applying these techniques, the detection results improved
by increasing the true positives and reducing the false positives. Ref. [13] used simulated
datasets derived from computer simulators to discuss the impact of different weather
conditions on sensor data and its impact on obstacle detection.

Both traditional computer vision techniques and deep-learning-based frameworks are
highly helpful in improving camera-based perception based on images or videos. Image
enhancement, restoration, and dehazing are among the methods that may be used for
images or videos to boost vision quality, and they are particularly helpful for enhancing
object detection. Ref. [14] proposed the dual subnet network (DSNet) trained in an end-to-
end manner and jointly learned three tasks—visibility enhancement, object classification,
and object localization—to execute object detection. Ref. [15] proposed an adaptive image
enhancement model called the DENet, which was trained using a neural network in an
end-to-end manner and added with the YOLOv3 method to obtain DE-YOLO, which
improved the detection result compared to the YOLOv3 method. Ref. [16] trained the
DriveRetinex in an end-to-end manner containing two subnets, namely, Decom-Net and
Enhance-Net, for decomposing a color image into a reflectance map and an illumination
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map; they then enhanced the light level in the illumination map. The image-enhancing
network improved the object detection results trained on the Low-Light Drive (LOL-
Drive) dataset collected by the authors. The image adaptive YOLO (IA-YOLO), which
combines the YOLOv3 and parameter-predicted convolutional neural network known
as CNN-PP, is another image-enhancing method covered in [17]. The IA-YOLO was
trained end-to-end and improved the detection performance in foggy weather and low-
light scenarios. By dehazing the scene and training a neural network according to their
respective settings, refs. [18,19] worked on improving detection performance in hazy
weather. Ref. [18] trained ReViewNet using a hybrid weighted loss function and looked
twice over the hazy images to optimize the dehazing algorithm. The dehazing algorithm
was used in [19] by training the BAD-Net in an end-to-end manner that connected the
dehazing module and the detection module. The work also discussed the effects of image
restoration results and did not use the image restoration results during the training of
the networks. According to [20], as demonstrated by [17], the standard image restoration
procedure was ineffective in enhancing the detection outcomes. However, the authors
improved the detection performance using image restoration in cloudy and hazy conditions
by concentrating on pertinent adversarial attacks [20].

The performance of deep learning frameworks may now be easily improved by
increasing the volume of datasets through the arrival of new machines with increased
processing power and better storage capacity. The problem of data shortage could be
solved by image augmentation, data association, etc., as every neural network method
relies on vast amounts of data. These data-growing strategies are becoming more popular
for addressing issues such as poor detection performance. Ref. [21] presents an overall
survey on vehicle perception and asserts that the corresponding research community still
needs to improve vehicular perception, such as object detection in poor weather, and data
fusion could solve this problem. Ref. [22] used dataset construction based on the GANs
(generative adversarial networks) and cycleGANs architectures that helped to create seven
versions of different weather conditions of a single dataset, and they created another seven
versions of an augmented dataset from that single dataset. These datasets were produced
using applicable computer techniques, such as adding fictitious droplets. The approach
solved the difficulty of collecting data from the real world. It helped to learn different
weather features from versions proposed in the datasets, thus improving detection results
in various weather conditions. Ref. [23] also included artificial droplets to examine the
performance in low-light weather augmentation for several racing car track conditions
using real-world and simulator data. The detection performance was tested on various
weather images containing late afternoon, sunset, dusk, night, and some different sizes
of droplets. However, instead of visual accuracy, the effort mainly concentrated on the
real-time performance of the perception subsystem.

Thus far, the discussions above show that several efforts have been made to enhance
object detection through various methodologies. Growing data volume through various
processes, such as image augmentation, artificial data creation, etc., is one of the more
effective methods among them. Recent research on existing autonomous driving datasets
and their covered weather aspects for perception was presented in a part of the survey
in [2]. According to Table 6 proposed in [2], there are still a few research gaps, such as
combining all the different types of harsh weather. As an illustration, consider integrating
the three types of weather—snow, night light, and strong daylight—into a single dataset.
Following the abovementioned article, our research aims to combine most weather features
and analyze how feature combinations from different datasets affect object detection. Previ-
ously, in addition to the usual weather, several datasets proposed weather circumstances
such as snow, rain, night light, fog, haze, smog, sand storms, clouds, overcast, etc. The
work plan recommends integrating datasets from several sources containing various mete-
orological variables to detect autonomous-vehicle-related objects in a weather-consistent
manner. This study will aid in determining the effects of feature accumulation from various
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datasets, diverse geographical regions, and meteorological circumstances using multiple
data sources.

1.2. Relevant Datasets

Deep learning has recently performed outstandingly well in various visual tasks,
including scene perception, object identification, object tracking, image segmentation,
3D geometry estimation, and plenty more activities that apply to autonomous vehicles.
One of the best examples (pioneering work) of a deep neural network and dataset pro-
posed for visual identification is ImageNet [24]. Similarly, various other datasets have
been suggested over the last decade to enhance visual recognition results. Suppose we
concentrate more intently on the usefulness of comparable type datasets in autonomous
driving. In that case, the KITTI [25], Microsoft COCO [26], and Cityscapes [27] datasets
have significantly contributed to modifying the usefulness of visual perception in the
field of autonomous vehicles. Daimler Arban Segmentation [28], Leuven [29], TUDBrus-
sels [30], ETH [31], INRIA [32], Daimler-DB [33], NICTA [34], CVC [35], Daimler-CB [36],
Caltech [37], Camvid [38], and many more notable datasets have contributed to the diver-
sity and quantity of resources. These datasets were gathered from the real world (or created
artificially) and were utilized for various tasks, including semantic segmentation, object
detection, pedestrian detection, pedestrian classification, etc.

This study focuses on particular datasets with various meteorological characteristics
to achieve robust perception in severe weather. Fog, rain, night, snow, and sand storms are
the primary elements of harsh weather. These elements also comprise subcomponents such
as haze, mist, smog, reflected night light, rainy nights, dust tornados, rain storms, sand
storms, overcast weather, clouds, shadows, etc. Some datasets attempted to include various
meteorological qualities but could only independently include a few distinct weather
features. Therefore, we cannot accept that those datasets are perfect for perceptions that
are unaffected by any weather, nor are they generally accepted to be ubiquitously helpful
for every kind of inclement weather. As a result, we selected a few valuable open datasets
based on their features, utility, and weather characteristics to merge them to cover all
features and create a useful repository that would eliminate any gaps in environmental
characteristics. Moreover, we know that deep learning methods, i.e., neural networks, are
extremely data-hungry; thus, the fusion of different datasets could be useful for learning
useful features globally. There are numerous datasets for adverse weather, including
Foggy Cityscape [39], LIBRE [40], CADCD [41], nuScenes [42], D2-City [43], DDD17 [44],
Argoverse [45], Waymo Open [46], Snowy Driving [47], 4Seasons [48], Raincouver [49],
WildDash [50], KAIST multispectral [51], EU [52], Radiate [53], etc. These datasets mostly
consist of camera images from the real world (some also include GNSS, radar, LiDAR, and
IMU data), thus considering various meteorological conditions from the real location. On
the other hand, ALSD [54] and SYNTHIA [55] provide artificial images from simulated
environments created by computers, including certain adverse weather conditions. Despite
the enormous advancement in the autonomous driving data sector, we have selected a few
specific datasets based on availability, features, geographical variety, and combinations
of more useful weather characteristics. The online datasets discussed below (in the next
paragraph) were gathered to conduct our current study. The data was gathered under the
resources’ official data collection policies, and researchers were registered on their websites
to request formal permission (if necessary) to utilize the resources’ data in future studies.

Since the camera is the most important sensor for environmental scene perception,
particularly for traffic sign recognition, object identification, and object localization, our
focus for this work has been on camera images. On the other hand, weather can also
significantly affect LiDAR, but LiDAR data is out of the scope of this study. Radar and
IMU can still be added as extra sensors, although doing so is optional, since inclement
weather barely affects them. Among the image datasets, the Breakly Deep Drive (BDD) [56]
could be a useful resource for performing the main contribution to the data merging
for this work. The BDD dataset includes one hundred thousand camera images from
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driving footage from different American cities, including New York, Berkeley, and San
Francisco. In addition to images of the usual weather, there are images of fog, rain, snow,
clouds, overcast weather, and night light. Though the dataset is rich in terms of the
number of images, it contains fewer images according to harsh weather features. Only
23 fog images, 213 rain images, 765 snow images, and 345 night images are useful to
contribute to learning the weather features [57]. Therefore, a manual search was required
to elicit those useful images from the huge dataset, which might not be feasible, and it
is better to focus on a different useful dataset containing more harsh weather images
and feature diversity compared to natural weather conditions. A few other datasets
also suffer from similar problems or associated shortcomings, which are summarized
in Table 1. Therefore, we want to choose some perfect datasets with fewer images but
more intensive features from a weather characteristics standpoint; then, we could extend
our study later with more normal weather images. In such a manner, the “Adverse
Condition Dataset with Correspondance” dataset [57], also known as the “ACDC dataset”
(https://acdc.vision.ee.ethz.ch/ (accessed on 10 October 2023)), has 4006 camera images
from Zurich (Switzerland) recorded in four weather conditions: rain, fog, snow, and night.
The ACDC has all photos with one of any of the weather features and 4006 images that are
evenly distributed for each weather characteristic, which was very useful despite having a
much smaller number of images than the BDD or Eurocity datasets. Therefore, from the
perspective of usefulness, this dataset was more prosperous than the other dataset described
previously. The 19 classes provided by Cityscape [27] were annotated on the ACDC dataset
using pixel-level semantic segmentation and a trustworthy ground truth. This paper
tested multiple existing neural networks and compared their performance outcomes on the
dataset. The “Vehicle Detection in Adverse Weather Nature” dataset [58], also known as
the “DAWN dataset” (https://data.mendeley.com/datasets/766ygrbt8y/3 (accessed on
10 October 2023)), which only contains 1027 photos gathered from web searches on Google
and Bing, was another highly relevant dataset. However, it was selected for its extremely
harsh weather qualities, which can serve as a real-world example for training and testing
under adverse conditions. It also includes several sand storm images that offer distinctive
aspects compared to the other datasets mentioned earlier. Seven thousand eight hundred
forty-five bounding boxes for vehicles, buses, trucks, motorcycles, bicycles, pedestrians,
and riders were labeled in the DAWN dataset and annotated by the LabelMe tool. The
ACDC and DAWN datasets’ primary distinguishing feature includes having every image
in adverse weather. Therefore, based on the above discussion, the criteria for choosing the
datasets are clear now. However, we can collect them by manually selecting the relevant
images from the abovementioned datasets, which might be time-consuming but relevant to
extend this work further. However, we discovered that the ACDC and DAWN datasets
were the most helpful for our analysis.

Table 1. Usefulness and shortcomings of some relevant datasets.

Datasets BDD [56] Eurocity [59] Mapillary [60] P.F.B. [61] ApolloScape [62] GLARE [63]

No. of images 100,000 47,300 25,000 254,064 143,906 2157

Pros

Huge number
of images

collected from
various cities of

USA.

Gathered from
31 cities across
12 European

countries.

The most
diverse dataset

in the
geographical

context.

Huge number
of images.

Contains sun
glare images.

Contains sun
glare images.

Cons

Lower number
of harsh
weather
images.

Mainly focused
on pedestrian

detection.

Lower number
of harsh
weather
images.

Lower number
of harsh

weather images
(artificial).

Lower number
of harsh
weather
images.

For traffic sign
detection only.

https://acdc.vision.ee.ethz.ch/
https://data.mendeley.com/datasets/766ygrbt8y/3
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1.3. Current Study

From the explanation above, we have concluded that the dataset and its components
are numerous. Nevertheless, every dataset was annotated according to their requirements
and failed to cover all of the aspects of weather conditions from a unique study. Therefore,
choosing a few helpful images and merging them to cover all of the weather features in a
single dataset for feeding into a neural network was an acquisitive aim. Additionally, we
combined the ACDC and DAWN datasets (some example images are presented in Figure 1),
which practically cover all adverse conditions, excluding direct sunshine, i.e., sun glare.
Still, the unique and accurate annotation for the combined dataset was the biggest hurdle
for this work. It was unable to combine the labeling, since the various datasets utilize
various methods to annotate their datasets. The goal was to develop a quick and efficient
approach for annotating the combined data as per the needs of object detection. Before that,
knowing each dataset’s labeling procedure and strength for network training was useful
for subsequent research.

Since this investigation was limited to 2D object detection through image data from
camera sensors, the primary proposition of this work was to use the YOLO as an object
detection method. As discussed above, a few researchers have used the YOLO method for
object detection in autonomous driving. Some have tried to modify the method to boost
performance (e.g., IA-YOLO, YOLO-R, DE-YOLO, Gaussian-YOLOv3, etc.). Refs. [64,65]
discussed the network architectures, challenges, advantages, applications, and many more
for different versions of the YOLO method. Recently, ref. [66] published the most updated
information about the YOLO algorithm and discussed all the YOLO version releases until
the most recent version (YOLOv8, [67]). Previously, ref. [68] performed work on object
detection in bad weather for autonomous driving, but the work has several limitations.
Ref. [68] suggested training a custom model using the YOLOv5 to detect objects in adverse
weather. Just one model was trained in 18 min and 12 s using 239 images downloaded
from the Roboflow website, and it reached an accuracy of about 25%. Comparatively, our
work proposed assessing the feature merging between two datasets to open up additional
prospects for combining more datasets, and, in some cases, we achieved a more than 90%
accuracy utilizing the YOLOv8.

(a)

Figure 1. Cont.
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(b)

Figure 1. Example images from the ACDC and DAWN datasets. (a) Fog, night, rain, and snow
images from the ACDC dataset (columnwise, respectively). (b) Fog, rain, sand, and snow images
from the DAWN dataset (columnwise, respectively).

The following list of contributions (stated below) have been made by this work (ours)
in its entirety: a review of the literature and discussion of various object detection techniques
related to autonomous vehicles; the selection of specific datasets from a small number
of relevant datasets; and the study’s overall plan, as stated in Section 1. Data collection,
annotation, merging, training, and evaluation approaches are covered in the part of the
methodology discussed in Section 2. A comprehensive analysis of the experiments and
findings are provided in Section 3. Section 4 discussed the study’s limitations and areas for
future expansion. Section 5 concludes the work by summarizing the work and providing
recommendations for future researchers.

2. Methodology

The procedures indicated in the next subsection were used to carry out the experiment
for this investigation. Following the discussion of the selection process for all relevant
datasets, the collection of datasets and the process for data annotation are now briefly
covered in the first subsection. Then, a description of data processing and data merging
follows. Finally, the training, validating, and testing approaches are discussed with their
associated evaluation criteria.

2.1. Data Collection and Annotation

The two datasets used for this study’s primary contribution were open-sourced and
widely accessible. The DAWN dataset was primarily used for object detection in harsh
weather and was annotated for six classes (car, bus, truck, motorcycle, bicycle, and person).
The ACDC dataset was proposed for driving scene understanding in harsh weather through
image segmentation. The ACDC dataset has been widely used for domain adaptation,
such as a study of the change in the data domain. These datasets were available online,
along with their corresponding annotations. However, a special labeling procedure was
needed to combine them. The labels on the DAWN dataset are incompatible with the
most recent versions of YOLO, even though they were created for the YOLOv3 based
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on Darknet architecture. The DAWN dataset, for instance, used the LabelMe tool to
annotate the images, thus classifying people as label 1, bicycles as label 2, cars as label 3,
and so on. Contrarily, the most recent versions of the YOLO, which were trained on the
COCO dataset [26], assigns 0 to people, 1 to bicycles, 2 to cars, etc. Since transfer learning
was intended to be used in this study’s custom data training, a completely new labeling
order assignment is acceptable during the transfer learning. However, we followed a
universal labeling process similar to the COCO dataset that is compatible with any version
of YOLO trained on the COCO dataset. We planned to detect the first ten objects and
keep their corresponding labels as have been defined in the COCO dataset to make unique
annotations for all of the datasets we intended to merge. Namely, the annotation was
defined as follows: 0—person, 1—bicycle, 2—car, 3—motorcycle, 4—airplane, 5—bus,
6—train, 7—truck, 8—boat, and 9—traffic light. Though we do not expect to detect a boat
or airplane while driving on the road, we kept them as rare objects and focused more on
detecting objects such as vehicles, pedestrians, traffic lights, etc. Thus, performing a new
annotation was required for all images. After new labeling, the annotation is compatible
with the YOLO method to use their weights as well. This study contributed to annotating
both datasets to detect primary objects (the first ten objects from the COCO dataset) in harsh
weather for autonomous driving. Interestingly, before this annotation, according to our
knowledge, the ACDC dataset had never been labeled for object detection. The reputable
data annotation website makesense.ai (https://www.makesense.ai (accessed on 10 October
2023)) assisted with the manual data annotation for this work. For the YOLO method
(version 8), the makesense.ai generated labels in text format, and for the PASCAL VOC
annotation (http://host.robots.ox.ac.uk/pascal/VOC/ (accessed on 10 October 2023)),
labels were in HTML (hypertext markup language) format. The annotation method, which
took an average of five minutes per image, attempted to incorporate all pertinent objects
regardless of size and proximity to the camera. A few photos from the ACDC dataset
(comparatively fewer from the DAWN) were deleted from the dataset, since they did not
contain any targeted objects for detection.

2.2. Data Processing and Merging

After labeling all the pertinent images from two datasets, data processing was crucial
in this work before training. The datasets were prepared in different versions for training,
validating, and testing by the YOLOv8 algorithm. The YOLOv8 takes two different versions
of image size as input for training, i.e., 640 × 640 and 1280 × 1280. Since the YOLO
algorithm does not contain any image processing or augmentation process, all the image
processing, including data resizing and augmentation, was performed with the help of
the Roboflow website (https://roboflow.com (accessed on 10 October 2023)), which is
recommended for the YOLOv8 method. The Roboflow website was useful for conducting
image resizing and augmentation tasks containing horizontal flips, vertical flips, cropping,
grayscales, brightness, blurring, rotations, shears, hues, saturation, exposure, noise, cutouts,
mosaics, and more. The Roboflow website was also helpful in separating all images into
training, validation, and testing images of 70, 20, and 10 percent ratios, respectively. Before
merging the datasets, it was crucial to split them into the train, validation, and test sets,
because failing to do so may result in a new combination of segregated images, thereby
contaminating the evaluation dataset (test and validation images). The many combinations
of relevant data augmentation techniques (crop, blur, etc.) were carried out and handled
as multiple enhanced dataset versions. Through the training process, these versions
assisted in evaluating the effectiveness of those versions’ findings for object detection.
The relevant data augmentation mentioned here conveys that, for example, a vertical
flip is not useful to this study. Nine versions of resized (640 × 640) image-augmented
datasets were arranged for training. Then, the best-augmented version was chosen by the
validation result during the training and selected as the final version of the augmented
images used here. Additionally, the same augmentation settings also followed for the
1280 × 1280 image-sized version. Different resized versions of the same image were used

https://www.makesense.ai
http://host.robots.ox.ac.uk/pascal/VOC/
https://roboflow.com
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because they allowed for faster training, and, occasionally, the training results revealed
accuracy that was even better than the original version. Therefore, in this study, training
results were presented for different versions of the processed image as follows. Here,
version one contains the original dataset without augmentation or resizing, version two
presents the image-augmented datasets resized by 640 × 640, version three contains the
original datasets (nonaugmented) resized by 640 × 640, version four presents the original
datasets resized by 1280 × 1280, and version five contains augmented datasets resized
by 1280 × 1280. The five versions of the ‘MERGED’ dataset were created by merging
the corresponding training, validation, and testing images from these five versions of
the DAWN and ACDC datasets. According to their particular meteorological features,
several merging outcomes also occurred between the DAWN and ACDC dataset subgroups.
The validation and testing images were the same across the same-sized augmented or
nonaugmented data versions, since the data augmentation was only performed on the
training images. For a more thorough depiction, see Table 2.

Table 2. Explanation of training, validation, and testing data versions.

Weights Trained on Weights Evaluated on

Weight Trained
on Version No. Input Images Base Weights Size of Images

during Training

Approximate
Training Time

for the MERGED
Dataset

(32 Epochs)

Size of
Validation

Images

Size of Test
Images

V1 Raw images yolov8x.pt 640 × 640 4 h Raw images Raw images

V2 640 × 640
(augmented) yolov8l.pt 640 × 640 5 h 640 × 640 640 × 640

V3 640 × 640 yolov8l.pt 640 × 640 2 h 640 × 640 640 × 640

V4 1280 × 1280 yolov8x.pt 640 × 640 3.5 h 1280 × 1280 1280 × 1280

V5 1280 × 1280
(augmented) yolov8x.pt 640 × 640 4.5 h for

16 epochs 1280 × 1280 1280 × 1280

2.3. Training and Evaluation

We employed Python programming based on the Google Colab service for training
and result evaluation through validation and testing. Until this study was done, the latest
version of the YOLO was the YOLOv8. This deep-learning-based neural network model is
faster and gains better accuracy compared to previous versions in object detection. This
study used the YOLOv8 algorithm and its pretrained weights as a backbone for training on
custom data through transfer learning (https://www.analyticsvidhya.com/blog/2023/02/
how-to-train-a-custom-dataset-with-yolov5/ (accessed on 10 October 2023)). As with other
YOLO versions, six key attributes are responsible for object detection with a bounding box.
The key attributes are the x and y coordinates of the top left corner of the bounding box,
the width and height of the bounding box, a confidence score with a probability between
zero and one, and a class ID. From the performance perspective, the YOLOv8 was already
a perfect algorithm for object detection, and this work helped improve detection accuracy
in harsh weather. The YOLOv8 GitHub repository [67] assisted in setting up training on
custom data and other associated works (saving the training model, accuracy checking,
etc.). Six versions of pretrained weights could be used as a base for transfer learning during
training for custom data. The base weights were ‘yolov8n.pt’ for nanoobjects detection,
‘yolov8s.pt’ for small objects, and so on for medium and large objects, as well as ‘yolov8x.pt’
for extra large objects. Accuracy gained by training on these various base weights was also
considered to help choose the best weight for further training.

Since all the images did not contain objects, they were removed from the respective
folders of both datasets. The ACDC dataset was divided into 2715 training images, 770 val-
idation images, and 383 testing images. Thus, only 3868 images were used among the
4006 images proposed by the original datasets. The DAWN dataset was divided into

https://www.analyticsvidhya.com/blog/2023/02/how-to-train-a-custom-dataset-with-yolov5/
https://www.analyticsvidhya.com/blog/2023/02/how-to-train-a-custom-dataset-with-yolov5/
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700 training images, 203 validation images, and 100 testing images. During the accuracy
evaluation, it is important to remember that the same number of images and the same
images inside the validation and test sets should be present to evaluate and compare the
results. Table 3 presents more details about the image distribution.

Table 3. Image distribution.

DAWN ACDC MERGED

Weather Train Valid Test Total Train Valid Test Total Train Valid Test Total

Sand 223 63 33 319 0 0 0 0 223 63 33 319

Fog 193 59 27 279 638 179 88 905 831 238 115 1184

Rain 142 40 19 201 698 198 98 994 840 238 117 1195

Snow 142 41 21 204 700 200 100 1000 842 241 121 1204

Night 0 0 0 0 679 193 97 969 679 193 97 969

Total 700 203 100 1003 2715 770 383 3868 3415 973 483 4871

Every different version of the dataset was trained for 32 epochs (except V5) and resized
to 640 × 640 during training without depending on their input data dimension. All other
hyperparameters were kept at their default values for the YOLOv8 method. The training
performance was evaluated on corresponding validation data after finishing the training
process (result displayed after every training). These results helped us to understand
the performance of the merged and associated data versions. Then, the training weights
were saved, and the performance was evaluated on test sets. Thus, the weights were
first performed on the corresponding validation data during training and then tested on
the corresponding test set. Then, the saved weights were also performed on the test and
validation sets of other data versions. The detailed workflow is shown in Figure 2.

Figure 2. Object detection model using the YOLOv8 algorithm.
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3. Experiments, Results, and Discussion

All of the experiments were conducted in this work using Python under the scope
of the Google Colab. The YOLOv8 algorithm helped to perform training using transfer
learning on top of its base weights and custom dataset. The ACDC and DAWN datasets,
as well as their merged dataset known as MERGED, were used as the custom datasets.
After training, the saved weights of the different versions of training datasets were used to
evaluate the performance using the various versions of the validation and test sets. The
object detection results were evaluated using the mAP (mean average precision) in two
different outcomes (mAP50 and mAP50-95) that were predefined by the YOLOv8 algorithm.
The IoU (intersection over union) was measured as the bounding box overlap between the
ground truth and predicted bounding box, and the mAP50 considered the corresponding
detection as true positive where the IoU was greater than 0.5. Similarly, mAP50-95 used all
different thresholds between 0.5 and 0.95 using step 0.05. This work usually used mPA50
for presenting results and rarely mAP50-95, which was only used where it was mentioned.
The sequence of experiments was arranged first to choose the best base weight for training.
The YOLO algorithm does not contain any image augmentation technique and assigns
the augmentation part to a third party such as Roboflow. We used Roboflow to generate
different augmented versions of the datasets; then, we chose the best image augmentation
version based on their validation results during training. In the next step, we evaluated
the training performance on the ACDC and DAWN datasets separately. We then used
their merged dataset to train and evaluate the performance of the merged data and two
base datasets.

The training process of the YOLOv8 can take any version of images independent of
size, but it converts the training images into 640 × 640 or 1280 × 1280 pixels before feeding
them into the training network. However, resizing them earlier before feeding them into
the network is useful to save training time. As mentioned before, this work studied five
versions: raw images (without resizing), two resized versions (1280 × 1280 and 640 × 640),
and their augmented versions—which were named Raw, 1280, 640, augmented 1280, and
augmented 640 (see Table 2). All five versions were used as inputs but were resized to
640 × 640 during training. We intended to train on the 1280 × 1280 version in addition
to the smaller version, but the Google Colaboratory failed to manage the bigger version
of the images during training due to GPU power limitations. Thus, there is a research
gap in using a powerful computer to train the dataset with an image size of 1280 during
training, in addition to inputs of the same size. Nevertheless, we used the five versions
as inputs, despite being resized to 640 by the algorithm during training, to compare their
performance outcomes and their training times.

3.1. Choosing the Best Weights and Augmentation

Figure 3 shows the object detection (mAP score) performance of YOLOv8’s existing
weights on the validation and test sets of the MERGED images. The weights from number
one to five (along the x axis) refer to the base weights for detecting nano (yolov8n.pt), small
(yolov8s.pt), medium (yolov8m.pt), large (yolov8l.pt), and extra-large (yolov8x.pt) objects,
respectively. The three versions of the MERGED dataset (raw and two resized versions,
since the test and validation images were the same for the augmented and nonaugmented
data) are presented to evaluate the detection performance of the based weights on the
MERGED dataset. From the figure, it is clear that the extra-large weight performed the
best object detection result on any version of images without depending on image sizes.
The large and medium weights also performed well compared to the nano and small
versions of the YOLOv8’s weight. It is worth mentioning that all of the weights performed
below 0.6 at the mAP50 score. Figure 3 helped us choose the best base weight to train
the custom datasets further via transfer learning. According to the result, we chose the
extra-large weight (yolov8x.pt) as the base for the raw images, 1280 × 1280-sized images,
and their augmented versions. Contrarily, the large weight (yolov8l.pt) was used for the
640 × 640-sized images and their augmented version as input images.
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(a) (b)

Figure 3. Performance of YOLOv8’s default weights on valid and test images of the ‘MERGED’
dataset. (a) Performance on the validation images. (b) Performance on the test images.

Figure 4 presents the performance outcomes of the object detection on the validation
set of the ACDC dataset by different versions of image augmentation of the ACDC dataset.
First, nine different sets of augmented images were arranged from the ACDC train im-
ages and trained to evaluate the performance outcomes of the corresponding augmented
versions on the ACDC validation images. Since the results are almost similar for all of
the versions, we have briefly mentioned the corresponding augmentation properties used
by each version in Table 4. Notably, version zero, denoted as A0, was defined as hav-
ing no augmentation at all. On the other hand, version A7 contained all of the types of
augmentation together, which used horizontal flips, cropping (0 to 20% zoom), rotations
(−15 to 15 degrees), shears (up to 15 degrees in both horizontal and vertical directions),
and all of the following by up to 25% (grayscale, hue, saturation, exposure, blurring, and
brightness (both darkening and brightening)). Thus, having all of the augmentation to-
gether was not useful for better performance; even version A0 (without augmentation)
performed better than any augmentation for the ACDC dataset. After examining the per-
formance outcomes of various image augmentations, we decided to use version A8 as the
augmented version for the other datasets, where horizontal flips and cropping were used
as the augmentation tools.

Figure 4. Detection performance outcomes of different versions of image augmentation.
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Table 4. Used properties of augmentation in this study. “All*” mentioned here incorporates all
types of augmentation explained (with their properties) in the corresponding section. “No*” conveys
no augmentation.

Versions A0 A1 A2 A3 A4 A5 A6 A7 A8

Types of
Augmentation No* Flip, Crop,

Rotation

Flip, Crop,
Rotation,

Shear, Blur

Flip, Crop,
Rotation,
Grayscale

Flip, Crop,
Rotation, Hue,

Saturation

Flip, Crop,
Rotation,
Exposure,
Brightness

Flip, Crop,
Rotation, Hue,

Brightness
All* Flip,

Crop

3.2. Evaluation of Weights Training on the DAWN, ACDC, and MERGED Datasets

Figure 5 displays the detection performance outcomes of the training weights of five
different versions: the Figure 5a DAWN, Figure 5b ACDC, and Figure 5c MERGED datasets
on two different sizes of test images of the corresponding dataset; Figure 5d presents all
three results together. Version zero (black) mentioned here displays the performance of the
YOLO algorithm’s base weights. The other nodes presented were trained on raw images
(the original dataset as version one) in blue, augmented 640 (version two) in green, not
augmented 640 (version three) in magenta, not augmented 1280 (version four) in cyan, and
augmented 1280 (version five) in red.

From all of the first three Figure 5a–c, it is clear that training on the corresponding
dataset improved the results of detection compared to the base weights of the YOLOv8
method. Even training on the resized images performed well compared to the raw images.
Since the algorithm resized the training images into 640 × 640 in size during the training,
independent of input sizes, the effects of different sizes of input images were almost the
same for both small and large versions, even for augmented and nonaugmented versions,
but they were exceptionally better than training on raw images. The bigger images as a
test set (1280, presented in navy and solid lines) performed slightly better than the smaller
images (640, presented in orange and dashed lines) during testing. Therefore, based on
this result, we chose the best size (1280 × 1280) for evaluating valid and test images. Since
the weights were produced using resized images during training, it is preferable to resize
images before utilizing them for evaluation and subsequent use, because different datasets
may contain images of different sizes.

Finally, Figure 5d shows all three of the results together for comparing the training
performance outcomes of the mentioned weights on the corresponding dataset. The
training on the ACDC dataset was better at detecting objects in its test images than the
DAWN dataset. This figure also helped us to identify the accuracy elevation by training
on custom data, which was uplifted to near 0.8 from below 0.6. The MERGED dataset
contains more images than the ACDC dataset, and the ACDC contains more images than the
DAWN. We can conclude that the number of feature-related (images containing objects we
intend to detect) unique images in the training data was the reason for better performance
when the merged data performed better on every subset, which we found later in the
following results.
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(a) (b)

(c) (d)

Figure 5. Performance of training weights using the DAWN, ACDC, and MERGED datasets on their
corresponding test images. (a) DAWN. (b) ACDC. (c) MERGED. (d) All together.

3.3. Effects of the MERGED Dataset on the DAWN and ACDC Dataset

Figure 6 shows the elevation in the detection performance after merging the two datasets
compared to the corresponding single dataset on the test set of the single dataset. The result is
the mAP50 score of the different versions of training weights collected from the different ver-
sions of the MERGED dataset and compared to the training weights of the individual dataset.
Both weights were performed on the test images of the individual datasets. First, Figure 6a
compares the results trained on the DAWN (dashed line) with the merged dataset (MERGED)
(solid line) over the DAWN test images. Similarly, Figure 6b presents the comparison between
the training weights of the ADCD dataset (dashed line) and the MERGED dataset (solid line)
over the ACDC test images. Since the ACDC dataset contains approximately four times more
images, the results of the DAWN dataset benefited more from the merged dataset in their
detection results. As shown in Figure 6b, the performance outcomes of the weights were
almost similar except for the version five input, so adding the DAWN dataset had less of an
affect on improving the detection of the ACDC images. However, Figure 6a shows a signifi-
cant elevation in performance after adding the ACDC dataset compared to only the DAWN
dataset. Therefore, adding more images or merging more datasets could improve detection
results further. Additionally, as shown in Figure 6a, the training on the raw dataset (version
one) showed an impressive result: merging different datasets of various sizes could harm
training results. Additionally, pre-resized inputs improved the results for both the datasets
and their merged versions. However, resizing them before training also saved training time
compared to the non-resized version (Table 2).
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(a) DAWN (b) ACDC

Figure 6. Performance of training on the MERGED dataset, (a) the DAWN dataset on DAWN test
images, and (b) the ACDC dataset on ACDC test images.

Figure 7 presents the precision–recall (PR) curves using the training weights of all
of the merged images (MERGED) (in Figure 7g,h), which were trained on the individual
DAWN and ACDC (in Figure 7e,f), only merged between the fog images of the ACDC and
DAWN (in Figure 7c,d), and trained on the corresponding fog images of the DAWN in
Figure 7a and the ACDC in Figure 7b. The PR curves were evaluated only on the fog test
images, where the left column presents the PR curves of the DAWN dataset, and the right
column presents those of the ACDC dataset. From the left column, Figure 7a presents the
mAP50 score of 0.672 evaluated on the DAWN fog test data using weight training on the
DAWN fog data. In Figure 7c, the detection result improved for the weight training on the
merged fog (merged between both the ACDC fog and DAWN fog) by up to 0.724; finally,
the detection results improved to 0.75 for the weight training on the MERGED training
images (in Figure 7g). However, the detection result performed by weight training on the
DAWN dataset scored 0.704 (in Figure 7e), which is comparatively lower, but this case is
rare and is still congruent with the relative results. Nevertheless, in the right column, the
detection performed by training on the ACDC fog images gained a mAP50 score of 0.742
on the ACDC fog test images (in Figure 7b), which was improved to 0.815 for the weight
training on the merged fog images (in Figure 7d). The results further improved to 0.884 for
the weight training on the ACDC dataset (in Figure 7f) and boosted to a mAP50 score of
0.91 for the weight training on all of the merged (MERGED) training images (in Figure 7h).
Therefore, object detection results in fog significantly improved by adding more images
(feature-related) from different datasets and weather conditions.

Similarly, we have two more common weather features between the ACDC and DAWN
datasets, such as rain and snow. Additionally, this included two individual weather features
such as sand images for the DAWN and night images for the ACDC dataset only. We are
skipping the discussion part of PR curves for those weather conditions to avoid redundancy.
Instead, we have used Figure 8 to compare the mAP50 scores of the different weather and
data versions. The results show a comparison between training weights’ detection scores
on test images of individual weather characteristics separated into two parts for the DAWN
and ACDC datasets. Each weather characteristic of the ACDC graph shows a comparison
between the detection performance of the corresponding base weights and the performance
outcomes trained on the “ACDC weather”, “merged weather”, “ACDC”, and “MERGED”
data (in Figure 8b). The results are shown in a similar way for the DAWN dataset as well
(in Figure 8a). Weight training on the MERGED dataset mentioned here implicates training
on all of the merged training images. In contrast, “merged weather” means merging only
the corresponding weather conditions between the two datasets. Similarly, the “DAWN
weather” or “ACDC weather” mean “DAWN fog”, “ACDC rain”, etc., depending on the
corresponding weather labels presented through the x axis.



Sensors 2023, 23, 8471 16 of 29

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Precision–recall (PR) curves of various training weights on the fog test data. (a) “DAWN fog”
on “DAWN fog” test data. (b) “ACDC fog” on “ACDC fog” test data. (c) “merged fog” on “DAWN
fog” test data. (d) “merged fog” on “ACDC fog” test data. (e) “DAWN” on “DAWN fog” test data.
(f) “ACDC” on “ACDC fog” test data. (g) “MERGED” on “DAWN fog” test data. (h) “MERGED” on
“ACDC fog” test data.
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(a) (b)

Figure 8. Gradual improvement of the object detection results by incorporating more images through
the feature-related data merging technique. (a) DAWN. (b) ACDC.

The bar graphs (Figure 8) depict a common pattern of improving detection scores by
adding more feature-related images. A steady increase in the detection score was clearly
revealed for every trained weight compared to the base result (shown in blue). The results
shown in purple represent the weights training on particular weather conditions from the
corresponding dataset, which improved in performance compared to the base weights and,
in some cases, performed better than the merged weather (shown in green). The weights
trained on the merged weather are missing for both the sand and night images due to the
fact that they are not present in both datasets together. Though they (green bar) improved
the results for the fog images compared to the individual weather conditions, they did
not perform well for the rain and snow images. These are examples of a few exceptions
in this study, which will be investigated later through the limitation part (Section 4). The
weights trained on the ACDC and DAWN datasets are depicted by cyan bars to show the
improvement in detection compared to the weights trained on the data subsets (merged
or individual weather conditions) discussed previously. Finally, the results using weight
training on the MERGED dataset portrayed in red outperformed every result trained on
the previously discussed data subsets.

However, there are a few exceptions, such as for the DAWN rain images, where the
detection result dropped unexpectedly for the weight trained on the merged rain dataset.
This can be explained through feature redundancy, i.e., sometimes adding features can harm
some particularly learned features of a small subset due to feature redundancy. However,
the cases are rare, or else Figure 9 of the limitation part of this study (Section 4) could
explain more. Still, despite a few sudden rises or falls appearing in the results, Figure 8
is evidence enough to show the gradual improvement of the object detection result by
incorporating more images through the feature-related data merging technique. Finally, we
have presented a few detection results (on test images) performed by the trained weights
(ours) and compared them with the detection performance outcomes of the various weights
of the YOLOv8 methods in Appendix A.
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(a) (b)

(c) (d)

Figure 9. Limitations of accuracy. After adding two images, accuracy elevated between (a,c) and
dropped between (b,d).

4. Limitations and Future Works

This study was conducted under the limitation of the free use of Google Colaboratory.
Due to the time limitation of the GPU used by Google Colab, every training session
performed here used the same number of epochs to compare their accuracy. The regular
epoch size of every training was 32, but the augmented 1280 (version five) used 16 epochs
for training. This study also intended to use the bigger version (image size 1280 × 1280) as
the input and then use the same size during training as well. However, the bigger images
were resized to 640 × 640 by the YOLO algorithm during training. Due to the GPU power
limitation, it could not execute as the 1280 × 1280 image size during training. Thus, there is
a research gap in improving the accuracy by training on the bigger version with powerful
computational opportunities.

Another limitation of this study comes from the datasets and their annotation format.
Both datasets were annotated from scratch to make them compatible together and with
the YOLO method. The YOLO algorithm (version 8) was trained on the COCO dataset as
the backbone, and the annotation of this study used the first ten objects in the same order.
Therefore, although the DAWN images were annotated in the YOLO format for fewer
objects with different annotation orders, this study required manual annotations to correct
the order and to add a few more objects to detect. Thus, this study is limited to comparison
with the previous results studied by other researchers. Nevertheless, an extension of
this study can now use the current annotation (https://github.com/DebasisKumar21/
Labels.git (accessed on 10 October 2023)) for the DAWN and ACDC datasets to improve
the accuracy, which is also compatible with the YOLO weights, but adding more useful
features and datasets requires compatible annotation. The annotation of this study tried to
include all of the objects, even very small objects present in the far distance, to facilitate
the early detection of objects. This can potentially help an autonomous system with an early
warning about the presence of objects in harsh weather (see Appendix A). Thus, the accuracy
might be lower compared to a different study that uses a new annotation. Another thing to
mention is that the ACDC dataset was collected in Zurich, where the bus, train, and tram look
similar, so it is confusing to learn a perfect feature for differentiating them. However, during the
annotation of the ACDC images, the ‘Tram’ was treated as a ‘Train’ here. By considering these
limitations of the annotation process, an extension of the current study is possible using the
annotation files shared in the GitHub repository (Section 4) as a base and adding more relevant
datasets to improve the detection results further.

Figure 9 shows a weakness in the resulting computation metric of the YOLO algorithm.
Figure 9a,c show an accuracy difference by contaminating the datasets with just two images.
This study used only eight objects to detect among the first ten objects of the COCO dataset,
i.e., datasets were not trained to detect a boat or an airplane. Still, their place in the object list

https://github.com/DebasisKumar21/Labels.git
https://github.com/DebasisKumar21/Labels.git


Sensors 2023, 23, 8471 19 of 29

was assigned even though no instance was present in the dataset. The contamination of the
dataset by two images that contain at least a boat and an airplane in the training and testing
sets (using the same images so as to be detected) improved the result unexpectedly by
detecting those objects. Only seven instances were added from the two additional images
from Figure 9a,c. The detection results for all of the other objects were the same, but the
results improved from 0.781 to 0.824 by detecting a boat and an airplane. Contrarily, from
Figure 9b,d, two instances were added using two additional images (increasing 531 objects
to 533). The weight failed to detect two instances (a boat and an airplane), since no boat or
airplane was present in the training datasets. The result fell from a mAP50 score of 0.747
to 0.597 because of the failure to detect those particular two objects. For this study (ours),
there were approximately 6996 objects present in the validation images and 3492 in the
testing images. Therefore, manipulating the accuracy table by removing or contaminating
images with rare objects is easy. However, this study used a fixed number of images and
the same images for every test and validation set to perform the comparison fairly.

5. Conclusions

In this study, we proposed the use of combined data from several severe weather
datasets for training through transfer learning to enhance YOLOv8-based object detection
in bad weather. We used two effective open-source datasets (DAWN and ACDC) to identify
important roadside objects in severe weather. First, the datasets were collected from the
corresponding websites and annotated in the YOLOv8 format for the first ten objects of
the COCO datasets. The datasets contain weather features of fog, rain, snow, night, and
sand, and the individual weather images were divided into 70% training images, 20%
validation images, and 10% testing images. Then, they were merged to separately combine
the training, validation, and testing images to create a MERGED data version. Various data
augmentations were also used to choose the best-augmented version according to their
detection performance outcomes. The images were resized to various versions to check
their performance outcomes and training times. These data versions were used to train
custom weights and test their object detection performance outcomes on the testing images.
The performance outcomes on the validation images were also achieved after finishing the
training process, thus resulting in the accuracy table produced by the YOLO algorithm.

The proposed data merging technique improved the object detection accuracy signifi-
cantly compared to the performance of the base weights of the YOLOv8 algorithm. The
results compared the performance outcomes of weights training on the individual DAWN
and ACDC datasets, their merged dataset (MERGED), and their distinct weather subsets.
The results presented via graphs (Figure 6) show that the MERGED dataset performed
better than the weights training on the individual datasets. The accuracy improvement
presented in the bar graphs (Figure 8) shows that training on a custom dataset improves
the object detection results further, and the accuracy was elevated with the addition of
more images (with relevant data features). Noticeably, the training weight collected from
training on the MERGED datasets performed best on every subset of the relevant dataset,
thereby gradually becoming better than training on a particular subset after merging those
subsets. Thus, this study concludes that merging more diverse images of feature-relevant
datasets could perform better for object detection.

These findings provide the following research-related insights. The detection outcomes
could be enhanced even more by starting with the base datasets and labels presented here
and adding more datasets to them. A more powerful computer may further enhance
the outcomes by using larger image sizes during training or by training for more epochs.
The meteorological features utilized here cover nearly every adverse weather situation,
but some environmental factors, such as sun glare, are still absent. In addition to severe
weather, more images from datasets with regular weather could also lead to more accurate
object detection.
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Appendix A

In this appendix section, we have shown a few comparisons between the detection
results of our trained weights and various versions of YOLOv8’s base weights. We per-
formed detection of the weights on test images (from the ACDC and DAWN datasets) and
chose the few most significant among them to show the results.

First, we chose the weight (MERGEDv5.pt) of the MERGED dataset (V5) as the trained
weight, since that version performed better on the detection we discussed earlier. Moreover,
among YOLOv8’s base weights, we chose ‘yolov8x.pt’ to show the performance of the
YOLOv8 method. Then, we extended the detection results by incorporating other base
weights provided by the YOLOv8 method. As shown in Figure A1, the detection was
performed on a rain image by YOLOv8 and our trained weight, which are (a) and (b),
respectively. It is clear from both of the images that the trained weight detected all of the
relevant objects successfully, while YOLOv8 missed two ‘persons’, and three ‘cars’, detected
one ‘truck’ as a ‘bus’, and, most importantly, mistakenly detected a ‘passenger canopies’ as
a ‘bus’ (Figure A1a).

(a) (b)

Figure A1. Performance outcomes of YOLOv8’s base weight (‘yolov8x.pt’) (in left column) and
weight trained on MERGED dataset (V5) (in right column), on the test images (ACDC, DAWN).
(a) Detection by ‘yolov8x.pt’. (b) Detection by ‘MERGEDv5.pt’. Different colors are used for different
types of objects (0—person (red), 2—car (orange), 5—bus (light green), 7—truck (green)).

Figure A2 shows the detection performance of YOLOv8 (in the left column) and the
trained weight (in the right column) on the same row-wise images. Both Figure A2a,b show
a ‘train’ detected successfully, but, as shown in Figure A2a, (YOLOv8) failed to detect a
‘car’ that appeared far from the camera. Thus, our trained weight is capable of detecting
those small objects that are far from the camera to aid in early detection in harsh weather.
Similarly, Figure A2c (YOLOv8) shows a misidentification compared to Figure A2d (ours)
for detecting two ‘cars’ that appeared far away in snowy weather. Figure A2e (YOLOv8)
also failed to identify a ‘person’ in the snowy weather. However, our trained weight
successfully detected the person shown in Figure A2f. These early detections of small
objects (independent of the distance from the ego vehicle), besides detecting other relevant
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bigger objects (which are easy to detect), can help to prevent accidents by warning about
the proximity of those small objects.

(a) (b)

(c) (d)

(e) (f)

Figure A2. Performance outcomes of YOLOv8’s base weight (‘yolov8x.pt’) (in left column) and
weight trained on MERGED dataset (V5) (in right column) on the test images (ACDC, DAWN).
Row-wise comparison (on a pair of images) between detection performance outcomes of both the
weights. (a) Detection by ‘yolov8x.pt’. (b) Detection by ‘MERGEDv5.pt’. (c) Detection by ‘yolov8x.pt’.
(d) Detection by ‘MERGEDv5.pt’. (e) Detection by ‘yolov8x.pt’. (f) Detection by ‘MERGEDv5.pt’.

From the above discussion, we have seen that our trained weight is better at detecting
relevant objects independent of sizes and proximity, and it is less confused about the object’s
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identity. Since YOLOv8 contains other base weights to detect various objects depending
on their sizes (as discussed earlier), we tried to compare our results with those versions
as well. Figure A3 shows the detection results (on a foggy image) of the five base weights
(YOLOv8) and the weight (MERGEDv5.pt) trained on the MERGED dataset (V5). Our
weight detected a ‘truck’ with a confident score of 0.86 (Figure A3f), while ‘yolov8m.pt’
and ‘yolov8l.pt’ detected with a confident score of less than 0.4 (Figure A3c,d, respectively);
‘yolov8n.pt’ and ‘yolov8x.pt’ failed to detect the object (Figure A3a,e, respectively), and
‘yolov8s.pt’ detected the object as a ‘bus’ (Figure A3b). Therefore, the other versions of
the base weights are also not as trustworthy as our trained weight. Similarly, as shown in
Figure A4, ‘MERGEDv5.pt’ successfully detected all of the objects as two ‘trucks’, and five
‘cars’ (Figure A4f). However, all of the base weights of the YOLOv8 failed to detect those
objects perfectly. Finally, we have shown another example from a rainy image in Figure A5,
where all of the base weights (YOLOv8) failed to detect the second car (the smallest between
the two; both were detected, as shown in Figure A5f, by the trained weight). Moreover,
three of the base weights failed to detect the bigger car as well (Figure A5a,c,e).

(a) (b)

(c) (d)

Figure A3. Cont.
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(e) (f)

Figure A3. Performance outcomes of YOLOv8’s base weights and weight trained on MERGED
dataset (V5) on the test images (ACDC, DAWN). (a) Detection by ‘yolov8n.pt’. (b) Detection by
‘yolov8s.pt’. (c) Detection by ‘yolov8m.pt’. (d) Detection by ‘yolov8l.pt’. (e) Detection by ‘yolov8x.pt’.
(f) Detection by ‘MERGEDv5.pt’.

Therefore, from this section, we can conclude that our trained weight performs better
for detection (even for the smallest or farthest objects) than the weights of the YOLOv8
algorithm. The early detection performed by our work in harsh weather will contribute to
autonomous vehicles being able to perceive better. Moreover, for autonomous driving to
be a reality in all geographical locations worldwide, autonomy in harsh weather conditions
needs to be solved, and our work addresses perception (for application in autonomous
driving) from a broad range of adverse weather conditions.

(a) (b)

Figure A4. Cont.
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(c) (d)

(e) (f)

Figure A4. Performance outcomes of YOLOv8’s base weights and weight trained on MERGED
dataset (V5) on the test images (ACDC, DAWN). Different colors are used for different types of
objects (2—car (orange), 7—truck (green)). (a) Detection by ‘yolov8n.pt’. (b) Detection by ‘yolov8s.pt’.
(c) Detection by ‘yolov8m.pt’. (d) Detection by ‘yolov8l.pt’. (e) Detection by ‘yolov8x.pt’. (f) Detection
by ‘MERGEDv5.pt’.

Finally, Figure A6 shows some missed detections by our trained weight (MERGEDv5.pt)
(except for Figure A6a). Figure A6a,b show the detection by ’yolov8x.pt’ and ’MERGEDv5.pt’
on a foggy image, respectively. The vehicle that our trained weight missed (Figure A6b)
was detected as a ’truck’ by YOLOv8 (Figure A6a); however, the vehicle was labeled as a
’car’ in our test set. As shown in Figure A6c, the ’MERGEDv5.pt’ detected the car present on
the right side of the image, and it also detected the person present in front of the car, but the
name (’person’ ) and the confidence score of the person was missing, while the label (zero)
was showing for the detected person. Thus, we are confused about the missed detections.
However, we have tested our trained weight on all of the test images and rarely found any
missed detection. Nevertheless, for a few other images (Figure A6d–f), the ’MERGEDv5.pt’
failed to detect some vehicles that were very far from the sight of the ego vehicle, and they
were so small that it is even hard to see them in the images presented here. Those vehicles
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could only be detected through their headlights’ feature, and we successfully detected most
of those small objects except for a few, such as the ones presented here.

(a) (b)

(c) (d)

(e) (f)

Figure A5. Performance outcomes of YOLOv8’s base weights and weight trained on MERGED
dataset (V5) on the test images (ACDC, DAWN). (a) Detection by ‘yolov8n.pt’. (b) Detection by
‘yolov8s.pt’. (c) Detection by ‘yolov8m.pt’. (d) Detection by ‘yolov8l.pt’. (e) Detection by ‘yolov8x.pt’.
(f) Detection by ‘MERGEDv5.pt’.
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(a) (b) (c)

(d) (e) (f)

Figure A6. Some missed detections (test images from the ACDC and DAWN datasets) by our trained
weight (MERGEDv5.pt) (except (a) that is detected by ’yolov8x.pt’). Different colors are used for
different types of objects (0—person (red), 2—car (orange), 6—train (olive), 7—truck (green), 9—traffic
light (ocean blue)).
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