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Abstract: Malicious uniform resource locators (URLs) are prevalent in cyberattacks, particularly in
phishing attempts aimed at stealing sensitive information or distributing malware. Therefore, it is
of paramount importance to accurately detect malicious URLs. Prior research has explored the use
of deep-learning models to identify malicious URLs, using the segmentation of URL strings into
character-level or word-level tokens, and embedding and employing trained models to differentiate
between URLs. In this study, a bidirectional encoder representation from a transformers-based (BERT)
model was devised to tokenize URL strings, employing its self-attention mechanism to enhance the
understanding of correlations among tokens. Subsequently, a classifier was employed to determine
whether a given URL was malicious. In evaluating the proposed methods, three different types
of public datasets were utilized: a dataset consisting solely of URL strings from Kaggle, a dataset
containing only URL features from GitHub, and a dataset including both types of data from the
University of New Brunswick, namely, ISCX 2016. The proposed system achieved accuracy rates
of 98.78%, 96.71%, and 99.98% on the three datasets, respectively. Additionally, experiments were
conducted on two datasets from different domains—the Internet of Things (IoT) and Domain Name
System over HTTPS (DoH)—to demonstrate the versatility of the proposed model.
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1. Introduction

In July 2022, the Interisle Consulting Group published a report on the phishing
landscape covering the period from 1 May 2021 to 30 April 2022 [1]. The report highlighted
that over 3 million phishing events were detected, resulting in 1.1 million unique phishing
attacks during this period. Compared to a previous annual report released in July 2021,
the number of unique phishing attacks increased by 61%. Additionally, there was a 72%
rise in malicious domain names and an 83% increase in registered domain names used by
phishers. Furthermore, cryptocurrency phishing attacks experienced a significant surge
of 257%, explicitly targeting digital currency wallets and exchanges. According to Trend
Micro’s 2022 Cyber Security Report [2], over 16 million phishing attempts were detected
in 2021 worldwide, a 2.3-fold increase from the previous year. Of these incidents, 62%
originated from spam and 38% were associated with fake login pages. Furthermore, 90% of
data breaches in 2021 were attributed to phishing emails. The report further highlighted the
increasing vulnerability of non-fungible tokens (NFTs) to fraud, with scams involving fake
NFT exchange domains and deceptive websites that trick users into linking their wallets
while facilitating subsequent attacks.

URL analysis typically involves feature extraction or character embedding. Feature ex-
traction identifies essential URL attributes, such as domain, length, and character count, for
input into classification algorithms. Early machine learning models [3–8] relied on manual
feature extraction for accuracy. However, they were limited by their reliance on historical
data and time-consuming pre-processing, reducing the effectiveness of their real-time
cyberattack defense. Character embedding converts individual URL characters into vectors,
enabling deep-learning models to assess URL maliciousness. However, it has limitations,
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including different meanings for the same character in various URL positions and a lack of
character relationship consideration. In addressing this gap, ensemble models [9–13] have
often been used alongside character embeddings to capture URL features before making
decisions. Nevertheless, these malicious URL detection models were primarily tailored
for datasets with URL strings that lack the versatility to handle different data formats or
domains effectively.

Therefore, to overcome these limitations, this paper introduces a BERT-based (bidirec-
tional encoder representations from transformers) [14] approach to enhance the detection
of malicious URLs. This model excels at effectively capturing semantic relationships. In
particular, this study conducts a comprehensive evaluation using various publicly available
datasets, including those from Kaggle, GitHub, and ISCX 2016, to ensure a rigorous and
robust analysis. The proposed model achieves remarkably high accuracy rates across all
the datasets. Furthermore, the study assesses the model’s performance on both direct URL
strings and their derived feature representations, showcasing its versatility. Additionally,
the research extends the model’s applicability beyond detecting malicious URLs to include
attacks in IoT and DoH domains, highlighting its flexibility.

The remaining sections of this paper are organized as follows: Section 2 offers an
overview of related research and highlights the contributions of this study. Section 3 details
the proposed approaches for URL analysis. Section 4 presents the experimental results on
a variety of datasets, including accuracy, extensibility, and prediction time requirements.
Lastly, Section 5 provides a summary of the advantages, performance, and limitations of
the proposed system.

2. Related Research

Kumar et al. [3] proposed a multi-layer model for the detection of malicious URLs.
This model comprises several filters, including a stratified filter, a Naïve Bayesian filter, a
CART decision tree filter, and a Support Vector Machine (SVM) filter. Each filter makes its
unique contribution, resulting in an overall model accuracy of 79.55%. Ahammad et al. [4]
proposed a machine learning-based phishing detection method that extracts 15 features
from a URL. These features include the domain name, URL length, depth, domain name
system (DNS) records, presence in PhishTank, connection traffic, and other factors. Various
machine learning classifiers, including decision trees, random forests, Light GBM, and
support vector machines, were used with these features as inputs. Their findings indicate
that Light GBM achieved the highest accuracy rate of 86%. In contrast, Gupta et al. [5]
introduced a streamlined approach utilizing nine lexical features for phishing detection,
including the number of tokens in domain names, the number of top-level domains, URL
length, domain length, and the number of separators. By employing a random forest
classifier, they achieved an accuracy of 99.57%. Saleem et al. [6] developed a lightweight
machine-learning method for detecting malicious URLs. They selected 27 lexical features,
removed 7 irrelevant ones, and trained a classifier using the remaining 20 features. Their
results demonstrate that random forest achieved 99% accuracy, while k-nearest neighbors
(KNNs) achieved 98% accuracy, with a reduced processing time. The authors suggested
that KNN offers a better balance between time and accuracy, making it a preferred choice.

Li et al. [7] emphasized the importance of feature engineering. They introduced five
linear and nonlinear space transformation methods to address the challenges faced by
traditional classifiers. Using 62 features, the authors found that the experimental results
exhibited notable enhancements in the accuracy of KNN, SVM, and multi-layer perceptron
(MLP). The correct rates increased from 68%, 58%, and 63% to 86%, 81%, and 82%, respec-
tively. Mondal et al. [8] introduced a framework named SeizeMaliciousURL that utilizes
an ensemble classifier for identifying malicious URLs through voting. By leveraging the
distinctive strengths of multiple classifiers, the framework aggregates their probabilities to
make a final decision. Their results demonstrated that SeizeMaliciousURL outperformed
individual machine learning methods, achieving superior outcomes. Amid the heightened
phishing threats during the COVID-19 pandemic, Piñeiro et al. [15] proposed a web archi-
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tecture integrating three machine-learning algorithms: random forest, classification tree,
and support vector machine. By combining these models’ outputs through operations, their
system aimed for enhanced identification. Results showed that the pure classification tree
achieved the highest prediction accuracy at 80%. Kalabarige et al. [16] introduced MLSELM,
a multi-layer stacking integrated learning technology with three layers. The first layer
includes five classifiers: KNN, MLP, extreme gradient boosting (XGB), random forest (RF),
and logistic regression (LR). The second layer selects the top three classifiers from the first
layer, and their outputs proceed to the next layer. Subsequently, a “meta-learner” predicts
whether a URL is phishing. Experimental findings across three datasets (D1, D2, D3, and
D4) revealed that MLSELM attained accuracies of 97.76%, 98.90%, 96.79%, and 98.43%,
respectively, slightly surpassing individual basic models. Somesha et al. [17] proposed
a method for classifying phishing and regular emails based on headers. They utilized
word embedding, term frequency-inverse document frequency (TF-IDF), and FastText for
feature extraction and employed machine learning algorithms, like RF, SVM, LR, XGB, and
decision tree (DT). Results showed that RF achieved the highest accuracy of 99.5%, coupled
with a low false alarm rate of 0.053% when paired with FastText.

Furthermore, certain studies employed deep-learning models to address the issue of
classifying URLs. Li et al. [18] proposed a long short-term memory (LSTM)-based method
for detecting phishing emails, considering the increasing complexity of phishing camou-
flage. They combined KNN and K-Means to enhance the training dataset while achieving
an accuracy of 95%. Srinivasan et al. [9] introduced DURLD, a method that converts URLs
into character-level sequences and utilizes five models based on a convolutional neural net-
work (CNN) and recurrent neural network (RNN) for identifying malicious URLs. Across
multiple datasets, experiments yielded accuracies ranging from 93% to 98%. In particular,
the authors highlighted the shorter training time required in comparison to traditional
feature engineering-based methods. Bozkir et al. [10] introduced GramBeddings, a deep
neural network that fuses a CNN with bidirectional long short-term memory (BiLSTM) and
integrates a self-attention layer for phishing classification. L2 regularization was applied
during training to curb overfitting, resulting in an accuracy of 98.27%. Singh et al. [19]
employed GloVe embedding for pre-processing URLs and utilized a CNN-based model for
phishing detection, achieving a notable accuracy of 98.00%. Ariyadasa et al. [20] introduced
PhishDet, a phishing detection system that combines LSTM-CNN with URL and HTML
features. By incorporating graph neural networks (GNNs), PhishDet reached an accuracy
rate of 96.42%. The system comprises two independent models, URLDet and HTMLDet,
for processing URL and HTML content, respectively. However, the authors stressed the
importance of regular retraining to ensure consistent and sustained performance over time.

Alsaedi et al. [21] highlighted the limitations of relying solely on website content for
phishing detection due to obfuscation techniques. They proposed CTI-MURLD, a two-
stage integrated learning model incorporating network threat intelligence from Google
searches and Whois websites to enhance detection performance. This model combines
the random forest algorithm with an MLP classifier, leveraging the decision tree output
as input for the MLP. Compared to traditional URL-based models, CTI-MURLD achieved
a 7.8% accuracy increase and reduced the false positive rate by 6.7%. Alshehri et al. [11]
proposed a lightweight deep-learning model for phishing detection. Using character-level
embeddings to convert URLs into vector representations and utilizing merged CNN1D
models, their approach achieved an accuracy of 98.13% while maintaining low compu-
tational resource requirements. The model also reduced execution time by up to 30%
compared to word-level embeddings. Zheng et al. [12] proposed a deep convolutional
neural network model (HDP-CNN) to tackle the reliance on expert features in phishing
detection. By combining character- and word-level information and utilizing a deep pyra-
mid structure, the model captures both the local and global features of URLs, achieving an
impressive 98.3% accuracy. Hussain et al. [13] proposed a lightweight CNN-fusion model
that utilized multiple CNNs with varying kernel sizes to extract features from URLs at
different levels. This model achieved an accuracy of 99%. Notably, it is well-suited for de-
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vices with limited GPU memory. Remmide et al. [22] introduced a temporal convolutional
network (TCN) with word embeddings, combining RNN and CNN to capture temporal
and spatial features. Their results demonstrated an accuracy of 98.95%, accompanied by
a precision, recall, and F1-score all reaching 98%. Wang et al. [23] introduced the TCURL
hybrid network architecture, which combines CNNs and transformers to leverage CNNs’
positional information for replacing positional encoding in transformers. The self-attention
mechanism captures internal dependencies, and the integrated output is utilized for binary
classification. Experimental results on the ISCX 2016 dataset demonstrated an accuracy
of 99.7%.

Maneriker et al. [24] introduced URLTran, which leverages advancements in natural
language processing (NLP) to detect phishing URLs. URLTran comprises three distinct
models: URLTran_RoBERTs, URLTran_BERT, and URLTran_CustVoc. The former two
models employ word piece and byte pair encoding (BPE) techniques for tokenization,
while the latter utilizes customized character-level BPE vocabularies derived from the
training dataset. The authors also utilized two other models, URLNet and Texception,
as baselines to show the performances of URLTran. The experiments were conducted
using a non-public dataset. The URLTran_BERT model outperformed the others slightly,
achieving an accuracy of 99.67%. The authors noted that when setting the false positive rate
(FPR) to 0.01%, URLTran BERT attained a true positive rate (TPR) of 86.80%, surpassing
URLNet at 71.20% and Texception at 52.15%. It is worth noting that all URLTran models
exclusively accepted URL strings as input. Ullah et al. [25] harnessed BERT to construct an
interpretable malware detection system tailored for the Android platform. They utilized
BERT to extract the acquired textual features and subsequently introduced an algorithm to
convert malware into images, streamlining the transformation of network byte streams into
visual representations. Lin et al. [26] introduced ET-BERT, a model for classifying encrypted
network traffic. It employs pre-training to develop deep contextualized datagram-level
representations from extensive unlabeled data. With fine-tuning on a limited amount of
task-specific labeled data, ET-BERT achieved excellent performance across five encrypted
traffic classification tasks. Shi et al. [27] introduced a BERT-based time-series feature
network (TSFN) model designed for the identification of malicious traffic. This model
consists of two key components. The first part utilizes BERT to capture global features of
the traffic, while the second part employs LSTM to capture the time-series characteristics of
the traffic. These two sets of features are then combined to represent the traffic effectively.
Experiments conducted on the publicly available USTC-TFC dataset demonstrated that the
model can achieve an impressive F1-score value of 99.50%.

In recent years, deep learning models have increasingly been considered replacements
for traditional machine learning algorithms in addressing a wide range of security issues.
This paper introduces a novel approach that makes the following contributions:

1. Utilization of BERT-based model with public datasets: The proposed system leverages
three public datasets to demonstrate the effectiveness of the BERT-based model in
detecting malicious URLs.

2. Feature-based detection: Even when provided with only URL features rather than
the URL strings, the proposed method works well, highlighting the versatility of the
approach in different scenarios.

3. Extensibility: The proposed method has the potential for extension to identify attacks
in other environments, such as the Internet of Things (IoT) and Domain Name System
over HTTPS (DoH), not solely limited to malicious URL detection.

4. Real-time detection: The proposed system is designed for real-time deployment,
allowing it to swiftly detect malicious URLs as they appear, enhancing online secu-
rity measures.

3. The Proposed Methodology

Public datasets on URLs can be categorized into two types. One provides only the
URL string (Figure 1a), like those on Kaggle [28], and the other offers various features
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extracted from the URLs (Figure 1b), seen in datasets on GitHub [29], with 111 features per
URL. Some datasets, such as ISCX 2016 [30], include both URL strings and features.
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Figure 1. Different types of URL datasets. (a) URL strings and labels (https://www.kaggle.com/
datasets/sid321axn/malicious-urls-dataset) (accessed on 26 August 2023). (b) URL features and
labels (without URL string) (https://github.com/GregaVrbancic/Phishing-Dataset) (accessed on
26 August 2023).

The approach in Figure 2 was designed to manage both types of datasets. When
dealing with datasets containing only URL strings, BERT was utilized for tokenization,
leveraging its self-attention mechanism to grasp semantic meaning. A subsequent classifier
determined the maliciousness of each URL. For datasets comprising URL features without
URL strings, the feature engineering algorithm—random forest—was used to select key
features and form a feature string for each URL entry. Subsequently, a similar BERT
process was applied to the feature strings of all entries. Essentially, the proposed system
employed BERT for both URL strings and feature strings, facilitating the effective analysis
and classification of malicious URLs. The algorithm is illustrated in Algorithm 1.

Algorithm 1: URL Classification

Input: A dataset of labeled URLs or features, divided into 80% training and 20% testing.
Output: Confusion matrix.

1. If the dataset contains URLs, use the training dataset to fine-tune the pre-trained BERT
model and use the test dataset to evaluate.

2. Else://for the dataset with only features.
3. Select k important features using the random forest algorithm.
4. If the dataset is imbalanced, apply the SMOTE algorithm [31] to balance classes with

fewer instances.
5. Normalize the data.
6. Concatenate selected features of each entry into a feature string with “/” as a separator.
7. Fine-tune the pre-trained BERT model using the training dataset.
8. Evaluate the model using the testing dataset.
9. Output the confusion matrix accompanied by accuracy, precision, and recall rate.
10. Endif

https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
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Figure 2. The proposed approach.

3.1. Data Pre-Processing

This section outlines the distinct pre-processing steps for the two types of datasets.

3.1.1. URL String and BERT Tokenization

For datasets containing only URL strings and labels, URL strings were used as the
inputs for BERT tokenization. Unlike traditional character-level tokenization that assigns
the same embeddings to identical characters, BERT tokenization takes into account the
significance of letters within different vocabularies. In this study, the bert-base-cased model
was employed for tokenizing the URL strings. The BERT token dictionary (see Figure 3a)
and an example of URL tokenization (see Figure 3b) are provided. For example, the URL
string “br-icloud.com.br” is divided into 10 tokens.
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3.1.2. URL Feature String and BERT Tokenization

The pre-processing complexity increases when a dataset incorporates URL-related
features without including URL strings. In the GitHub dataset [29], each entry is associated
with 111 features and a label. This study selected essential features using the random forest
algorithm and combined them into a feature string representation of the entry. To preserve
feature integrity and prevent arbitrary tokenization during BERT processing, a separator
“/” was added between essential features, as illustrated in Figure 4. For example, when
two adjacent features have values of 25 and 24, the “/” separator results in the feature
string “25/24” being used and split into three tokens: {“25”, “/”, and “24”}. Without the
separator, “2524” could be split into tokens like {“2524”}, {“252” and “4”}, or {“2” and
“524”}. The “/” separator helps maintain the integrity and distinction of individual features
during tokenization.
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3.2. Fine-Tuning the BERT Model

Enhancing the performance of the pre-trained BERT model designed initially for
natural language texts is essential when dealing with unnatural languages such as URLs.
Transfer learning techniques were employed for this purpose. The choice of the pre-trained
bert-base-cased model was motivated by its sensitivity to URL character cases. Input for the
BERT model consists of three tensors, as depicted in Figure 5. The “tokens” tensor captures
token embeddings, exemplified by the URL “br-icloud.com.br” being divided into 10 tokens.
The initial {CLS} token marks the start of input and carries overall semantics. If the URL is
short, {pad} tokens are appended at the end. The “segments” tensor distinguishes between
sentences A (i.e., 0) and B (i.e., 1). However, given a single URL input, all values in the
“segment” tensor are set to 0. Lastly, the “attention masks” tensor determines the scope of
self-attention. In this study, the entire URL was treated as a single sentence, necessitating
attention for all tokens. Consequently, all values in the “attention masks” tensor were
set to 1.

The output of the self-attention processing, representing the entire string—whether a
URL string or a URL feature string—was encapsulated in the corresponding output {CLS}.
A classifier was added to this {CLS} output for fine-tuning, as seen in Figure 6. In this
study, the BertForSequenceClassification classifier was utilized. Once trained, the model
could determine whether a given URL is normal or malicious. A brief introduction to the
self-attention concept is provided below, while in-depth details about the BERT mechanism
are available in [32].



Sensors 2023, 23, 8499 8 of 18

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

3.2. Fine-Tuning the BERT Model 

Enhancing the performance of the pre-trained BERT model designed initially for nat-

ural language texts is essential when dealing with unnatural languages such as URLs. 

Transfer learning techniques were employed for this purpose. The choice of the pre-

trained bert-base-cased model was motivated by its sensitivity to URL character cases. 

Input for the BERT model consists of three tensors, as depicted in Figure 5. The “tokens” 

tensor captures token embeddings, exemplified by the URL “br-icloud.com.br” being di-

vided into 10 tokens. The initial {CLS} token marks the start of input and carries overall 

semantics. If the URL is short, {pad} tokens are appended at the end. The “segments” ten-

sor distinguishes between sentences A (i.e., 0) and B (i.e., 1). However, given a single URL 

input, all values in the “segment” tensor are set to 0. Lastly, the “attention masks” tensor 

determines the scope of self-attention. In this study, the entire URL was treated as a single 

sentence, necessitating attention for all tokens. Consequently, all values in the “attention 

masks” tensor were set to 1. 

 

Figure 5. BERT input format. 

The output of the self-attention processing, representing the entire string—whether 

a URL string or a URL feature string—was encapsulated in the corresponding output 

{CLS}. A classifier was added to this {CLS} output for fine-tuning, as seen in Figure 6. In 

this study, the BertForSequenceClassification classifier was utilized. Once trained, the 

model could determine whether a given URL is normal or malicious. A brief introduction 

to the self-attention concept is provided below, while in-depth details about the BERT 

mechanism are available in [32]. 

Figure 5. BERT input format.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 6. Illustration of self-attention, using token x1 as an example. 

Consider X = [x1, x2, …, xn] as the set of tokens within a URL, encompassing {CLS} as 

illustrated in Figure 6. Each input token xi, where 1 ≤ i ≤ n, has been transformed into a 

vector and subjected to multiplication with three weight matrices: WQ, WK, and WV, result-

ing in the corresponding triplets (𝑞𝑖 , 𝑘𝑖 , and 𝑣𝑖), as indicated in Equations (1)–(3), respec-

tively. The three matrices, WQ, WK, and WV, are derived through a learning process. The qi 

serves as the query, the ki serves as the key to be queried, and the vi represents the token’s 

information. For clarity, token x1 is employed to illustrate self-attention in Figure 6.  

𝑥𝑖 ∙ 𝑊𝑄 = 𝑞𝑖 (1) 

𝑥𝑖 ∙ 𝑊𝐾 = 𝑘𝑖 (2) 

𝑥𝑖 ∙ 𝑊𝑉 = 𝑣𝑖 (3) 

In Figure 6, the q1 is utilized to query kj, where 1 ≤ j ≤ n, through an inner product 

operation as described in Equation (4). The value 𝛼1,𝑗 represents the attention score of 

token x1 towards token xj. Subsequently, the Softmax function is applied to determine the 

proportions by which token x1 should be influenced by all tokens, as depicted in Equation 

(5). Ultimately, the output of token x1, denoted as y1, is obtained by summing the contri-

butions from each token, as demonstrated in Equation (6). 

𝑞1 ∙ 𝑘𝑗  = 𝛼1,𝑗 (4) 
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  (4) 

𝑦1 = ∑ 𝛼1,𝑗
′ 𝑣𝑖𝑖   (5) 

Figure 6. Illustration of self-attention, using token x1 as an example.

Consider X = [x1, x2, . . ., xn] as the set of tokens within a URL, encompassing {CLS}
as illustrated in Figure 6. Each input token xi, where 1 ≤ i ≤ n, has been transformed
into a vector and subjected to multiplication with three weight matrices: WQ, WK, and
WV, resulting in the corresponding triplets (qi, ki, and vi), as indicated in Equations (1)–(3),
respectively. The three matrices, WQ, WK, and WV, are derived through a learning process.
The qi serves as the query, the ki serves as the key to be queried, and the vi represents the
token’s information. For clarity, token x1 is employed to illustrate self-attention in Figure 6.

xi·WQ = qi (1)
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xi·WK = ki (2)

xi·WV = vi (3)

In Figure 6, the q1 is utilized to query kj, where 1 ≤ j ≤ n, through an inner product
operation as described in Equation (4). The value α1,j represents the attention score of
token x1 towards token xj. Subsequently, the Softmax function is applied to determine
the proportions by which token x1 should be influenced by all tokens, as depicted in
Equation (5). Ultimately, the output of token x1, denoted as y1, is obtained by summing the
contributions from each token, as demonstrated in Equation (6).

q1·k j = α1,j (4)

α′1,j =
exp

(
α1,j

)
∑j exp

(
α1,j

) (5)

y1 = ∑i α′1,jvi (6)

Note that all the outputs of token xi, where 1 ≤ i ≤ n, can be calculated in parallel
using Equation (7), where Q = [q1, q2, . . . , qn], K = [k1, k2, . . . , kn], V = [v1, v2, . . . , vn], and√

dK, denotes the dimensions of key k. The output of BERT is a 768-dimensional vector.

self_attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

In summary, the model divides the URL into individual tokens and employs an
attention mechanism to calculate contextual relationships among them. Each token is
evaluated for its attention score in relation to others using Equations (1)–(6). Finally,
Equation (7) is applied to extract the comprehensive semantic meaning of the entire URL,
with the aim of determining whether the URL is malicious.

4. Experimental Results

This study conducted experiments using three distinct types of public datasets sourced
from Kaggle [28], GitHub [29], and ISCX 2016 [30]. Specifically, Kaggle [28] exclusively
contained URL strings, GitHub [29] provided URL features without accompanying URL
strings, and ISCX 2016 [30] encompassed both URL strings and features. In assessing the
efficacy of the proposed methods, various metrics, including accuracy, precision, and recall,
were employed, as defined below:

Accuracy =
TP + TN

TP + TN + FN + FP

Recall =
TP

TP + FN

Precision =
TP

TP + FP

where, TP, TN, FN, and FP represent true positive, true negative, false negative, and false
positive, respectively. This study utilized a computer equipped with an Intel Core i9 CPU
with 64 GB memory and an NVIDIA RTX3070Ti GPU with 8 GB memory (ASUS WS750T).
All the hyperparameters used in the experiments are detailed in Table 1.
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Table 1. Hyperparameters used for training the proposed model.

attention probs
dropout prob hidden act hidden

dropout prob
initializer
range

intermediate
size

type vocab
size

max seq
length BERT model num train

epochs

0.1 gelu 0.1 0.02 3072 2 128 bert-base-
cased 10/20/30

max position
embeddings hidden size num attention

heads
layer norm
eps

num hidden
layers

learning
rate

train batch
size vocab size

512 768 12 1 × 10−12 12 1 × 10−5 16 28,996

4.1. Performance on Kaggle Dataset

The Kaggle dataset [28] comprises four distinct URL types: benign, defacement,
phishing, and malware. Among URL strings with lengths below 250 characters, the
respective entry counts for these categories are approximately 424,000 for benign, 95,000 for
defacement, 93,000 for phishing, and 32,000 for malware. Instances with exceptionally
long lengths were infrequent; hence, they were excluded to reduce GPU memory usage
and training duration. The dataset used in this study contained 99% of entries from the
original dataset. For the initial experiment, a subset of ten thousand samples was randomly
selected from each category, resulting in a total of 40 thousand samples. The results of
this experiment are presented in Figure 7a, showing an accuracy rate of 96.70%. When
expanding the sample size to min {one hundred thousand, actual number of entries}
samples for each category, the results (shown in Figure 7b) indicate an improved accuracy
rate of 98.02%. Finally, utilizing the entire dataset for experimentation, the outcomes
(displayed in Figure 7c) exhibit an accuracy rate of 98.78%. In all three experiments, 80% of
instances were allocated for training, while the remaining 20% were reserved for testing.
Detailed results for these three experiments can be found in Table 2. A comparison with
other related work is provided in Table 3.

Table 2. Kaggle dataset for multiclass classification.

Samples for Each Category #URLs Accuracy (%) Precision (%) Recall (%)

10,000 40,000 96.70 96.74 97.73

Min {100,000, actual
entry number} about 320,000 98.02 97.71 97.96

All 646,083 98.78 99.12 98.02

Table 3. Comparison with the literature using the Kaggle dataset.

Research Approach Binary/Multi
Classification Accuracy (%)

Alsaedi et al. [21] (2022)

Ensemble features +
Classifiers (DT) Binary 95.70

Ensemble features +
Classifiers (RF) Binary 96.80

Ensemble features +
Classifiers (CNN) Binary 94.70

Ensemble features +
Classifiers (RF with feature selection) Binary 96.80

Ensemble features +
Classifiers (RF with feature selection and grid

search best-found hyperparameters)
Binary 97.25

This study Fine-tuning BERT + Classifier Multi 98.78
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4.2. Performance on GitHub Dataset

The GitHub dataset [29] comprises approximately 88,000 entries, divided into two cat-
egories: 58,000 benign URLs and 30,000 phishing URLs. Unlike providing URL strings, this
dataset furnished 111 features for each entry. In this study, the importance of each feature
was computed using the random forest algorithm. From these, 46 essential features with
an importance value exceeding 0.009 were selected. These features were then concatenated
into a feature string, as illustrated in Figure 8. To preserve the integrity of individual
features and facilitate self-attention within BERT tokens, the symbol “/” was employed
for concatenation. With an 80–20% split for training and testing, the confusion matrix
is depicted in Figure 9, where k = 46 denotes the number of selected features, showing
accuracy, precision, and recall rates of 96.71%, 96.25%, and 96.50%, respectively.
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Table 4 outlines the performance metrics for different k values, while Figure 10 illus-
trates the learning curves of the validation accuracy for the model across various k values
during training. To the best of our knowledge, there were no pertinent experimental results
in the literature for this dataset, thus rendering direct comparisons unfeasible. Nonethe-
less, the proposed approach achieved a noteworthy accuracy of 96.71%, emphasizing its
effectiveness in handling the dataset.
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Table 4. Performance of the different number of features (i.e., k) selected on the GitHub dataset.

k (#Features) Accuracy (%) Precision (%) Recall (%)

2 92.64 91.33 92.99
3 93.36 92.38 93.09
8 94.69 94.44 93.76
17 95.84 95.64 95.14
30 95.93 95.83 95.14
46 96.71 96.25 96.50
80 96.53 96.17 96.15
86 96.42 96.48 95.70
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4.3. Performance on ISCX 2016 Dataset

The ISCX 2016 dataset [30] comprises approximately 160,000 entries divided into five
categories: around 35,000 benign URLs, 96,000 defacements, 11,000 malware, 11,000 spam,
and 10,000 instances of phishing. The confusion matrix, with an 80–20% splitting for
training and testing, is shown in Figure 11 as an epoch set to 30. The achieved accuracy,
precision, and recall were 99.78%, 99.73%, and 99.34%, respectively. For the purpose of
straightforward comparison with other research, a binary classification was also performed,
wherein the four negative classes—defacements, malware, spam, and phishing—were
collectively labeled as “malicious”. In this binary scenario, an impressive accuracy rate of
99.98% was attained. The comparative results are summarized in Table 5.
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Table 5. Comparison with other research on the ISCX 2016 dataset.

Research Binary/Multi-
Classification Accuracy (%) Approach

Saleem et al. [6] (2021) Binary 99 Feature extraction + RF

Gupta et al. [5] (2021) Binary
(phish only) 99.57 Feature extraction + RF

Bozkir et al. [10] (2023) Binary
(phish only) 99.82 n-gram + CNN_BiLSTM +

Attention

Wang and Chen [23] (2022)

Binary
(phish only) 99.77 CNN1D + Transformer

Binary
(phish only) 98.67 CNN-MHSA

Binary
(phish only) 99.57 BiLSTM

This study
Binary 99.98 Fine-tunned BERT +

ClassifierMulti 99.78

4.4. Extending to Other Domains

The proposed feature string approach was further extended to include the detection
of attacks targeting the Internet of Things (IoT) and attacks directed at DNS over HTTPS
(DoH)—a protocol designed to enhance the security of DNS queries and responses. Two
publicly available datasets, the “IoT Attack Dataset 2023” and the “DoHBrw 2020”,
were utilized for this purpose and can be obtained from the website [33]. Detailed
dataset information is also provided on the same website. The IoT dataset contains
approximately 620,000 instances, categorized into eight classes, while the DoHBrw 2020
dataset consists of about 560,000 instances, falling into three classes. The confusion
matrices for the two datasets, with an 80–20% split for training and testing, are presented
in Figures 12a and 12c, respectively.
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The performance metrics are summarized in Table 6. Notably, the IoT dataset exhibited
class imbalance due to significantly fewer instances in the brute-force and web-based classes
compared to others. In addressing this gap, the SMOTE algorithm [31] was employed to
augment these two classes, ensuring a more balanced dataset. Additionally, experiments
were conducted on the augmented IoT dataset. The confusion matrix is presented in
Figure 12b, with corresponding numerical performance values included in Table 6.

Table 6. Expanding the proposed method to other domains.

Dataset Accuracy (%) Precision (%) Recall (%)

IoT Attack
Dataset 2023

original 93.62 89.29 87.75

augmented by
SMOTE [31] 93.71 93.77 93.71

DoHBrw 2020 (original) 99.56 97.57 98.04
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4.5. URL Prediction Time

Moreover, the measurement of prediction times for real-time detection using the
proposed approach was performed. Figure 13a illustrates the distribution of six malicious
URLs and two benign URLs. The average prediction time per URL was approximately
0.010146 s, as shown in Figure 13b. These measurements were carried out on a desktop
equipped with an Intel Core i9-3.50 GHz processor.
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5. Conclusions and Future Work

This study presents a BERT-based approach for non-natural language processing tasks,
with a specific focus on identifying malicious URLs. Through extensive experiments carried
out on three distinct public datasets (Kaggle, GitHub, and ISCX 2016), the effectiveness
of the proposed model has been demonstrated. In comparison to previous research, the
proposed system outperforms in terms of accuracy. In the multi-classification experiments
conducted on the Kaggle dataset, the achieved accuracy was 98.78%. For the GitHub
dataset, which provides only features without corresponding URL strings, the proposed
model exhibited an accuracy of 96.71%. In the ISCX 2016 dataset experiments, the model
displayed remarkable accuracy rates of 99.98% in binary classification and 99.78% in multi-
classification tasks. Furthermore, two datasets from different domains concerning IoT and
DNS over HTTPS were incorporated into the study to demonstrate the versatility of the
proposed system. Moreover, the proposed pre-trained model can make decisions on tested
URLs quickly, making the system suitable for real-time detection deployment. Indeed,
the BERT-based approach demonstrates superior performance when compared to other
methods in experiments with existing URL datasets. However, its effectiveness in detecting
zero-day malicious URL attacks, including newly registered URLs or benign web servers
that have turned malicious due to infections, remains uncertain. In the future, we aspire to
conduct further investigations into these related issues.
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