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Abstract: With the increasing concerns for the environment, the amount of the data monitored by
wireless sensor networks (WSNs) is becoming larger and the energy required for data transmission
is greater. However, sensor nodes have limited storage capacity and battery power. The WSNs are
faced with the challenge of handling larger data volumes while minimizing energy consumption
for transmission. To address this issue, this paper employs data compression technology to elim-
inate redundant information in the environmental data, thereby reducing energy consumption of
sensor nodes. Additionally, an unmanned aerial vehicle (UAV)-assisted compressed data acquisition
algorithm is put forward. In this algorithm, compressive sensing (CS) is introduced to decrease the
amount of data in the network and the UAV serves as a mobile aerial base station for efficient data
gathering. Based on CS theory, the UAV selectively collects measurements from a subset of sensor
nodes along a route planned using the optimized greedy algorithm with variation and insertion
strategies. Once the UAV returns, the sink node reconstructs sensory data from these measurements
using the reconstruction algorithms. Extensive experiments are conducted to verify the performance
of this algorithm. Experimental results show that the proposed algorithm has lower energy con-
sumption compared to other approaches. Furthermore, we employ different data reconstruction
algorithms to recover data and discover that the data can be better reconstructed in a shorter time.

Keywords: environmental monitoring; wireless sensor networks; unmanned aerial vehicle; data
compression

1. Introduction

Wireless sensor networks (WSNs) are composed of a large number of wireless sensor
nodes. Each sensor node has the ability to sense the current environment, communicate
with neighboring nodes, and perform local computation. Due to the characteristics of low
power consumption and low cost, the WSNs have a wide range of applications in the field
of environmental monitoring. But the environmental monitoring involves more areas and
the data are larger. This means that sensor nodes need to collect a large amount of data and
send data to the sink node through wireless communication for processing and analysis.
Sensor nodes are usually battery powered, and the computation and communication
capabilities are very limited. With sensor nodes scattered over a wide area, massive data
transmission can easily cause network congestion and consume more energy. Especially
in monitoring areas with complex environments or that are inaccessible to humans, it is
difficult to replenish energy, and the data collection in WSNs becomes challenging.

Unmanned aerial vehicles (UAVs) have high flexibility, and they can quickly reach
sensor nodes to collect data without being restricted by terrain and geography. With
the development of information technologies, UAVs show greater application promise in
environmental monitoring. In contrast to traditional data collection methods, UAVs can
cover a larger range, overcome obstacles and collect dispersed sensory data. However, the
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energy of UAVs is also limited, so data compression is used to reduce the energy required
for data transmission. In traditional data compression methods, encoding and decoding
are more complex, which can increase the computational burden on sensor nodes and
shorten the lifetime of the network. Therefore, how to effectively realize compressed data
acquisition is an important topic in UAV-assisted WSNs.

2. Related Work

The compressive sensing (CS) theory is a data dimensionality reduction method that
converts data from high-dimensional space to low-dimensional space. This method can
reconstruct original data with the minimal information loss, thus ensuring data accuracy [1].
In recent years, the CS-based data gathering problem has been studied widely. Karaku et al.
studied the energy consumption model and theoretically analyzed the energy efficiency of
the CS theory in data acquisition of WSNs [2]. Fazel et al. exploited random sensing and
random access for long-term monitoring of the underwater WSNs geographic environment [3].
Chen et al. investigated compressive data collection in multi-attribute scenarios [4]. Similarly,
He et al. studied the multi-attribute data gathering in heterogeneous WSNs [5], which
exploited Hankel matrices and spatio-temporal correlation of sensory data for data collection.
Wang et al. addressed the data aggregation problem in a dynamic WSN. When a new node
joined the network, they only optimized the corresponding column vector of the new node
rather than regenerated the measurement matrix [6]. Xiang et al. combined the compressed
data aggregation and the Minimum Spanning Tree (MST) to minimize the energy consumption
of the network [7]. The CS encoding was performed only when the packets that the sensor
nodes sent were not smaller than the number of measurements. Compared with traditional
data acquisition, the throughput was significantly improved under low power consumption.
In [8], the interest node for CS was selected based on the sparse random matrix and their
random projections were transmitted to the sink node through the MST structure. Based on
cluster technology, Sun et al. put forward a sparse sampling scheme [9], which randomly
selected nodes to perform the sensing task, and sent data to the gateway node through the
cluster heads. Later, the UAVs were combined with the cluster technology to transmit data in
WSNs [10].

In [11], Unmanned Aerial Systems (UAS) dynamically cooperated with the WSNs
for effective data collection. The experimental results validated that energy consumption
was reduced compared to that of traditional multi-hop data gathering methods. In [12],
the wake-up schedule of sensor nodes and the trajectory of UAV were jointly optimized.
Likewise, the user scheduling and the route design of the UAV were combined to minimize
the data loss in large-scale WSNs [13]. Particle swarm optimization (PSO) algorithm was
used for 3-D path planning of the UAV in [14]. Liu et al. took the time-constrained data
collection of the UAV in environmental monitoring systems into account and formulated
the UAV trajectory planning problem as an optimization problem of the UAV flight speed,
hovering position and access sequence [15]. A successive convex approximation (SCA)
method and genetic algorithm (GA)-based algorithm was developed to solve this problem.
Qadir et al. analyzed the different metaheuristic algorithms and proposed a dynamic group-
based co-optimization algorithm for UAV path optimization in a disaster situation [16].

Based on the above analysis, we summarize the related work in Table 1. Though
compressive data gathering in WSNs has achieved a large number of significant results,
data gathering in the UAV-assisted WSNs needs to meet the requirement of high energy
efficiency and high compression efficiency, and the energy consumption of the UAV
and sensor nodes must be considered simultaneously. Our study was inspired by the
reference [10], which designs a highly sparse measurement matrix for data compression,
enabling the UAV to visit only a subset of nodes. This article represents an extended version
of our previous work [17,18]. The difference is that this article employs two pre-designed
strategies for the UAV’s path planning, and investigates the performance of data monitoring
using different sensing matrices and reconstruction algorithms. The main contributions are
as follows.
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• The CS theory is combined with UAV technology to realize efficient data collection in
WSNs. To be specific, the CS theory separates encoding and decoding into measure-
ment and reconstruction. Based on the CS theory, the sensor node only uses the simple
multiplication and addition operations to implement data compression, while data
reconstruction is carried out on the powerful sink node, improving the compression
efficiency. In addition, the UAV is used as a mobile aerial base station to transmit data
and further improves the efficiency of data collection;

• The minimization problem of energy consumption in a UAV-based data collection
system is formulated as an optimization problem of the hovering locations of the UAV
and path planning. For this problem, we propose a UAV-assisted compressed data
acquisition algorithm. This algorithm makes use of the CS theory to determine the
data collection locations of the UAV and optimizes greedy algorithm to obtain the
optimal path;

• In terms of compressed data acquisition, the results of the experiment demonstrate that
the proposed algorithm reduces the energy consumption of the system compared with
the benchmark algorithms, such as genetic algorithm, PSO algorithm, and simulated
annealing algorithm. Furthermore, the sensing matrix in the proposed algorithm can
improve the data monitoring accuracy.

Table 1. Overview of the data collection-related work in WSNs.

Surveys Objective Method

Karaku et al. [2] analyze the energy efficiency of the CS theory
on the network lifetime.

build a unified computation and communication
energy model, and construct the MIP framework.

Fazel et al. [3] save energy and bandwidth. employ the CS theory and random channel access.

Chen et al. [4] decrease the measurements. exploit correlations among attributes.

He et al. [5] improve the recovery accuracy.
utilize the low-rank block Hankel matrix to exploit
the inherent correlation among multi-attribute
data.

Wang et al. [6] reduce the energy consumption of the new
nodes added in dynamic WSNs. make use of the CS-based data aggregation.

Xiang et al. [7] realize the high-fidelity data collection. develop diffusion wavelet as the sparsifying basis
and compressed data aggregation.

Ebrahimi et al. [8] prolong the network lifetime. exploit compressive data gathering based on
the MSTP.

Sun et al. [9] reduce the energy consumption and improve
the robustness.

use the cluster-based topology for data
transmission and the sparsest random sampling

Ebrahimi et al. [10] implement energy-efficient data collection in
dense WSNs.

use the UAVs and the clustered tree for
compressive data gathering

Martinez-de Dios et al. [11] improve the performance of data collection
and prolong the lifetime of the nodes.

utilize the dynamic cooperation of the UAS and
WSN for data collection.

Zhan et al. [12] minimize the maximum energy consumption
of all SNs.

jointly optimize the SNs’ wake-up schedule and
the UAV’s trajectory.

Wang et al. [13] minimize the data loss. join the user scheduling and the UAV’s
trajectory planning.

Yu et al. [14] perform tasks efficiently with the UAVs. use hybrid PSO algorithm to plan the UAVs’ path.

Liu et al. [15] minimize the mission completion time of
the UAV.

optimize the UAV’s flying speeds, hovering
positions and visiting sequence through the SCA
and GA-based algorithms

Qadir et al. [16] plan the collision-free path of the UAV for
pre-disaster assessment.

analyze different meta-heuristic algorithms and
propose Dynamic Group-Based
Cooperative Algorithm.
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The rest of this article is organized as follows. In Section 3, we introduce the system
model and describe a UAV-assisted compressed data acquisition algorithm in detail. Section 4
demonstrates the performance of the proposed algorithm through the experiments. Section 5
concludes this paper.

3. System Model and Method

This section first introduces the CS theory, and then describes the system model of the
UAV and WSN. Finally, a UAV-assisted compressed data acquisition algorithm is presented.

3.1. CS Theory

In CS theory, when x has a sparse characteristic under a basis, it can be represented as
Equation (1).

x = ΨΘ (1)

where Ψ is the sparsifying basis with N rows and N columns, and Θ is a coefficient vector.
If the number of non-zero elements in Θ is k, then x is regarded as k-sparse and the sparsity
is k. If the elements in Θ that are sorted in decreasing order of magnitude decrease quickly,
x is approximately sparse, and the numerical sparsity is used as an alternative to the
sparsity [19].

In a WSN with N sensor nodes, if each sensor node is marked as si(1 ≤ i ≤ N) and
the corresponding sensory data are xi, then the N nodes’ sensory data can be written as
a vector x = [x1, x2, ..., xi, ..., xN ]

T . When x is sparse or approximately sparse in the basis
Ψ, the CS theory can be utilized to collect the measurements y = [y1, y2, ..., yi, ..., yM]T by
Equation (2).

y = Φx = ΦΨΘ (2)

where Φ is the measurement matrix with M rows and N columns, M is the number of
measurements. Since M is much smaller than N, Equation (2) is an under-determined
equation, and x has infinite solutions. Given the sensing matrix ΦΨ and the measurements
y, the CS theory states that x can be recovered by solving the l0-norm minimization problem
in Equation (3).

Θ̂ = argmin‖Θ‖0 s.t. y = ΦΨΘ (3)

As the problem in Equation (3) is NP-hard, two categories of solution algorithms have
been extensively studied. One category is greedy algorithm, such as OMP, StOMP, CoSaMP
and SP. The other one is convex optimization algorithm, which transforms the l0-norm
minimization problem into the l1-norm minimization problem in Equation (4), and solves
by linear programming, such as BP. According to these algorithms, we can obtain Θ̂ and
then reconstruct the N nodes’ sensory data x̂ by Equation (5).

Θ̂ = argmin‖Θ‖1 s.t. y = ΦΨΘ (4)

x̂ = ΨΘ̂ (5)

3.2. The UAV-Based System Model

The system we consider contains a WSN and a UAV, as shown in Figure 1. The WSN
consists of a large number of sensor nodes and one sink node s0. The UAV stops above at
the sink node. After receiving the data acquisition command, the UAV leaves the sink node
to collect data.

When the UAV arrives at the specified locations, it communicates with sensor nodes
through the air-to-ground communication mode [20]. The average data rate R between
them is

R = B log2(1 +
P

P̄LossN0
), (6)
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where B is the bandwidth, P is the sensor nodes’ transmitting power, N0 is the noise power
of the spectral density, and P̄Loss is the average path loss defined as Equation (7).

P̄Loss = pLoS(τ + ηLoS) + (1− pLoS)(τ + ηNLoS), (7)

where ηLoS and ηNLoS are the mean value of the excessive path loss in Line-of-Sight (LoS)
and Non-LoS (NLoS) links, respectively. τ is the free-space path loss with the exponent ξ,
the carrier frequency f , the speed of light c and the communication distance d.

τ = 10ξ lg(
4π f d

c
), (8)

pLoS is the LoS probability, and its value depends on the environment and the elevation
angle θ of the UAV with regard to sensor nodes.

pLoS =
1

1 + α exp(−β[θ − α])
, (9)

θ =
180
π

sin−1(
H
d
), (10)

In Equation (9), α and β are the parameters that are related to the urban environment.
H in Equation (10) is the height of the UAV above the data collection locations.

When the UAV hovers at the designated location Li, the sensor nodes start to send data.
If sj transmits data to the UAV and the data volume is Dsj , then its energy consumption Esj

is expressed as Equation (11) [20–22]. In this paper, each element φij of the measurement
matrix Φ only includes zero and one. When the UAV collects the data of sj, the element φij
is set as one, otherwise, φij is zero. Therefore, the energy consumption Es of the WSN is
written as Equation (12).

Esj =
PDsj

R
, (11)

Es =
M

∑
i=1

N

∑
j=1

Esj φij, (12)

The UAV consumes energy in both the hovering and flying phases. When the UAV
hovers at the location Li, the energy consumption for hovering is

ELi =
N

∑
i=1

DLi

R
(Phov + Pcom), (13)

Phov =

√
(mg)3

2πr2nρ
, (14)

where DLi is the data volume received by the UAV, Phov is the hovering power, Pcom is the
communication power, m is the UAV’s mass, g is the acceleration of gravity on earth, n is
the number of the propellers, the radius is r, and ρ is the air density.

When the UAV flies with the speed v from Li to Lj, its energy consumption is

ELij =
dLij

v
(Phov + Pmov), (15)

Pmov =
v

vmax
(Pmax − Pidle) + Pidle, (16)

where dLij is the Euclidean distance between Li and Lj, Pmov is the horizontal movement
power. vmax is the maximum speed, Pmax and Pidle are the hardware power of the UAV
flying at full speed and in idle state, respectively.
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Based on the above analysis, we obtain the UAV’s energy consumption EUAV in
Equation (17).

EUAV = Es0Li +
M

∑
i=1

ELi +
M

∑
i=1,j 6=i

IijELij + ELjs0 , (17)

The terms Es0Li and ELjs0 indicate the energy consumption of the UAV leaving the
sink node to the first location Li and returning to the sink node from the last location Lj,
respectively. I is a matrix with M rows and N columns. Its element is labeled as Iij, which
signifies whether the UAV moves from Li to Lj. If there is a path of the UAV between Li
and Lj, the value of Iij is one, otherwise, Iij is zero.

The objective of this paper is to minimize the system’s energy consumption E in
Equation (18), where ω is the weight of EUAV and Es.

E = ωEUAV + (1−ω)Es, (18)

UAV
sink node

sensor node data collection locations
Figure 1. The UAV-based system model.

3.3. Compressed Data Acquisition Algorithm

The system model indicates that the UAV hovers at each data collection site to collect
data. Once the data collection sites are determined, the next step is to plan the path of the
UAV to reach these locations. The detailed steps are described in Algorithm 1.

Algorithm 1 the UAV-assisted compressed data acquisition algorithm

Input:
Historical data of N sensor nodes, the nodes’ locations and the reconstruction accuracy.

Output:
the measurements y.

1: Obtain the sparsifying basis based on the eigenvalue decomposition of historical data.
2: Estimate the sparsity k of sensory data.
3: Determine the number M of measurements based on the reconstruction accuracy.
4: Get M data acquisition locations and the corresponding measurement matrix Φ.
5: Utilize greedy algorithm to obtain a sequence of the M locations.
6: Conduct two types of operations (variation and insertion), run T times for each opera-

tion and obtain a sequence of the M locations.
7: The sink node dispatches the UAV to collect data from the M locations.
8: After finishing data collection, the UAV carries the measurements y back to the

sink node.
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The CS theory requires sensory data to have a sparse representation in a basis. There-
fore, the first step of the algorithm is to construct the sparsifying basis by means of eigen-
value decomposition and its complexity is O(N3). The second step is to estimate the sparsity,
and it has a lower bound of the complexity O(N2logN). The third step determines the
value of M based on the CS theory in order to guarantee the reconstruction accuracy of the
data. After completing these steps, the sink node needs to determine the M data collection
locations of the UAV. According to Equation (12), if a greater number of sensor nodes send
data to the UAV at each data collection site, it results in a larger value of Es. Consequently,
in the fourth step, each sensor node is selected as a data collection site with a probability of
M/N. The UAV hovers above these sites for data gathering and generates a highly sparse
measurement matrix Φ, which has a computational complexity of O(N).

From Equations (15) and (17), it can be observed that the energy consumption of the
UAV increases with an increase in its flight path length. When the M data collection sites
are fixed, the minimization problem stated in Equation (17) transforms into a Traveling
Salesman Problem. Due to the ease of implementation, greedy algorithm is employed to
solve this problem and the time complexity is O(MlogM). To further minimize the total
path length of the UAV, this paper optimizes the greedy algorithm using Variation and
Insertion (VI) operations in steps five and seven, where the VI operations have a complexity
of O(MT). After collecting the measurements y, the UAV returns to the sink node for data
recovery in the last step.

4. Results

In this section, three experiments are conducted to demonstrate the UAV-assisted
compressed data acquisition algorithm. In the first experiment, six hundred sensor nodes
are placed in the 1000 m × 1000 m area and the sink node is at the center of the area. The
experimental parameters of the UAV-assisted system model are shown in Table 2. The
data volume Dsj of each sensor node sj is 300 bits. This experiment mainly observes the
performance of greedy algorithm with different strategies in terms of energy consumption
and gives the comparison results of the four algorithms (i.e., GA, PSO, SA and Greedy
algorithm with VI). The second experiment provides the data recovery results of the
proposed algorithm when the reconstruction algorithms are OMP, CoSaMP, SP and BP,
respectively. In the third experiment, the eight sensing matrices in previous compressive
data gathering studies are compared with that in the proposed algorithm when the BP
algorithm is used for data reconstruction.

Table 2. The experimental parameters of the UAV-assisted system model.

Parameter Value Parameter Value Parameter Value

m 500 g [22] n 4 [22] r 20 cm [22]
v, Vmax 15 m/s [23] Pmax, Pidle 5 w, 0 w [22] H 50 m [20]

Pcom 0.0126 w [23] P 21 dBm/Hz [23] N0 −174 dBm/Hz [23]
B 1MHz [20] ηLoS, ηNLoS 1 dB, 20 dB [24] f 2 GHz [23]
ξ 3 [23] α 10 [23] β 0.03 [23]

In the data collection experiment, GA, PSO, SA and Greedy algorithm with VI are
used for the path planning of the UAV. These algorithms are described below.

• The GA algorithm searches for the optimal solutions by simulating the natural evo-
lutionary process. The basic steps include coding, generating an initial population,
calculating a fitness function, selection, crossover, mutation, generating the next gen-
eration of population and decoding. In this experiment, the coding corresponds to
the order in which the UAV visits the data collection points. The population size and
the maximum number of iterations is set to 2000, the partial-mapped crossover and
mutation rates are 0.8 and 0.1. In the selection process, the fitness function is the path
length, it takes the inverse and then performs a roulette selection. The mutation is
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to randomly select two cities and swap their positions. The decoding is the path of
the UAV.

• The core idea of the SA algorithm is to accept, with some probability, a solution that
is worse than the current one, and then continue the search with this worse solution.
During the search process, different weights are assigned to the three neighborhood
structures and a roulette wheel is employed to choose a neighborhood structure. The
maximum number of iterations in the inner loops is 15 and it is 300 in the outer loops.

• The PSO algorithm belongs to a kind of evolutionary algorithm. The basic steps
include the initialization of particle positions and velocities, the calculation of the
fitness function values, individual extremes and population extremes, and their update.
Like SA, it starts from a random solution and finds the optimal solution through the
iterations. In the experiment, the number of the particles is 500, and the number of
iterations is 2000. The quality of the solution is evaluated through the fitness function.
Compared with the rules of the GA algorithm, the PSO algorithm does not include
crossover and mutation operations.

• Greedy algorithm with VI is the path planning method of the UAV in the proposed
algorithm. The value of T in the experiment is set as 2 × 105. The initial path of
the UAV is first planned by greedy algorithm, then the variation operation and the
insertion operation are performed for optimization.

In the data reconstruction experiments, the OMP algorithm is a greedy algorithm.
It selects the columns of the measurement matrix in a greedy iterative manner such that
the chosen columns are maximally correlated with the current redundancy vector. The
CoSaMP algorithm and the SP algorithm are the improvement of the OMP algorithm. The
SP algorithm only adds k new candidates in each iteration, while the CoSaMP algorithm
adds 2k vectors. This makes the SP algorithm more efficient than the CoSaMP algorithm.
In the convex optimization algorithms, the most commonly used method is BP, which
utilizes the linear programming methods to solve the l1-norm optimization problem in
Equation (4).

4.1. Comparison of Data Gathering Algorithms

When the number N of sensor nodes is 600, Figure 2 illustrates the energy consumption
curves corresponding to the utilization of different strategies in a greedy algorithm for
planning the UAV’s path. From Figure 2, it can be seen that the curves exhibit an increasing
trend with the increment of M, indicating that larger values of M can result in more sensor
nodes transmitting data to the UAV, and consequently increases the energy consumption.
Furthermore, we observe that conducting insertion after variation can further reduce the
energy consumption of the system.

Generally, as the value of M is larger, the UAV is required to visit more sensor nodes
and cover a longer path, resulting in higher energy consumption for the system. When the
value of M changes from 50 to 100, Table 3 lists the UAV’s path length and the running time
of four algorithms. From the numerical results, it can be seen that the proposed algorithm
achieves a shorter path length compared with the other three algorithms. In terms of the
running time, the proposed algorithm is slower than the SA algorithm, but faster than the
GA algorithm and PSO algorithm.

According to Equations (15) and (17), the energy consumption of the system can be
influenced by the path length of the UAV. To better observe the trend in energy consumption,
we vary the value of M from 50 to 300 and present the comparative results of the four
algorithms in Figure 3, with ω set at 0.5. In Figure 3, it is evident that energy consumption
of the GA algorithm is the largest among the four algorithms, reaching 6.33×104 J. The PSO
algorithm and the SA algorithm show the energy consumption ranging from 3.3 ×103 J
and 4.6 × 104 J. When the value of M is smaller, the SA algorithm consumes less energy
than the PSO algorithm. Compared with the other three algorithms, greedy algorithm with
VI demonstrates a lower energy consumption below 6.8 ×103 J, indicating its ability to save
energy for the same value of M.
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Figure 2. The energy consumption of greedy algorithm with different strategies.

Table 3. The comparison results of the algorithms when the value of M ranges from 50 to 100.

The Value of M Algorithms The UAV’s Path
Length (×104) Running Time (s)

50

Greedy algorithm-VI 0.5789 2.2914
GA 0.9602 22.5102
PSO 0.9155 49.5505
SA 0.6829 0.0804

60

Greedy algorithm-VI 0.6393 2.1403
GA 1.0887 20.7948
PSO 0.9819 55.3686
SA 0.8401 0.0397

70

Greedy algorithm-VI 0.6288 2.2115
GA 1.1590 22.5486
PSO 1.1289 60.8934
SA 0.8214 0.0320

80

Greedy algorithm-VI 0.6175 2.4702
GA 1.1628 24.9415
PSO 1.1803 24.9415
SA 0.8569 0.0325

90

Greedy algorithm-VI 0.6985 2.7317
GA 1.3224 26.2906
PSO 1.6216 73.7638
SA 0.9751 0.0363

100

Greedy algorithm-VI 0.6837 2.7370
GA 1.5032 27.2675
PSO 1.5390 78.3294
SA 1.1294 0.0363
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Figure 3. The energy consumption of the four algorithms.

4.2. Analysis of Data Monitoring Performance

Following the Algorithm 1, the measurements y are acquired by the sink node and
then utilized for data recovery using the CS reconstruction algorithms. In the CS theory, the
relative error ε serves as a metric for evaluating data recovery performance. In this paper,
the value of ε also represents data monitoring performance and it is defined as follows.

ε =
‖x− x̂‖2
‖x‖2

(19)

where x represents the sensory data of N sensor nodes and x̂ represents the recovered data.
In this experiment, we select 128 sensor nodes from Green Orbs [25] and utilize their

sensory data for testing purposes. For each M value, ranging from 30 to 70, two thousand
experiments are conducted and the average value of ε is illustrated in Figure 4. It can be
observed from Figure 4 that the value of ε gradually decreases with an increase in M. Among
the four reconstruction algorithms, the OMP algorithm and the CoSaMP algorithm exhibit
similar data recovery performance. However, the relative error of the BP algorithm is at least
0.5596 × 10−3 smaller than that of the SP algorithm. Additionally, when the value of M is less
than 40, both the OMP algorithm and the CoSaMP algorithm outperform the SP algorithm and
the BP algorithm in terms of relative error reduction. With the increase of M, the BP algorithm
surpasses the other three algorithms, decreasing from 0.0048 to 0.0039. The average running
time of the data reconstruction is depicted in Figure 5. The maximum running time of the
OMP algorithm and CoSaMP algorithm is 1.3255 × 10−4 s and 3.7124 ×10−4 s, respectively.
Meanwhile, the SP algorithm and BP algorithms are separately 4.2622 ×10−4 s and 0.0141 s.
In summary, if a larger value of M is chosen, the BP algorithm exhibits advantages in terms of
data reconstruction, but it takes more time than the other three algorithms.
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Figure 4. The data monitoring performance of the proposed algorithm.
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Figure 5. The running time of data reconstruction.

4.3. Comparison of Data Monitoring Performance

When the reconstruction algorithms are the same, the performance of data recovery
can be affected by the sensing matrix. In this experiment, we consider nine sensing matrices,
where the measurement matrix is identical to that used in the proposed algorithm, denoted
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as SM. The sparsifying bases are obtained through the eigenvalue decomposition (Ed),
transformations such as DCT and DFT, as well as a series of wavelet bases. When the BP
algorithm is used for data recovery, Figure 6 displays the reconstruction results of the nine
sensing matrices.
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Figure 6. The reconstruction results of different sensing matrices.

When the value of M increases, Figure 6 demonstrates a decreasing trend in the value
of ε. In Ed-SM, the maximum and minimum values of ε are 0.0051 and 0.0039. For DCT-SM
and DFT-SM, the maximum values of ε are 0.3201 and 0.0534, respectively. However,
the remaining six sensing matrices yield the values of ε not less than 0.6771. In contrast,
DCT-SM, DFT-SM and Ed-SM exhibit superior data monitoring performance compared to
the other six sensing matrices. Furthermore, the relative error of DFT-SM is smaller than
DCT-SM. But when compared with DFT-SM, Ed-SM in the proposed algorithm can reduce
the relative error by at least 0.0423.

4.4. Discussion

In the UAV-assisted WSNs, the proposed algorithm requires the UAV to just collect
data from a small amount of sensor nodes and the path of the UAV is quickly planned by
greedy algorithm with VI. Based on the experimental results above, we observe that the
energy consumption of the GA algorithm is the largest among the four algorithms, and the
energy consumption of greedy algorithm with VI is less than the other three algorithms.
The energy consumption of the PSO algorithm and the SA algorithm is between the
GA algorithm and greedy algorithm with VI. This means that the proposed algorithm
can reduce the energy consumption of the system when the UAV and the CS theory are
combined to gather data in the environment. After the UAV finishes data gathering and
returns, the sink node receives the compressed data from the UAV and starts to recover data.
We carry out the experiment to verify the performance of data monitoring and discover that
the OMP algorithm and the CoSaMP algorithm can obtain better data monitoring results
than the BP algorithm and the SP algorithm when the value of M is smaller. But if the value
of M is larger, the BP algorithm and the SP algorithm are superior to the OMP algorithm
and the CoSaMP algorithm in terms of data monitoring. In addition, we compare the data
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monitoring performance of nine sensing matrices. Through the numerical results, we see
that the Ed-SM in the proposed algorithm can make the relative error less than 0.0051.

5. Conclusions

This paper mainly studies the data acquisition issues of environmental monitoring
in WSNs and how the UAV is utilized to reduce energy consumption of data gathering.
Considering that the data of sensor nodes within a neighborhood have strong spatial
correlation, the paper adopts the CS theory to compress the data in the network, constructs
the system model and proposes a UAV-assisted compressed data acquisition algorithm.
Compared with three benchmark algorithms, the experimental results show that the pro-
posed algorithm can shorten the total trip of the UAV during data gathering and decrease
energy consumption of the system. In terms of data monitoring, the Ed-SM in the proposed
algorithm can reduce the relative error of data recovery compared to other methods, and
obtain better data monitoring results.
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