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Abstract: The Internet of Things (IoT) is a transformative technology that is reshaping industries and
daily life, leading us towards a connected future that is full of possibilities and innovations. In this
paper, we present a robust framework for the application of Internet of Things (IoT) technology in the
agricultural sector in Bangladesh. The framework encompasses the integration of IoT, data mining
techniques, and cloud monitoring systems to enhance productivity, improve water management,
and provide real-time crop forecasting. We conducted rigorous experimentation on the framework.
We achieve an accuracy of 87.38% for the proposed model in predicting data harvest. Our findings
highlight the effectiveness and transparency of the framework, underscoring the significant potential
of the IoT in transforming agriculture and empowering farmers with data-driven decision-making
capabilities. The proposed framework might be very impactful in real-life agriculture, especially for
monsoon agriculture-based countries like Bangladesh.

Keywords: crop yield prediction; smart agriculture; decision tree classifier; crop monitoring;
irrigation control

1. Introduction

Bangladesh is called an agriculture-based country, and its economy mainly depends on
crops such as grains, vegetables, pulses, oilseeds, and tubers. About 50% of the population
of Bangladesh primarily depends on this agriculture-based sector, and more than 70% of the
land is suitable for agricultural use [1]. Farmers often grow rice, jute, wheat, tea, legumes,
oilseeds, vegetables, and fruits in this country. The soil in Bangladesh is ideal for growing
a wide variety of crops. Although agriculture significantly contributes to Bangladesh’s
economy, crop yields remain uncertain, and farmers have yet to fully commercialize their
cultivated products due to their reliance on traditional methods. Bangladesh has a total
land area of 14,570 km2, and 60% of this land is arable [2]. However, with the population
increasing at a rate of 1.37 percent per year, the amount of arable land is decreasing daily.
Unchecked urbanization, industrialization, and human activity are causing agricultural
areas to disappear gradually. Nations with economies reliant on agriculture should embrace
modern technologies to enhance crop productivity and implement sustainable farming
practices. Strengthening agricultural production systems is vital to increasing income
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and ensuring food and nutrition security in underdeveloped nations [3]. Bangladesh’s
government has recently undertaken an initiative to embrace the IoT’s fourth industrial
revolution in the agriculture sector under its a2i program. A recent study [4] suggests that
the adoption of the fourth industrial IoT might potentially improve irrigation efficiency by
up to 50% by the year 2030 [4].

IoT technologies are widely used in the agriculture sector in many developed coun-
tries to increase production and meet the demand for food supply in the market. IoT in
agriculture can reduce production costs and time by providing precision agriculture.

Farmers very often encounter financial losses resulting from unforeseen natural calami-
ties. However, with access to advanced weather forecasts through IoT technology, they
might be able to avoid or mitigate these losses to a certain extent. By incorporating IoT
solutions, farmers can receive real-time weather forecasts and remotely monitor their agri-
cultural operations, which enables them to make informed decisions accordingly. Similarly,
our proposed framework can empower farmers to visualize sensor data, control irrigation
pumps, and optimize plant and water management practices for improved productivity
and resource efficiency. Many state-of-the-art projects combining IoT and data mining
techniques in the agriculture sector have been carried out to develop smart agriculture
infrastructure [5]. The application of IoT in agriculture has brought great revolutionary
changes to the agricultural environment by addressing multiple challenges and examining
different complexities [6]. Our research targets the adoption of an IoT monitoring system
for farmers to solve problems such as water crises, cost management, and productivity
issues [6,7].

However, advanced technology is usually, but not always, beneficial to humans.
There needs to be careful research on how to develop green technology for the survival of
humanity and the animal kingdom. We need to avoid developing destructive technology
that endangers people and the earth itself. Considering this issue, we developed an
environmentally friendly monitoring system that helps the farmer provide information
about the source and characteristics of the grain or product. In this system, we obtained data
for predicting crops’ transplanting and harvesting times from wireless sensors consisting
of IoT devices. This system facilitates monitoring and controlling the water supply on the
land automatically.

Our main contributions to the paper are as follows:

I. To the best of our knowledge, our work represents one of the first frameworks
including IoT and cloud monitoring systems in a monsoon climate, such as that
found in Bangladesh. Through our system framework, multiple forecasts can be
made available to the farmers by evaluating the cloud-based data;

II. We propose two algorithms, where one, describes the procedure of collecting data
from sensors through our microcontroller and sending it to the cloud system,
and the other is designed to forecast crop planting and harvesting times with
duration. Our database system is developed as a web-based application to enable
easy interaction for end users, particularly farmers, with our proposed system. The
stored data serves as a valuable resource for automated decision-making in crop
cultivation, particularly in water control measures.

By integrating web applications, our system can facilitate the evaluation of data
from IoT devices in Bangladesh, providing farmers with clear insights into IoT device
performance. While Bangladesh’s environment and agricultural products might be unique,
neighboring Southeast Asian countries such as Bhutan, Nepal, India, and Myanmar can
adopt our suggested approach using their statistics. Moreover, with minor adjustments,
our flexible framework can be implemented in agriculture in any country.

Subsequent sections of this paper are arranged as follows: Section 2 explains the
background. Section 3 discusses methodology, system design, and overview and presents
how the system has been implemented. This section also has two algorithms: (I) crop data
generation and (II) harvesting and transplanting time forecasting. Section 4 reports all
research and analysis of result data by data mining focused on crop cultivation. Section 5
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presents our discussion and future work on our research, and finally, we summarize the
conclusions in Section 5.

2. Related Work

Fan et al. [8] proposed a system framework for establishing an intelligent agriculture
platform using big data analysis and IoT sensor data via cloud technology. Andreas et al. [9]
provide a thorough review of big data analysis in agriculture, analyzing thirty-four research
papers to identify the current applications, challenges, and potential solutions. Their work
highlighted the increasing availability of big data sources, tools, and techniques that
can drive innovation and research for smarter farming practices, ultimately contributing
to sustainable agriculture and higher-quality food production. A system structure was
developed in the article [10] to improve the combination of big data and artificial intelligence
in agriculture, where data from IoT sensors was received and stored in the cloud to monitor
the farm. They created a control system based on data management and node sensors in
crop fields for smartphones and online applications. In the article [11], a system framework
was created and built. The framework consisted of three components: a control box, a
web application, and a mobile application. Their method was put in place to regulate
crop irrigation and govern agricultural plots. The solenoid valve switching procedure by
the farmer is controlled by a smartphone app. A survey of the literature was centered
on studies and analyses of the application of IoT in modern farming [12]. Their research
and analysis showed how China can reduce human effort in agriculture by relying on IoT
technology. They presented some categories by analyzing agricultural system development.
By explaining the architecture and applications of cloud technologies, the researchers
in [13] focused on the importance of using IoT and cloud computing in the agricultural
sector. This layered architecture, in conjunction with Radio Frequency Identification (RFID)
technology, is used to automate planting and production. Doshi et al. [14] proposed an IoT
technology that generates messages from their applications to instruct farmers to suggest
smart farming.

As surveyed in the scientific article [15], IoT has been used in a variety of investigations
in recent years. They reviewed modern farm technology and explored a variety of live
monitoring systems for IoT-based applications and wireless sensor networks. They also dis-
cussed well-known technologies that are continually pushing the IoT to improve. They also
listed some of the obstacles we may face when working in agriculture with IoT, including
hardware constraints, networking challenges, technical concerns, resource optimization,
and mobility. This systematic review [16] delves into the integration of cutting-edge tech-
nologies like predictive modeling algorithms, deep-learning-based sensing, and big urban
data in shaping immersive digital twin cities. By analyzing the recent literature, the paper
establishes the significance of virtual simulation tools, spatial cognition algorithms, and
multi-sensor fusion technology in developing sustainable urban governance networks
and data-driven smart city environments. The study provides valuable insights into the
role of the Internet of Things, digital twin modeling, and intelligent sensing devices in
building smarter and more connected urban infrastructures. The work proposed by Nan-
dan et al. [17] provides a literature review by illustrating how climate change affects the
agriculture and food security of the Barisal district in Bangladesh. Here, they discussed
the environmental condition of the Barisal district and the impact of rainfall, drought,
waterlogging, thunderstorms, excessive fog, and climate change on agriculture production.
The authors of [18] presented constructive research on the overall status of technology-
dependent agriculture in Bangladesh. A quality-aware autonomous information system for
agriculture services based on agriculture-related data was developed in the article [19]. A
literature review on the role of Internet of Things technologies in agriculture that explored
the varied effects of IoT in agriculture, the benefits and drawbacks of IoT devices, and the
application layer required for farming in current technology was introduced in article [20].
The authors of [21] suggested a smart agriculture system design that enhanced a smart
farming system for effective management and control of agricultural greenhouses through
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IoT and data mining technology to increase production in agriculture. They employed IoT
technology to collect a large amount of environmental information from grain greenhouses
and used advanced algorithms to pick relatively favorable data as a clustering method for
environmental reference data.

Thomas et al. [22] addressed the various systems, frameworks, and multiple sources
for smart farming. They emphasized the utilization of cloud computing and big data
technology in the development of existing agricultural event systems. An alert system was
proposed in [23] that presents a system framework capable of controlling the amount of
water passing through IoT devices in agriculture. Said et al. [24] proposed a method to
determine the minimum amount of irrigation and the maximum amount of water used
on the plants through an intelligent irrigation plan. By keeping an eye on the water
position and irrigation schedule of the tomato crop in extremely dry climate conditions, this
approach sought to investigate the efficacy of the Intelligent Irrigation System (IIS) related
to Water Use Efficiency (WE) and Irrigation Water Use Efficiency (IWU) and determine
its viability.

The authors of [25] discussed a proposed framework that aims to balance energy
efficiency and security in precision agriculture. The framework uses hashing as the only
form of advanced encryption, which adds an extra layer of security to the public channel.
Unlike existing management systems, this proposed method does not store public keys.
By allowing on-field sensors to not be directly connected to the sink node, the proposed
system provides significant residual energy savings. Compared to the current aggregation
strategy, the suggested scheme results in about 35% more alive nodes and 32% greater
retention of residual energy. The authors of [26] proposed a trust management approach
for ensuring the security of smart agriculture in the cloud-based Internet of Agriculture
Things (IoAT). The authors suggest that the integration of cloud computing with the
IoAT can significantly improve the efficiency of agriculture, but it also poses security
challenges such as data privacy, integrity, and authenticity. The AgriTrust approach (a
trust management mechanism that substitutes for conventional cryptography methods)
consists of three main components: a trust model, a trust evaluation mechanism, and a trust
management mechanism. The trust model defines the trustworthiness of entities in the
IoAT, such as devices, sensors, and cloud servers. The trust evaluation mechanism is used
to evaluate the trustworthiness of entities based on their past behavior and feedback from
other entities. The authors of [27] propose an IoT-based WSN framework that provides an
efficient and secure solution for smart agriculture applications. The proposed scheme’s
use of a hierarchical architecture, data aggregation and compression techniques, and
secure data transfer protocols can significantly improve the efficiency and security of smart
agriculture applications. The proposed framework consists of three tiers: the sensor layer,
the intermediate layer, and the application layer. Additionally, they have proposed a
secure data transfer protocol that makes use of Elliptic Curve Cryptography (ECC) and
the Advanced Encryption Standard (AES) to ensure the security of the data transmitted
between the sensor and the application layer.

3. The Proposed Framework

We have implemented our real-time cloud-based web and mobile applications inte-
grated with IoT sensors. We have also analyzed our previously collected agricultural data
using different data mining techniques.

Next, we have described IoT sensors for our real-time application, followed by a
discussion about our analytical approach for previously collected raw data. Finally, we
have described the operations of our application for providing real-time decisions based
on analyzed data. Figure 1 depicts a summary of our suggested approach as a whole. The
crop field sensors gather data, pre-process it, and send it to the cloud database. Farmers
are given access to real-time cloud-based data and users via mobile and online applica-
tions via the application from the cloud database, which is depicted step-by-step in the
following figures.
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In many precision agriculture studies, algorithms are trained and tested using pub-
licly available datasets, which might not accurately represent real-world scenarios due to
varying soil and weather conditions across countries. To address this concern, we develop
our precision agriculture algorithms using a dataset collected from IoT devices deployed
in actual crop fields. This ensures a more realistic and relevant evaluation of our ap-
proach. We present the detailed steps involved in our algorithms designed for precision in
Algorithms 1 and 2.

3.1. Design and Overview of the System

In this section, we demonstrate the functionalities of our system, which consists of
IoT devices, cloud databases, and websites or mobile apps. In this framework, we send
data from the farm to the web application or smart phone through the data management
controller named NodeMCU. An open-source electronic platform called NodeMCU is
built around the ESP8266 Wi-Fi system-on-chip (SoC) [28,29]. This enables the simple
development of Internet of Things (IoT) projects by coupling a microcontroller unit (MCU)
with integrated Wi-Fi capabilities. The design and implementation overview of this system
is divided into three components: hardware, web/mobile applications, and cloud databases,
as shown in Figure 2.

With reference to Figures 2 and 3, the initial component was created as a control
box. This control box transmits data from sensors and manages IoT devices. The control
box includes an automated water pump regulator, a DHT 11 (Temperature and Humidity
Sensor Device Model) sensor, a NodeMCU, and a soil moisture sensor. A program input is
provided to the NodeMCU through which we collect data from IoT sensors and send it
from the control box to the cloud database connected to the web and mobile applications.
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The concluding two figures illustrate a real-time and test area perspective of this control
box configuration.
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MIT App Inventor Web as a dummy mobile application that has not yet been published
anywhere. MIT App Inventor (https://appinventor.mit.edu/, accessed on 14 August
2023) is a web-based visual development environment that allows users to create mobile
applications for Android devices without requiring extensive programming knowledge.
It provides a graphical interface where users can drag and drop components, define their
behavior using blocks, and build fully functional apps. The cloud database, which is the
third and final component, is crucial in maintaining the data gathered and organizing the
data from the database on the application. The node of the first component in Figure 2
sends the data from the NodeMCU to the cloud through the API (Application Programming
Interface) and stores it in our third component’s cloud database. Farmers can check the old
data and analyze their own farmland to see what kind of crop can be produced.
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This whole system consists of seven parts, as shown in Figure 5, which are: (i) physical
layer: in the physical layer, our physical devices like wireless sensors, solenoid bulbs,
relay modules, analog signal modules, and power sources exist; (ii) link layer: in the link
layer, we have used the Wi-Fi (Wireless Fidelity) network as the coordinator sensor node,
which connects the devices of the encapsulation layer with the devices of the physical
layer; (iii) encapsulation layer: in this layer, we use a NodeMCU device that is able to
communicate with IPv6 (Internet Protocol version 6) in the network security system; (iv)
middleware layer: through this layer, we acquire the data taken from the agriculture
land and environment and send it to the configuration layer; (v) configuration layer: the
configuration layer basically collects and analyzes the raw acquired data and sends the data
to its destination in the configuration layer; (vi) management layer: This layer combines
previously acquired data with newly analyzed data, which gives results. On the basis of
that result, the prediction report and other information are managed; and (vii) application
layer: by presenting the data in an organized manner to the end user or farmers through
the application layer, the farmers today can decide what to do next.

https://appinventor.mit.edu/


Sensors 2023, 23, 8472 8 of 23

Sensors 2023, 23, x FOR PEER REVIEW 8 of 24 
 

 

previously acquired data with newly analyzed data, which gives results. On the basis of 
that result, the prediction report and other information are managed; and (vii) application 
layer: by presenting the data in an organized manner to the end user or farmers through 
the application layer, the farmers today can decide what to do next. 

 
Figure 5. An architectural overview of the system. 

3.2. System Implementation 

Figure 5. An architectural overview of the system.

3.2. System Implementation

The proposed approach transmits temperature and humidity information using
DHT11 and soil moisture sensor devices to the cloud database via a web or mobile ap-
plication using a microcontroller named NodeMCU integrated with an ESP 8266 module.
We utilized a NodeMCU that uses a lot less electricity. The NodeMCU web server also
uses 60% less power with a latency of 1 ms [30]. Additionally, the remaining sensors and
equipment employed in the physical layer are extremely energy-efficient. They do not
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consume a lot of electricity. The solenoid valve or irrigation pump is automatically turned
on and off depending on the soil moisture sensor data. Additionally, this on-off status
is immediately sent to our application by NodeMCU. If the amount of water in the soil
decreases, then the solenoid valve opens automatically, and if the amount of water in the
soil becomes balanced according to the program set in the microcontroller NodeMCU, then
the solenoid valve automatically shuts off. The application automatically analyzes the data
from the cloud database and provides monthly crop harvesting and planting information.
In the context of Bangladesh, according to our study, almost all the crops have a planting
time of about 3 months [31]. This mobile or web application has crop calendars [32] so that
the farmers can know about their crop planting, lifting, fertilizer application, and water
quantity properly. At present, about 33 types of crop data have been collected in our cloud
database. A few of the top scientific publications included in Table 1 are contrasted with
some of the features included in our proposed system for farmers.

Table 1. Comparison of our system framework features with other published research papers.

Feature
Our Proposed
System
Framework

S. Wolfert, L. Ge
et al. [10] Article

Muangprathub,
Jirapond et al. [11]
Article

Liu, Shubo et al.
[12] Article

Jash Doshi,
Tirthkumar Patel
et al. [13] Article

Web application Yes Yes Yes Yes Yes

Mobile application Yes No Yes Yes No

Real-time data
collection Yes Yes Yes Yes No

Real-time weather
forecast Yes No No No No

Weekly (5 days)
weather forecast Yes No No No No

Intelligent live system
monitoring Yes Yes Yes Yes Yes

Real-time data
management Yes No Yes No Yes

Crop data
management Yes Yes Yes Yes Yes

Manual data analysis Yes No No No Yes

Live crop
transplanting
prediction on a month
basis

Yes No No No No

Live crop harvesting
prediction on a
monthly basis

Yes No No No No

Crop transplanting to
harvest time: an
informative calendar

Yes No No No No

3.2.1. Crop Data Generation

We collect sensor data from IoT sensor devices through the ESP8266 NodeMCU and
send it to the cloud, as shown in Algorithm 1. We set up an internet connection through
wireless technology using the wifi_setup() module. To do this, it is essential to know
the Service Set Identifier (SSID) and Password of the wireless router to connect the cloud
application with the NodeMCU microcontroller. The read_soil_moisture_sensor() function
and the read_temp_hum_sensor() function collect soil moisture, temperature, and humidity
data and send them to the cloud. The irrigation_control() functions mainly work to ensure
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the correct amount of water. This basically ensures the amount of water is precisely
controlled through irrigation bulbs or water pumps if the amount of moisture in the soil is
low. This function is conditioned in such a way that if the sms_data obtains less moisture
in the soil, it will automatically release water from the water pump, and if the moisture
level is at the correct level, then the water pump will automatically stop.

The algorithm aims to maintain optimal soil moisture for enhanced crop yield. This is
intelligently set based on soil moisture levels and weather conditions. Our algorithm aids
in conserving water resources by intelligently adjusting irrigation in the crop field. The
algorithm combines advanced sensing technology with intelligent water control techniques,
making it a promising solution for precision agriculture. Our algorithm can potentially
address water scarcity challenges and enhance agricultural productivity.

Algorithm 1: Obtain data from DHT 11, the soil moisture sensor, and control irrigation

1 
 

Pseudo Code: 

Initialize global variables: 

 soil_moisture_threshold (integer): threshold value for soil moisture level, set to an appropriate value (e.g., 50); 

wifi_connected (boolean): flag to indicate if the WiFi connection is successful, initialized to false; 

water_pump_status (boolean): flag to indicate the status of the water pump (ON/OFF), initialized to false; 

temperature (float): variable to store the temperature reading from the sensor, initialized to 0.0; 

humidity (float): variable to store the humidity reading from the sensor, initialized to 0.0; 

Function wifi_setup(): 

 implement WiFi connection setup through ssid, password; 

Function read_soil_moisture_sensor(): 

 Initialize moisture (integer) to 0; 

Implement reading data from the soil moisture sensor and store it in the ‘sms_data’ variable;  

//sms = soil moisture sensor 

Return sms_data. 

Function read_temp_hum_sensor(): 

 Initialize temperature and humidity (float) to 0.0. 

Implement reading data from the temperature and humidity sensors and store them in the ‘temp_data’ and ‘hum_data’ 
variables. 

Return (data is passed by reference). 

Function control_water_pump (on: boolean): 

 Implement control of the water pump based on the ‘on’ parameter (turn on if ‘true’, turn off if ‘false’). 

Return true if successful, false otherwise. 

Function irrigation_control(): 

 Call wifi_setup() to set up a WiFi connection. 

 Check if the WiFi connection is successful: 

  if true: 

   Call read_soil_moisture_sensor() to obtain soil moisture data. 

Call read_temp_hum_sensor() to obtain temperature and humidity data. 

Send data to the cloud. 

 

Check if soil moisture is below the threshold: 

    if true: 

     Call control_water_pump (true) to turn on the water pump. 

Set ‘water_pump_status’ to true. 

    else: 

     Call control_water_pump (false) to turn off the water pump. 

Set ‘water_pump_status’ to false. 

  else: 

   Send status that Wifi not connected 

Call the ‘irrigation_control()’ function to start the irrigation control process. 

End of the Algorithm. 
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Algorithm 1: Cont.

1 
 

Pseudo Code: 

Initialize global variables: 

 soil_moisture_threshold (integer): threshold value for soil moisture level, set to an appropriate value (e.g., 50); 

wifi_connected (boolean): flag to indicate if the WiFi connection is successful, initialized to false; 

water_pump_status (boolean): flag to indicate the status of the water pump (ON/OFF), initialized to false; 

temperature (float): variable to store the temperature reading from the sensor, initialized to 0.0; 

humidity (float): variable to store the humidity reading from the sensor, initialized to 0.0; 

Function wifi_setup(): 

 implement WiFi connection setup through ssid, password; 

Function read_soil_moisture_sensor(): 

 Initialize moisture (integer) to 0; 

Implement reading data from the soil moisture sensor and store it in the ‘sms_data’ variable;  

//sms = soil moisture sensor 

Return sms_data. 

Function read_temp_hum_sensor(): 

 Initialize temperature and humidity (float) to 0.0. 

Implement reading data from the temperature and humidity sensors and store them in the ‘temp_data’ and ‘hum_data’ 
variables. 

Return (data is passed by reference). 

Function control_water_pump (on: boolean): 

 Implement control of the water pump based on the ‘on’ parameter (turn on if ‘true’, turn off if ‘false’). 

Return true if successful, false otherwise. 

Function irrigation_control(): 

 Call wifi_setup() to set up a WiFi connection. 

 Check if the WiFi connection is successful: 

  if true: 

   Call read_soil_moisture_sensor() to obtain soil moisture data. 

Call read_temp_hum_sensor() to obtain temperature and humidity data. 

Send data to the cloud. 

 

Check if soil moisture is below the threshold: 

    if true: 

     Call control_water_pump (true) to turn on the water pump. 

Set ‘water_pump_status’ to true. 

    else: 

     Call control_water_pump (false) to turn off the water pump. 

Set ‘water_pump_status’ to false. 

  else: 

   Send status that Wifi not connected 

Call the ‘irrigation_control()’ function to start the irrigation control process. 

End of the Algorithm. 

3.2.2. Harvesting and Transplanting Time Forecasting

In our Algorithm 2, we take the data from the physical device sensors, present the real-
time data to the farmers, compare the real-time data with the already collected training data
(examined by data mining), and present the analysis to the farmers by dividing the crop
planting and harvesting data into two parts. The server_setup() function is implemented
for cloud server connections. Gate_field_data() and cross_data() functions collect data
from physical devices and show real-time data to farmers. The crop_analysis() module
shows farmers a real-time forecast of what crops can be planted and harvested in the
current month and by when. By comparing our already collected crop data with the data
we are obtaining in real time, the output is shown to the farmers.

Algorithm 2: Forecasting of crop harvesting, transplanting crops with duration, and crop analysis
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3.2.2. Harvesting and Transplanting Time Forecasting 
 

Algorithm 2: Forecasting of crop harvesting, transplanting crops with duration, and crop analysis 

Pseudo Code: 

Initialization 

 Initialize the temperature, humidity, and moisture variables to 0; 

 Initialize the pump_status variable to “OFF”; 

 Obtain the current month and store it in the current_month variable; 

Function server_setup() 

 Connect to the server with the provided credentials (server_name, user_name, and password); 

Function GetFieldData() 

 Fetch data from the Cloud URL for retrieving SensorData to the microcontroller;  

 Extract temperature, humidity, moisture, and pump_status data from the fetched data; 

Function CropsData() 

 Call the “GetFieldData” function. 

 If the field data is retrieved successfully (not null): 

  Loop through each row in the field data; 

  Perform the necessary processing or analysis on the SensorData; 

  Output “SensorData” for each row (or perform specific actions based on the data); 

 If the field data is null, output “No result”; 

Function CropAnalysisModule() 

 Check if the current month matches the month obtained from the “getCurrentMonth()” function and if the 
temperature and moisture match the data obtained from the “CropsData” function; 

If the conditions are met: 

  Perform a database query to retrieve training data records based on the current_month, temperature, and 
moisture; 

If the query result is not null: 

   Loop through each row in the query result; 

   Check if the current month, temperature, and moisture match the values in the query result; 

   Output “CropName, transplant_duration” and “CropName, harvest_duration” for matching data; 

  If the query result is null, output “No result”; 

 If the conditions are not met, output “No result”; 

End of the Algorithm. 
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Algorithm 2: Forecasting of crop harvesting, transplanting crops with duration, and crop analysis 

Pseudo Code: 

Initialization 

 Initialize the temperature, humidity, and moisture variables to 0; 

 Initialize the pump_status variable to “OFF”; 

 Obtain the current month and store it in the current_month variable; 

Function server_setup() 

 Connect to the server with the provided credentials (server_name, user_name, and password); 

Function GetFieldData() 

 Fetch data from the Cloud URL for retrieving SensorData to the microcontroller;  

 Extract temperature, humidity, moisture, and pump_status data from the fetched data; 

Function CropsData() 

 Call the “GetFieldData” function. 

 If the field data is retrieved successfully (not null): 

  Loop through each row in the field data; 

  Perform the necessary processing or analysis on the SensorData; 

  Output “SensorData” for each row (or perform specific actions based on the data); 

 If the field data is null, output “No result”; 

Function CropAnalysisModule() 

 Check if the current month matches the month obtained from the “getCurrentMonth()” function and if the 
temperature and moisture match the data obtained from the “CropsData” function; 

If the conditions are met: 

  Perform a database query to retrieve training data records based on the current_month, temperature, and 
moisture; 

If the query result is not null: 

   Loop through each row in the query result; 

   Check if the current month, temperature, and moisture match the values in the query result; 

   Output “CropName, transplant_duration” and “CropName, harvest_duration” for matching data; 

  If the query result is null, output “No result”; 

 If the conditions are not met, output “No result”; 

End of the Algorithm. 

 
With the Crop_Analysis_Module, the farmer himself will be able to know the time of

transplanting and harvesting by analyzing the algorithm with the month, temperature, and
humidity as input.

Unlike traditional methods, which rely on simple data processing, this algorithm
leverages historical crop data and machine-learning models to enable data-driven decision-
making and achieve more accurate and efficient crop analysis. After pre-processing data
from sensors with trained models, the algorithm offers insights into crop health, growth
anomalies, and optimal crop management strategies. This innovative approach repre-
sents a significant advancement in the field of precision agriculture, enabling farmers to
make informed decisions that maximize yields and resource utilization while reducing
environmental impact.

3.2.3. Data Analysis

This subsection demonstrates how we have performed the work of data analysis.
Figure 6 shows the processing steps of data analysis.

I. Pre-processing

The quality of the data determines the quality of the knowledge; hence, this is a crucial
phase in the knowledge discovery process. Since the data for temperature and humidity
are numerically large and the data for each row is different, we normalize them by the
following formula [33]:

Xnew =
(X− Xmin)

(Xmax − Xmin)
, (1)

where X = the collection of observed values found in X, Xmin = the minimum value in X, and
Xmax = the highest value in X.

II. Clustering

The process of grouping abstract items into several categories is called clustering.
When N items are divided into a number of clusters using K-Means clustering, each object
is a part of the cluster that is closest to the cluster’s centroid. This method highlights the
maximum possible differences between the different k clusters.
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After normalization, we go to the second step and run the dataset using the K-Means
cluster algorithm. In our experiments, we have used k values from 1 to 9 empirically to find
out the closet centroid using elbow methods. The following step with the selected cluster
k will be taken after extracting the value of each centroid using formula (2) to determine
the value of the most ideal k value using the elbow method and our class attribute. The
Sum of Squared Error (SOSE) in Equation (2) and Incorrectly Clustered Instances (ICI) in
Equation (3) of each cluster were covered in Section 4.4 (Data curation and result).

The Sum of Squared Error (SOSE) is expressed as:

SOSE = ∑j ∑i

(
Yij − Ỹj

)2
; (2)

where Y represents the observed values, Ỹ represents the predicted values, and this is the mean of
the values of Y.

To identify incorrectly clustered instances using K-Means, it can be expressed as:

di < dj, for any j 6= i; (3)

where dj is the distance between a data point and its assigned centroid and is greater than or equal
to di, or if the distance between a data point and the centroid of another cluster is greater than or
equal to dj, then the data point is deemed to be erroneously clustered.

The K-Means cluster formula is given in Equation (4) [34–36]:

J = ∑k
j=1 ∑n

i=1 ‖x
j
i − cj‖2; (4)

where J = the objective K-Means cluster function, n = the number of instances, k = the number of
clusters, and ‖xj

i − cj‖2= the Euclidian distance function.
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4. Experimental Setup and Result Discussion
4.1. Datasets

Based on crop transplantation data from the yearbook of Agriculture Statistics Bangladesh
2020 [31], we have collected a total of 241 instances of harvesting time data, temperature
data, and crop transplanting time data and fed them into training to build our model. After
then, we gathered information about the crop season based on information about the time
of crop transplanting from the Bangladesh Crop Season Article [37]. “Season” attribute is
maintained as a class feature or attribute in our dataset, which includes a total of 10 fea-
tures. The data is then pre-processed and assembled into a comprehensive data collection.
This dataset includes data on 48 crops from the Kharif-II season, 22 crops from the Rabi
season, and 33 crops from the Kharif-I season. Kharif (mid-November to mid-March) and
Robi (mid-November to mid-March) are the two distinct monsoon agricultural seasons in
Bangladesh. Kharif-I (mid-March to mid-July) and Kharif-II (mid-August to mid-October)
are further divisions of the Kharif season (mid-July to mid-November). Winter vegetables,
wheat, potatoes, legumes, oilseeds, and boro rice are among the rabi crops. Summer veg-
etables, jute, Aus and Aman rice, and other crops are typical of the Kharif season. This
collection contains information on a total of 103 distinct Bangladeshi crops. Our datasets
are available through the cloud-based Mendeley Data repository [38].

4.2. Real-Time Data Acquisition Module

In our implementation, both web applications and mobile applications work in the
same way, which will make the user feel comfortable. To make it more user-friendly,
we have multilingual support, namely Bengali and English language interfaces, and a
voice-over command option. Our work is available on the cloud as a website.

4.3. Real-Time Forecasting

These elements allow the user to easily update and analyze farmers’ land informa-
tion. With these components, they will be able to check, update, and analyze real-time
data and previous records. Through this web and mobile application, they will obtain
accurate instructions on which crops can be planted and harvested in which month. Via
our technology, farmers will also be able to examine real-time information about their
fields, including the temperature, humidity, soil moisture, and operation of the automatic
irrigation pump. The pictorial view of real-time crop and weather forecasts, as well as a
few other features in the web-mobile application, are shown in Figures 7 and 8, enabling
farmers to regularly monitor all the necessary information of their field from the ease of
their homes or anyplace else.

4.4. Data Curation and Results

We ascertain the Sum of Squared Error (SOSE) and Incorrectly Clustered Instances
(ICI) of each cluster. Table 2 shows the result of the Sum of Squared Error (SOSE) and
incorrectly clustered instances (ICI) for each cluster.

Table 2. SOSE and ICI results for each cluster.

Cluster
Number Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

SOSE 429.81 411.61 386.19 354.58 330.87 322.56 314.86 300.43 296.14

ICI 56 49 54 65 68 72 74 77 80

A graphical representation of SOSE and ISI for each cluster is shown in Figure 9a,b.
From Figure 9a, it can be seen that the SOSE of each cluster from cluster 3 to 6 is between
300 and 390. On the other hand, in the ICI of Figure 9b for each cluster, a sharp increase is
visualized from cluster 3 to 4, followed by a steady increment. Additionally, since we are
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working on the dataset based on the season, we also have three common attributes for the
season, which are Kharif-I, Robi, and Kharif-II. Therefore, we decide to keep k = 3 as our
clustering parameter for our dataset.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 7. A cloud application that presents district-based (1) daily real-time weather, (2) weather 
forecasts up to 5 days, (3) farmers own profiles, and (4) real monitoring field data. Figure 7. A cloud application that presents district-based (1) daily real-time weather, (2) weather

forecasts up to 5 days, (3) farmers own profiles, and (4) real monitoring field data.



Sensors 2023, 23, 8472 16 of 23
Sensors 2023, 23, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 8. (1,2) real-time crop forecasts on planting and harvesting, (3) analyzing crop transplant and 
harvest time by inputting real-time data, (4) farmers can save their crop information, and (5) gath-
ering knowledge from the crop calendar [32]. 

Figure 8. (1,2) real-time crop forecasts on planting and harvesting, (3) analyzing crop transplant and
harvest time by inputting real-time data, (4) farmers can save their crop information, and (5) gathering
knowledge from the crop calendar [32].



Sensors 2023, 23, 8472 17 of 23

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24 
 

 

4.4. Data Curation and Results 
We ascertain the Sum of Squared Error (SOSE) and Incorrectly Clustered Instances 

(ICI) of each cluster. Table 2 shows the result of the Sum of Squared Error (SOSE) and 
incorrectly clustered instances (ICI) for each cluster. 

Table 2. SOSE and ICI results for each cluster. 

Cluster 
Number Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

SOSE 429.81 411.61 386.19 354.58 330.87 322.56 314.86 300.43 296.14 
ICI 56 49 54 65 68 72 74 77 80 

A graphical representation of SOSE and ISI for each cluster is shown in Figure 9a,b. 
From Figure 9a, it can be seen that the SOSE of each cluster from cluster 3 to 6 is between 
300 and 390. On the other hand, in the ICI of Figure 9b for each cluster, a sharp increase is 
visualized from cluster 3 to 4, followed by a steady increment. Additionally, since we are 
working on the dataset based on the season, we also have three common attributes for the 
season, which are Kharif-I, Robi, and Kharif-II. Therefore, we decide to keep k = 3 as our 
clustering parameter for our dataset. 

 

Figure 9. (a) Line chart of the SOSE of each cluster. (b) Clustered column chart of the ICI of
each cluster.

4.5. Data Modeling

From the prepared information, knowledge is derived at this stage. Data modeling
and discovery typically employ clever techniques to find patterns in the data. Classifi-
cation, grouping, relationships, and other analysis techniques are available. To verify
the correctness of the data, we run the clustered dataset through the Decision Tree (DT),
Naive Bayes (NB), Multilayer Perceptron (MLP), and K-Nearest Neighbors (KNN) classifi-
cation algorithms. We have used K-fold cross-validation [39,40] with the parameter K = 15.
Figure 10 shows the graphical representation of correctly classified instances by DT, NB,
MLP, and KNN classifiers.

From Figure 10, we can observe that the output of the correctly classified instance of
the DT classifier is higher than that of other classifiers. So, we use the DT classifier on our
cluster dataset for the final analysis. The results of our final correctly classified accuracy
analysis are 87.3786%, as shown in Table 3 and Figure 11, through detailed accuracy by
class and a confusion matrix of 103 instances. Precision measures the certainty of positive
predictions. A value close to high (1) is considered a good precision score. Since the value
of precision in Table 3 is almost close to one, we can conclude that our dataset has a good
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precision score. Similarly, as the recall score and F-measure score mentioned in Table 3 are
close to high (1), we consider that the score of our dataset is very good.
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Figure 10. Accuracy comparison of DT, NB, MLP, and KNN classifiers.

Table 3. Details of performance measurement matrices.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.971 0.087 0.846 0.971 0.904 0.974 Kharif 1

0.727 0.062 0.762 0.727 0.744 0.922 Rabi

0.894 0.018 0.977 0.894 0.933 0.971 Kharif 2
TP Rate = True Positive Rate, FP Rate = False Positive Rate, F-Measure = F1 Score or F Score, ROC Area = Receiver
Operating Characteristic Area.

4.6. Empirical Setup

This subsection discusses a practical consensus on how our work can be used in
agriculture in the agricultural region of Bangladesh. If we consider Figures 12 and 13 as a
test area, we can see how we have applied IoT technology and how we are sending data
to the application through that IoT technology. As we can see in Figures 12 and 13, there
is a control box with a Wi-Fi sensor connected to the NodeMCU, and with that control
box, there are multiple wireless sensor networks, such as temperature, humidity, and soil
moisture sensors, installed on agricultural land.

The NodeMCU is also connected to a water pump. The data from all these wireless
sensors and the status of the water pump are sent to our cloud database via the NodeMCU
API of the control box. The real-time data is shown to the farmers via the application from
the cloud database. We selected a test area as a testbed that is 42.75 square feet in size
(length 9.5 feet and width 4.5 feet) so that our structure may be used experimentally. We set
up various sensors on the ground in this test area along with the control box, the specifics of
which are displayed in Table 4. We transplanted 16 to 17 eggplant seedlings in our testbed
and took the experimental data. Our testbed soil is a non-calcareous, dark gray floodplain
soil. We experimentally collected 15 days of real-time data from the testbed in August and
September 2020. When a vast region is involved, the parameters listed in Table 4 can be
expanded by mesh connections. However, caution must be exercised to prevent rain and
extremely hot or cold weather from harming the gadgets.
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Table 4. Deployment parameters.

Parameters Units Remarks

NodeMCU 01 10 GPIO, every GPIO can be PWM with LUA Script
Relay Module 02 5 V DC
Solenoid Bulb 02 12 V
Probe Analog Signal 01
DHT 11 01 3.3 V to 5 V
Sensing Probe 06 LM393 with 3.3 V to 5 V
Power Unit 01 01 3.3 V to 5 V
Power Unit 02 02 12 V
Wooden Box (Control Box) 01 11.5 inch ∗ 5.5 inch
Wire with male-female plug 01 H 2.54 mm

5. Discussion and Future Work

Our system framework is fundamentally centered around IoT, with IoT-enabled de-
vices playing a crucial role in every aspect of our research work. Our proposed framework
has been designed for farmers, and many useful features have been included. In addition,
data analysis has been performed in a specific pattern through data mining techniques to
make accurate predictions for farmers to plant and harvest crops by automatically ana-
lyzing the data. As a result, farmers can easily visualize the sensor data, make better use
of plant management, and avoid wastage of both time and water due to automatic water
management. Farmers will also receive daily and weekly weather forecasts based on the
location of their agricultural land. As a result, by being vigilant in advance, the farmer
can establish an appropriate strategy for harvesting the crop. Our application has a crop
calendar with accurate information on 30 to 33 species of crops, detailing what farmers
can do to plant, produce, harvest, and much more. As a result, they can use this calendar
to work on planting or any other crop-related information without having to wait for the
agricultural officer. The ability for farmers to save details about their planted crops in our
program is one of the most intriguing aspects. As a result, the farmer will be informed
automatically by our system during harvesting the crop. Basically, several physical layer
properties and associated layer features have been covered in the proposed section of our
research effort. Additionally, we demonstrate our proposed framework pattern for analysis
through data mining in the performance analysis section. Although a good deal of the
literature is focused on the agriculture monitoring system, there are not many automated
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agricultural monitoring, forecasting, or system architectures with several features that
we incorporate in our system. Our framework is one of the most feature-rich monitoring
systems for agriculture in Bangladesh. In addition, we created a new dataset [15] that will
help researchers do further investigations from the perspective of Bangladesh agriculture
in the future. We carried out our experiments on an experimental prototype based on
Agriculture Statistics Bangladesh 2020 [5] data. Our experimental results can be applied in
real-life situations to monitor agriculture.

One of the challenges in this work is to collect data on crop yield, planting, and
season information in Bangladesh. More data can be collected in the future, and the data
model and data analysis can be further improved. If the Message Queuing Telemetry
Transport (MQTT) protocol can be added to our proposed system, it will become a more
optimized system. However, we have introduced a cloud-based application instead of
the MQTT protocol by providing a web-based application suitable for end users. In our
framework, we have used a NodeMCU with an ESP8266 as the microcontroller unit in
the control box, which is completely dependent on the Wi-Fi network. If we could use
the mentioned microcontroller through the GPRS (General Packet Radio Service) network
instead of another microcontroller, then it would be more useful to farmers in remote areas
who do not have the technology to use smart phones or smart networks. While numerical
data can be presented or transmitted without the integration of IoT devices, such a system
may not effectively address real-world problems and provide comprehensive solutions.
Additionally, the improvement of our physical gadgets’ outward structures is essential to
keeping them functional and active for an extended period of time.

6. Conclusions

The proposed method holds the potential to benefit farmers, agricultural resource
managers, researchers focusing on Bangladesh agriculture, and individuals interested in
engaging with the country’s agricultural industry in the future. In this work, we collected
data from various sources and created a dataset for our model. We analyzed the dataset in
three steps: data pre-processing (data quality check and normalization), clustering to select
an appropriate cluster dataset, and running various algorithms on the selected cluster for
final data analysis. Our model achieved an accuracy of 87.3786%. Additionally, we included
a crop informative calendar feature, providing farmers with crucial information about crop
cultivation from sowing to harvesting. This work might inspire other researchers to explore
and expand such a real-time monitoring system further. Such a system can help farmers
predict the optimum time to plant their crops. Our work might bring impactful success to
the agriculture environment in Bangladesh.
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3. Stočes, M.; Vaněk, J.; Masner, J.; Pavlík, J. Integrated Farming Systems—A Review. IOSR J. Agric. Vet. Sci. 2014, 7, 36–42.
4. Smart Agriculture for Smart BangladeshA2i, n.d. Available online: https://a2i.gov.bd/smart-agriculture-for-smart-bangladesh/

(accessed on 14 March 2023).
5. Stoces, M.; Vanek, J.; Masner, J.; Pavl´ık, J. Internet of things (IoT) in agriculture—Selected aspects. Agris Line Pap. Econ. Inform.

2016, VIII, 83–88. [CrossRef]
6. Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient. Intell. Smart Environ.

2017, 9, 395–420. [CrossRef]
7. Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Fernandes, S.; Toscano, A.; Cinotti, T.S.; Maia, R.F.; Neto, A.T. Swamp: An oT-based

smart water management platform for precision irrigation in agriculture. In Proceedings of the 2018 Global Internet of Things
Summit (GIoTS), Bilbao, Spain, 4–7 June 2018.

8. Tseng, F.-H.; Cho, H.-H.; Wu, H.-T. Applying Big Data for Intelligent Agriculture-Based Crop Selection Analysis. IEEE Access
2019, 7, 116965–116974. [CrossRef]

9. Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron.
Agric. 2017, 143, 23–27. [CrossRef]

10. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
11. Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and Agriculture Data

Analysis for Smart Farm. Comput. Electron. Agric. 2019, 156, 467–474. [CrossRef]
12. Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. Internet of Things Monitoring

System of Modern Eco-Agriculture Based on Cloud Computing. IEEE Access 2019, 7, 37050–37058. [CrossRef]
13. TongKe, F. Smart Agriculture Based on Cloud Computing And IoT. J. Converg. Inf. Technol. 2013, 8, 210–216. [CrossRef]
14. Doshi, J.; Patel, T.; Bharti, S.K. Smart Farming Using IoT, A Solution for Optimally Monitoring Farming Conditions. Procedia

Comput. Sci. 2019, 160, 746–751. [CrossRef]
15. Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of

Smart Farming. IEEE Access 2019, 7, 156237–156271. [CrossRef]
16. Nica, E.; Popescu, G.H.; Poliak, M.; Kliestik, T.; Sabie, O.-M. Digital Twin Simulation Tools, Spatial Cognition Algorithms, and

Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics 2023, 11, 1981. [CrossRef]
17. Akter, T.; Mukherjee, N.; Khan, A.M.; Rahman, F. Climate change impact on agriculture and food security of Barisal district. In

Proceedings of the International Conference on Climate Change in Relation to Water and Environment (I3CWE-2015), Dhaka
University of Engineering and Technology, Gazipur, Bangladesh, 12–14 April 2015; pp. 9–11.

18. Syeed, M.M.; Islam, M.A.; Fatema, K. Precision Agriculture in Bangladesh: Need and Opportunities. Precis. Agric. 2020, 29,
6782–6800.

19. Singh, S.; Chana, I.; Buyya, R. Agri-info: Cloud based autonomic system for delivering agriculture as a service. Internet Things
2020, 9, 100131. [CrossRef]

20. Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review.
Electronics 2020, 9, 319. [CrossRef]

21. Li, C.; Niu, B. Design of smart agriculture based on big data and Internet of things. Int. J. Distrib. Sens. Netw. 2020, 16,
1550147720917065. [CrossRef]

22. Lytos, A.; Lagkas, T.; Sarigiannidis, P.; Zervakis, M.; Livanos, G. Towards smart farming: Systems, frameworks and exploitation
of multiple sources. Comput. Netw. 2020, 172, 107147. [CrossRef]

23. Karim, F.; Karim, F.; Frihida, A. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017, 110,
402–409. [CrossRef]

24. Mohammad, F.S.; Al-Ghobari, H.M.; El Marazky, M.S.A. Adoption of an intelligent irrigation scheduling technique and its effect
on water use efficiency for tomato crops in arid regions. Aust. J. Crop Sci. 2013, 7, 305–313.

25. Nagaraja, G.S.; Vanishree, K.; Azam, F. Novel Framework for Secure Data Aggregation in Precision Agriculture with Extensive
Energy Efficiency. J. Comput. Netw. Commun. 2023, 2023, 5926294. [CrossRef]

26. Awan, K.A.; Din, I.U.; Almogren, A.; Almajed, H. AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-
based Internet of Agriculture Things. Sensors 2020, 20, 6174. [CrossRef]

27. Haseeb, K.; Din, I.U.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to
Smart Agriculture. Sensors 2020, 20, 2081. [CrossRef] [PubMed]

28. Hassan, Z.; Abhijeet; Sharma, A. Internet of Life (IOL). In Proceedings of the International Conference of Advance Research and
Innovation (ICARI-2015), New Delhi, India, 31 January 2015; ISBN 978-93-5156-328-0.

29. ESP8266 Wi-Fi MCU I Espressif Systems, n.d. Available online: https://www.espressif.com/en/products/socs/esp8266 (accessed
on 21 September 2021).

https://www.fao.org/asiapacific/perspectives/agricultural-statistics/global-strategy/results-in-the-region/bangladesh/en/
https://www.fao.org/asiapacific/perspectives/agricultural-statistics/global-strategy/results-in-the-region/bangladesh/en/
https://doi.org/10.3390/ASEC2021-11190
https://a2i.gov.bd/smart-agriculture-for-smart-bangladesh/
https://doi.org/10.7160/aol.2016.080108
https://doi.org/10.3233/AIS-170440
https://doi.org/10.1109/ACCESS.2019.2935564
https://doi.org/10.1016/j.compag.2017.09.037
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.compag.2018.12.011
https://doi.org/10.1109/access.2019.2903720
https://doi.org/10.4156/jcit.vol8.issue2.26
https://doi.org/10.1016/j.procs.2019.11.016
https://doi.org/10.1109/ACCESS.2019.2949703
https://doi.org/10.3390/math11091981
https://doi.org/10.1016/j.iot.2019.100131
https://doi.org/10.3390/electronics9020319
https://doi.org/10.1177/1550147720917065
https://doi.org/10.1016/j.comnet.2020.107147
https://doi.org/10.1016/j.procs.2017.06.083
https://doi.org/10.1155/2023/5926294
https://doi.org/10.3390/s20216174
https://doi.org/10.3390/s20072081
https://www.ncbi.nlm.nih.gov/pubmed/32272801
https://www.espressif.com/en/products/socs/esp8266


Sensors 2023, 23, 8472 23 of 23

30. Papp, D. ESP8266 Web Server Saves 60% Power with A 1 Ms Delay. Hackaday. Available online: https://hackaday.com/2022/1
0/28/esp8266-web-server-saves-60-power-with-a-1-ms-delay/ (accessed on 28 October 2022).

31. BBS. Yearbook of agricultural statistics of Bangladesh 2020. In Bangladesh Bureau of Statistics; Ministry of Planning: Dhaka,
Bangladesh, 2021.

32. Crop Calendar Produced By BARC. Cropcalendar.Barcapps.Gov.Bd; 2021. Available online: http://cropcalendar.barcapps.gov.bd
(accessed on 8 January 2022).

33. Normalization Formula, Normalization Formula|Calculator (Examples with Excel Template), EDUCBA. 2021. Available online:
https://www.educba.com/normalization-formula/ (accessed on 11 February 2022).

34. K Means Clustering Using Weka—Geeksforgeeks, Geeksforgeeks. 2021. Available online: https://www.geeksforgeeks.org/k-
means-clustering-using-weka/ (accessed on 11 February 2022).

35. K-Means, Saedsayad.Com. 2021. Available online: https://www.saedsayad.com/clustering_kmeans.htm (accessed on 11
February 2022).

36. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J.; Data, M. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine
Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016.

37. Mirza Hasanuzzaman, Hasanuzzaman.Weebly.Com. Available online: https://hasanuzzaman.weebly.com/uploads/9/3/4/0/
934025/cropping_season.pdf (accessed on 10 September 2020).

38. Chakma, J.D.; Rahman, M.D. BAYAZID 2023, Bangladesh Agricultural Datasets, Mendeley Data, V6. Available online: https:
//data.mendeley.com/datasets/8pvfs5wyzf (accessed on 19 June 2023).

39. Brownlee, J. A Gentle Introduction to K-Fold Cross-Validation. Mach. Learn. Mastery 2021. Available online: https://
machinelearningmastery.com/k-fold-cross-validation/ (accessed on 19 March 2022).

40. Bytenskaya, Y. Decision Tree Classification Using Weka, Academia.Edu. 2021. Available online: https://www.academia.edu/19
022730/Decision_Tree_Classification_Using_Weka?source=swp_share (accessed on 28 March 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://hackaday.com/2022/10/28/esp8266-web-server-saves-60-power-with-a-1-ms-delay/
https://hackaday.com/2022/10/28/esp8266-web-server-saves-60-power-with-a-1-ms-delay/
http://cropcalendar.barcapps.gov.bd
https://www.educba.com/normalization-formula/
https://www.geeksforgeeks.org/k-means-clustering-using-weka/
https://www.geeksforgeeks.org/k-means-clustering-using-weka/
https://www.saedsayad.com/clustering_kmeans.htm
https://hasanuzzaman.weebly.com/uploads/9/3/4/0/934025/cropping_season.pdf
https://hasanuzzaman.weebly.com/uploads/9/3/4/0/934025/cropping_season.pdf
https://data.mendeley.com/datasets/8pvfs5wyzf
https://data.mendeley.com/datasets/8pvfs5wyzf
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://www.academia.edu/19022730/Decision_Tree_Classification_Using_Weka?source=swp_share
https://www.academia.edu/19022730/Decision_Tree_Classification_Using_Weka?source=swp_share

	Introduction 
	Related Work 
	The Proposed Framework 
	Design and Overview of the System 
	System Implementation 
	Crop Data Generation 
	Harvesting and Transplanting Time Forecasting 
	Data Analysis 


	Experimental Setup and Result Discussion 
	Datasets 
	Real-Time Data Acquisition Module 
	Real-Time Forecasting 
	Data Curation and Results 
	Data Modeling 
	Empirical Setup 

	Discussion and Future Work 
	Conclusions 
	References

