
Citation: Seong, J.; Ranjan, R.; Kye, J.;

Lee, S.; Lee, S. Enhancing

Industrial Communication with

Ethernet/Internet Protocol: A

Study and Analysis of Real-Time

Cooperative Robot Communication

and Automation via Transmission

Control Protocol/Internet Protocol.

Sensors 2023, 23, 8580. https://

doi.org/10.3390/s23208580

Academic Editor: Leopoldo

Angrisani

Received: 1 October 2023

Revised: 13 October 2023

Accepted: 17 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Industrial Communication with Ethernet/Internet
Protocol: A Study and Analysis of Real-Time Cooperative
Robot Communication and Automation via Transmission
Control Protocol/Internet Protocol
JuYong Seong 1 , Rahul Ranjan 1 , Joongeup Kye 2, Seungjae Lee 1 and Sungchul Lee 1,*

1 Division of Computer Science and Engineering, Sunmoon University, Asan 31460, Republic of Korea;
humphery27@sunmoon.ac.kr (J.S.); rahulranjan@sunmoon.ac.kr (R.R.); leeko@sunmoon.ac.kr (S.L.)

2 Department of Mechanical Engineering, Intelligent Robot Research Institute, Asan 31460, Republic of Korea;
jekye@sunmoon.ac.kr

* Correspondence: sungchul@sunmoon.ac.kr

Abstract: This study explores the important task of validating data exchange between a control box, a
Programmable Logic Controller (PLC), and a robot in an industrial setting. To achieve this, we adopt
a unique approach utilizing both a virtual PLC simulator and an actual PLC device. We introduce an
innovative industrial communication module to facilitate the efficient collection and storage of data
among these interconnected entities. The main aim of this inquiry is to examine the implementation
of Ethernet/IP (EIP), a relatively new addition to the industrial network scenery. It was designed
using ODVA’s Common Industrial Protocol (CIP™). The Costumed real-time data communication
module was programmed in C++ for the Linux Debian platform and elegantly demonstrates the
impressive versatility of EIP as a means for effective data transfer in an industrial environment. The
study’s findings provide valuable insights into Ethernet/IP’s functionalities and capabilities in indus-
trial networks, bringing attention to its possible applications in industrial robotics. By connecting
theoretical knowledge and practical implementation, this research makes a significant contribution to
the continued development of industrial communication systems, ultimately improving the efficiency
and effectiveness of automation processes.

Keywords: Ethernet/IP; common industrial protocol; TCP/IP; virtual simulator; programmable
logic controllers; explicit messaging; industrial communication network

1. Introduction

Recent developments in the field of robotics and robotization have increased dili-
gence, enhancing productivity and efficiency [1]. As demand for sophisticated robotics and
robotization grows, the reliability and efficiency of communication systems linking these
machines become crucial [2]. Therefore, it is imperative to design advanced communication
modules and protocols for optimal data collection and storage from robotic systems [3,4].
Improving the connectivity and data transfer capabilities of industrial networks, with a
focus on Ethernet/IP (EIP), is crucial. These refinements guarantee uninterrupted com-
munication between robotic systems and data storage infrastructures. Additionally, it is
urgent to establish a standardized application layer that guarantees real-time control and
universal interoperability over Ethernet TCP/IP [5]. A diverse range of networks and Eth-
ernet technologies have been utilized in the manufacturing industry over the last decade.
Ethernet, having become the standard in various other fields, including the Internet, is now
an attractive alternative in this industry [6]. The heightened interest in the topic has been
further increased due to the reduction in bias costs and the faster network speeds [7,8]. The
contributions of this study are summarized as follows:

Sensors 2023, 23, 8580. https://doi.org/10.3390/s23208580 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208580
https://doi.org/10.3390/s23208580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-9511-5651
https://orcid.org/0000-0003-4549-5118
https://doi.org/10.3390/s23208580
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208580?type=check_update&version=1

Sensors 2023, 23, 8580 2 of 14

1. Our study undertakes a rigorous verification of data exchange mechanisms involving
a control box, a Programmable Logic Controller (PLC), and a robotic system. This
comprehensive evaluation forms the foundation of our research.

2. We bridge the gap between theoretical simulations and real-world applications by
integrating a virtual PLC simulation platform and an actual PLC apparatus. This
integration enhances the practicality and relevance of our findings.

3. An innovative industrial communication module designed specifically to facilitate seam-
less data aggregation and archival is introduced. This module represents a significant
technological advancement, providing a valuable solution for industrial automation.

4. We present the verification of data transmission, including event and packet verifi-
cation, utilizing an EIP simulator and EIP(XGL EFMTB) [9]. Through these tests, we
provide empirical evidence of the reliability and robustness of the developed modules,
which has practical implications for the field of industrial automation.

This study demonstrates the effectiveness and trust ability of the developed commu-
nication modules and protocols, which can be useful in the development of advanced
robotics and robotization systems.

In our paper, we follow a structured approach to address the research problem. In
the “Related Work” section, we provide an overview of the existing literature on data
communication between a control box, a Programmable Logic Controller (PLC), and a
robot, laying the foundation for our study. The “Methodology” section details our unique
approach, which incorporates both a virtual PLC simulator and our proposed frame
structure for physical communication verification. We also utilize PLC EIP(XGL EFMTB)
and client protocols in our methodology. Moving to the “Proposed Work” section, we
elaborate on the frame structure and its role in enhancing data transmission and decoding
processes. In the “Result and Discussion” section, we present and analyze the outcomes of
our study, particularly focusing on the verification of data transmission and the decoding
of LS Elc.’s Frame Format. Finally, in the Conclusion, we summarize our key findings and
emphasize their significance in advancing the realm of robotics and automation systems
whilst suggesting potential directions for future research.

2. Related Work

Numerous studies have analyzed industrial networks, with a specific emphasis on
Ethernet/IP. They have emphasized the significance of a standardized application layer that
allows for interoperability, ensuring universal compatibility and real-time control across
Ethernet TCP/IP [5]. A fresh design has been developed for EIP Intelligent Communication
Modules (EIICM) [10] utilized in industrial Programmable Logic Controllers (PLCs). The
EIICM serves as a network communication module, a CPU for the operation switch,
and provides messaging services. The design encompasses a comprehensive architecture
featuring fundamental techniques such as “Structured Message Broker” and “Management-
self Adaptable” patterns. The EIICM system facilitates communication with diverse devices,
conforms to the ODVA [11] specification, governs the switch, and enables configuration
and diagnosis. With concurrency and synchronization, the system supports EIP and Mod-
bus/TCP protocols, real-time data transfer, and considerable workloads [12].

The creation of a dependable and adaptable EIP adapter for cooperative robots in-
creases their scalability and ability to transfer data effectively. This module is both reli-
able and flexible, enabling communication system development time to be reduced [13].
Ethernet- and IP-based routing are critical for the future of Electric Vehicle (EV) communica-
tion networks [14]. Ethernet provides a cost-effective and flexible solution for efficient data
transmission. Its powerful capacity enables high-speed data transfer, which contributes
to the seamless operation of modern communication networks. Ethernet-based architec-
tures expedite standardization, leading to cost-effective development and a plethora of
compatible products. The utilization of Ethernet as the fundamental structure permits com-
munication between vehicles and infrastructure (V2I) [15] and between vehicles (V2V) [16],

Sensors 2023, 23, 8580 3 of 14

integrating vehicular networks with Dedicated Short-Range Communication (DSRC) [17],
Wireless Access in Vehicular Environments (WAVE) [18], and charging infrastructure.

Automotive Ethernet offers key benefits in conjunction with the ongoing use of Con-
troller Area Network (CAN) [19] and FlexRay [20] for safety and body domains [21]. Packet
devices that use network processors and traffic management processors can produce flows
with assigned bandwidths [22]. The performance of the EIP network, one of the top Real-
time Ethernet networks in factory automation systems, is exemplary. The study examines
two Performance Indicators, Delivery Time and Throughput in Real-time Ethernet (RTE),
shedding light on unpredictable delays that affect practical data. Further investigations
will explore more complex architectures and additional Performance Indicators [23]. The
development of a PC/Ethernet-based Fieldbus Network for Large Real-time Data Commu-
nication is also discussed [24].

This paper covers a range of topics related to industrial networks, such as the ne-
cessity of standardized Application Layers for interoperability, the creation of effective
EIP adapters for cooperative robots, multimedia-based learning modules for vocational
education, and performance analysis of EIP networks.

3. Work Methodology

In this section, we present a systematic approach to achieving data communication
among a control box, a Programmable Logic Controller (PLC), and a robot utilizing a
virtual PLC simulator. We detail the selection of tools and components, configuration of
communication protocols, and setup of specific data exchange scenarios. Our methodology
includes data collection, analysis, and the implementation of repeatable experiments to
ensure the robustness of our findings. Ethical considerations related to the experiments
are also briefly addressed. This section provides a clear and structured framework for
understanding how we conducted our research, ensuring the credibility and reliability of
our results.

Data Communication among a Control Device, a PLC, and a Robot Using a Virtual PLC Simulator

The control device and robot were created referencing the ODVA EIP technical doc-
umentation. The programming language implemented is C/C++, while the operating
system chosen is Linux Debian.

TCP/IP is a suite of communication protocols that enable data transmission over the
Internet and other networks. TCP/IP is widely used in various industrial applications,
such as remote monitoring, control, automation, and data acquisition. However, TCP/IP
alone does not specify how the data should be structured, encoded, or exchanged between
different devices and systems. Therefore, various application-layer protocols have been
developed to provide specific functionalities and features for different industrial use cases.
Some of the most common and popular protocols that use TCP/IP are MQTT, Modbus TCP,
PROFINET, and OPC-UA. In this section, we will briefly introduce these protocols and
compare their advantages and disadvantages in the context of Industry 4.0 and Industrial
Internet of Things (IIoT). MQTT (Message Queuing Telemetry Transport) is a lightweight
and simple publish–subscribe protocol that enables efficient data transmission between
devices and systems over low-bandwidth and unreliable networks [25]. MQTT uses
a broker to manage communication between publishers (data sources) and subscribers
(data consumers). Publishers send messages to topics, which are logical channels that
categorize the data. Subscribers subscribe to topics of interest and receive messages from
the broker. MQTT supports three levels of quality of service (QoS) to ensure reliable
message delivery: once at the most, at least once, and exactly once. MQTT also supports
features such as retained messages, last will and testament, and keep-alive mechanism to
enhance communication efficiency and robustness [26].

1. The communication between the control device and the robot was tested with a PLC
simulator before conducting experiments with a live PLC. Technical abbreviation will
be explained upon first use.

Sensors 2023, 23, 8580 4 of 14

2. Figure 1 shows the direct message process utilizing an industrial communication
module that enables communication between the control device (Rainbow Robotics
Ether-Net/IP module), the PLC simulator, and the robot. The main aim is to as-
certain the dependability of communication between the devices and evaluate the
effectiveness of data collection and storage procedures.

Sensors 2023, 23, x 4 of 15

reliable message delivery: once at the most, at least once, and exactly once. MQTT also
supports features such as retained messages, last will and testament, and keep-alive mech-
anism to enhance communication efficiency and robustness [26].
1. The communication between the control device and the robot was tested with a PLC

simulator before conducting experiments with a live PLC. Technical abbreviation will
be explained upon first use.

2. Figure 1 shows the direct message process utilizing an industrial communication
module that enables communication between the control device (Rainbow Robotics
Ether-Net/IP module), the PLC simulator, and the robot. The main aim is to ascertain
the dependability of communication between the devices and evaluate the effective-
ness of data collection and storage procedures.

3. The communication process starts with the control device transmitting a “Set Attrib-
ute” command to the PLC simulator.

4. The PLC simulator involves sending a memory payload with randomly generated
numbers ranging from 0 to 255. The second stage involves monitoring memory
changes. To assess the communication process, we utilize the EIP explorer tool to
keep track of alterations in the memory values of the PLC simulator. Specifically, we
monitor changes in memory locations 0, 1, 2, and 3 within category 4, instance 101,
and attribute 3, as depicted in Figure 2.

5. Subsequently, the PLC simulator sends a “Set-Attribute” command to the Rainbow
Robotics virtual simulator and robots by Rainbow Robotics to transmit data to the
robot. This instruction entails the transmission of eight bytes of data, spanning from
V20 to V23, as designated in Table 1.

6. The robot receives the “Set_Attribute” command, processes it, and finally generates
output results.

Figure 1. Using EIP for sending and receiving explicit messages and device interactions.

A simulation was carried out to confirm data transmission between the control device
and the Do-more PLC simulator [27]. A random number within the 0–255 range was gen-
erated and sent from the control device to the PLC simulator. Figure 2 displays the raw
data in a message packet from the Do-more PLC simulator following the transmission of
the ‘Set_Attribute’ command from the control box. The EIP explorer tool 1.2 [28] was em-
ployed. This software application was created to examine the contents of the PLC simula-
tor’s memory. The tool facilitates the identification of EIP devices that are linked to the
local network and the ability to view or edit the memory of those devices.

Figure 1. Using EIP for sending and receiving explicit messages and device interactions.

3. The communication process starts with the control device transmitting a “Set At-
tribute” command to the PLC simulator.

4. The PLC simulator involves sending a memory payload with randomly generated
numbers ranging from 0 to 255. The second stage involves monitoring memory
changes. To assess the communication process, we utilize the EIP explorer tool to
keep track of alterations in the memory values of the PLC simulator. Specifically, we
monitor changes in memory locations 0, 1, 2, and 3 within category 4, instance 101,
and attribute 3, as depicted in Figure 2.

Sensors 2023, 23, x 5 of 15

Figure 2. Verifying data fetching from PLC simulator using the EIP explore tool.

To ensure the integrity and coherence of information exchanged between the control
box and the PLC simulator, a meticulous examination of the raw data residing within the
memory of the PLC simulator is imperative. Employing the λ (lambda) simulation mech-
anism, meticulously scrutinize the process of data transmission and reception transpiring
between the PLC simulator and the robot, an emulation platform operating on the Linux
Debian system. In Figure 3, the device is configured as Linux Debian, representing the
robot. The IP and port details are evident. The ‘Set_Attribute’ command facilitates the
transmission of data from addresses V20 to V23 stored in the PLC, utilizing the Ladder
Logic programming language. This procedure outlines the PLC-to-Robot communication,
wherein the PLC forwards values, previously modified by the control box, to the robot.
Facilitate the seamless transmission of data originating from the control box, residing
within the PLC simulator, towards the robot (192.168.0.4:44818) by employing the
“Set_Attribute” functionality within the context of sending Ethernet/IP message.

Figure 3. Transmitting data using the ‘Set-Attribute’ method in Ladder Logic.

Configure the “Set_Attribute” option by specifying the precise IP address and port
number associated with the robot, ensuring an accurate destination for the variables V20
through V23 derived from the control box. This directed transfer aims to validate the effi-
cacy of data transmission by effectively relaying the variables to the robot, as illustrated
in Table 1.

Table 1. Memory data from Do-more PLC simulator transmitted to robot.

Index Element Status
0 V20 60
1 V21 215
2 V22 26
3 V23 68

Figure 4 presents the outcome of transmitting data from V20~V23 memory of PLC
simulator to robot through the “Set_Attribute” message. This process facilitated us in en-
suring the dependability of the data transmission and reception amid the control box, PLC
simulator, and robot. Furthermore, it allowed for real-time control and storage and collec-
tion.

Figure 2. Verifying data fetching from PLC simulator using the EIP explore tool.

5. Subsequently, the PLC simulator sends a “Set-Attribute” command to the Rainbow
Robotics virtual simulator and robots by Rainbow Robotics to transmit data to the
robot. This instruction entails the transmission of eight bytes of data, spanning from
V20 to V23, as designated in Table 1.

6. The robot receives the “Set_Attribute” command, processes it, and finally generates
output results.

A simulation was carried out to confirm data transmission between the control device
and the Do-more PLC simulator [27]. A random number within the 0–255 range was
generated and sent from the control device to the PLC simulator. Figure 2 displays the
raw data in a message packet from the Do-more PLC simulator following the transmission
of the ‘Set_Attribute’ command from the control box. The EIP explorer tool 1.2 [28] was
employed. This software application was created to examine the contents of the PLC
simulator’s memory. The tool facilitates the identification of EIP devices that are linked to
the local network and the ability to view or edit the memory of those devices.

To ensure the integrity and coherence of information exchanged between the control
box and the PLC simulator, a meticulous examination of the raw data residing within the

Sensors 2023, 23, 8580 5 of 14

memory of the PLC simulator is imperative. Employing the λ (lambda) simulation mecha-
nism, meticulously scrutinize the process of data transmission and reception transpiring
between the PLC simulator and the robot, an emulation platform operating on the Linux
Debian system. In Figure 3, the device is configured as Linux Debian, representing the
robot. The IP and port details are evident. The ‘Set_Attribute’ command facilitates the
transmission of data from addresses V20 to V23 stored in the PLC, utilizing the Ladder
Logic programming language. This procedure outlines the PLC-to-Robot communication,
wherein the PLC forwards values, previously modified by the control box, to the robot. Fa-
cilitate the seamless transmission of data originating from the control box, residing within
the PLC simulator, towards the robot (192.168.0.4:44818) by employing the “Set_Attribute”
functionality within the context of sending Ethernet/IP message.

Sensors 2023, 23, x 5 of 15

Figure 2. Verifying data fetching from PLC simulator using the EIP explore tool.

To ensure the integrity and coherence of information exchanged between the control
box and the PLC simulator, a meticulous examination of the raw data residing within the
memory of the PLC simulator is imperative. Employing the λ (lambda) simulation mech-
anism, meticulously scrutinize the process of data transmission and reception transpiring
between the PLC simulator and the robot, an emulation platform operating on the Linux
Debian system. In Figure 3, the device is configured as Linux Debian, representing the
robot. The IP and port details are evident. The ‘Set_Attribute’ command facilitates the
transmission of data from addresses V20 to V23 stored in the PLC, utilizing the Ladder
Logic programming language. This procedure outlines the PLC-to-Robot communication,
wherein the PLC forwards values, previously modified by the control box, to the robot.
Facilitate the seamless transmission of data originating from the control box, residing
within the PLC simulator, towards the robot (192.168.0.4:44818) by employing the
“Set_Attribute” functionality within the context of sending Ethernet/IP message.

Figure 3. Transmitting data using the ‘Set-Attribute’ method in Ladder Logic.

Configure the “Set_Attribute” option by specifying the precise IP address and port
number associated with the robot, ensuring an accurate destination for the variables V20
through V23 derived from the control box. This directed transfer aims to validate the effi-
cacy of data transmission by effectively relaying the variables to the robot, as illustrated
in Table 1.

Table 1. Memory data from Do-more PLC simulator transmitted to robot.

Index Element Status
0 V20 60
1 V21 215
2 V22 26
3 V23 68

Figure 4 presents the outcome of transmitting data from V20~V23 memory of PLC
simulator to robot through the “Set_Attribute” message. This process facilitated us in en-
suring the dependability of the data transmission and reception amid the control box, PLC
simulator, and robot. Furthermore, it allowed for real-time control and storage and collec-
tion.

Figure 3. Transmitting data using the ‘Set-Attribute’ method in Ladder Logic.

Configure the “Set_Attribute” option by specifying the precise IP address and port
number associated with the robot, ensuring an accurate destination for the variables V20
through V23 derived from the control box. This directed transfer aims to validate the
efficacy of data transmission by effectively relaying the variables to the robot, as illustrated
in Table 1.

Table 1. Memory data from Do-more PLC simulator transmitted to robot.

Index Element Status

0 V20 60
1 V21 215
2 V22 26
3 V23 68

Figure 4 presents the outcome of transmitting data from V20~V23 memory of PLC
simulator to robot through the “Set_Attribute” message. This process facilitated us in
ensuring the dependability of the data transmission and reception amid the control box,
PLC simulator, and robot. Furthermore, it allowed for real-time control and storage
and collection.

Sensors 2023, 23, x 6 of 15

(a) (b)

Figure 4. (a) TCP, ENIP, and CIP packets verified using WireShark; (b) output of the robot receiving
the results sent by the PLC simulator.

4. Proposed Structure
Physical Communication Verification: PLC EIP(XGL EFMTB) and clients,” we delve

into the validation of our communication system’s physical layer. This involves meticu-
lous testing and verification of the PLC EIP protocol, specifically focusing on the XGL
EFMTB protocol and its interaction with client devices. Furthermore, in the subsequent
section, “Decoding LS Elc.’s Frame Format,” we shift our focus to the data frame format
used within the communication process. Here, we provide detailed insights into the de-
coding process of LS Elc.’s Frame Format, unraveling the intricacies of how data packets
are structured and interpreted. These sections collectively form the foundation for evalu-
ating the reliability and integrity of our communication modules and protocols.

4.1. Physical Communication Verification: PLC EIP (XGL EFMTB) and Clients
To apply the previously verified communication in real-world settings, we substi-

tuted the simulator with a physical PLC device to confirm the communication between
the control box, simulator, and robot. The physical PLC device utilized LS Elc.’s EIP com-
munication module, XGL EFMTB. As a result, the control device and robot were converted
to LS Elc.’s exclusive protocol, and the communication was validated. Figure 5 illustrates
the shift from PLC simulation to the application of physical PLC. Initial research was con-
ducted on the data frame for implementing the Programmable Logic Controller (PLC)
with LS Elc. The frame is prefixed with a TCP/IP header, followed by a data frame.

Figure 5. LS IS. EIP frame structure.

To ensure a smooth and reliable exchange of data from the control device to the PLC
Ethernet/IP, LS Elc.’s [29] communication frame, conformant with the prescribed commu-
nication protocol, is employed. This guarantees a robust and seamless data exchange
mechanism. The Media Access Control (MAC) identification number functions as a dis-
tinctive identifier for Ethernet devices, allowing them to be distinguished efficiently by
their individual properties. The IP header is located at the beginning of an Internet Proto-
col packet and provides vital information, including IP version, total header length, packet
length, source address, destination address, and other details. This header plays a crucial
role in enabling effective routing and delivery of data throughout the IP network. The TCP
header is a key protocol that ensures a dependable, sequential, and error-free exchange of
information between devices. TCP includes a verification mechanism that confirms the
precise reception of data by the recipient. While this may result in slightly slower trans-
mission speeds, it ensures the completeness and integrity of the transmitted data.

Figure 4. (a) TCP, ENIP, and CIP packets verified using WireShark; (b) output of the robot receiving
the results sent by the PLC simulator.

Sensors 2023, 23, 8580 6 of 14

4. Proposed Structure

Physical Communication Verification: PLC EIP(XGL EFMTB) and clients, we delve
into the validation of our communication system’s physical layer. This involves meticulous
testing and verification of the PLC EIP protocol, specifically focusing on the XGL EFMTB
protocol and its interaction with client devices. Furthermore, in the subsequent section,
“Decoding LS Elc.’s Frame Format”, we shift our focus to the data frame format used within
the communication process. Here, we provide detailed insights into the decoding process
of LS Elc.’s Frame Format, unraveling the intricacies of how data packets are structured and
interpreted. These sections collectively form the foundation for evaluating the reliability
and integrity of our communication modules and protocols.

4.1. Physical Communication Verification: PLC EIP (XGL EFMTB) and Clients

To apply the previously verified communication in real-world settings, we substituted
the simulator with a physical PLC device to confirm the communication between the control
box, simulator, and robot. The physical PLC device utilized LS Elc.’s EIP communication
module, XGL EFMTB. As a result, the control device and robot were converted to LS Elc.’s
exclusive protocol, and the communication was validated. Figure 5 illustrates the shift
from PLC simulation to the application of physical PLC. Initial research was conducted on
the data frame for implementing the Programmable Logic Controller (PLC) with LS Elc.
The frame is prefixed with a TCP/IP header, followed by a data frame.

Sensors 2023, 23, x 6 of 15

(a) (b)

Figure 4. (a) TCP, ENIP, and CIP packets verified using WireShark; (b) output of the robot receiving
the results sent by the PLC simulator.

4. Proposed Structure
Physical Communication Verification: PLC EIP(XGL EFMTB) and clients,” we delve

into the validation of our communication system’s physical layer. This involves meticu-
lous testing and verification of the PLC EIP protocol, specifically focusing on the XGL
EFMTB protocol and its interaction with client devices. Furthermore, in the subsequent
section, “Decoding LS Elc.’s Frame Format,” we shift our focus to the data frame format
used within the communication process. Here, we provide detailed insights into the de-
coding process of LS Elc.’s Frame Format, unraveling the intricacies of how data packets
are structured and interpreted. These sections collectively form the foundation for evalu-
ating the reliability and integrity of our communication modules and protocols.

4.1. Physical Communication Verification: PLC EIP (XGL EFMTB) and Clients
To apply the previously verified communication in real-world settings, we substi-

tuted the simulator with a physical PLC device to confirm the communication between
the control box, simulator, and robot. The physical PLC device utilized LS Elc.’s EIP com-
munication module, XGL EFMTB. As a result, the control device and robot were converted
to LS Elc.’s exclusive protocol, and the communication was validated. Figure 5 illustrates
the shift from PLC simulation to the application of physical PLC. Initial research was con-
ducted on the data frame for implementing the Programmable Logic Controller (PLC)
with LS Elc. The frame is prefixed with a TCP/IP header, followed by a data frame.

Figure 5. LS IS. EIP frame structure.

To ensure a smooth and reliable exchange of data from the control device to the PLC
Ethernet/IP, LS Elc.’s [29] communication frame, conformant with the prescribed commu-
nication protocol, is employed. This guarantees a robust and seamless data exchange
mechanism. The Media Access Control (MAC) identification number functions as a dis-
tinctive identifier for Ethernet devices, allowing them to be distinguished efficiently by
their individual properties. The IP header is located at the beginning of an Internet Proto-
col packet and provides vital information, including IP version, total header length, packet
length, source address, destination address, and other details. This header plays a crucial
role in enabling effective routing and delivery of data throughout the IP network. The TCP
header is a key protocol that ensures a dependable, sequential, and error-free exchange of
information between devices. TCP includes a verification mechanism that confirms the
precise reception of data by the recipient. While this may result in slightly slower trans-
mission speeds, it ensures the completeness and integrity of the transmitted data.

Figure 5. LS IS. EIP frame structure.

To ensure a smooth and reliable exchange of data from the control device to the PLC
Ethernet/IP, LS Elc.’s [29] communication frame, conformant with the prescribed com-
munication protocol, is employed. This guarantees a robust and seamless data exchange
mechanism. The Media Access Control (MAC) identification number functions as a distinc-
tive identifier for Ethernet devices, allowing them to be distinguished efficiently by their
individual properties. The IP header is located at the beginning of an Internet Protocol
packet and provides vital information, including IP version, total header length, packet
length, source address, destination address, and other details. This header plays a crucial
role in enabling effective routing and delivery of data throughout the IP network. The TCP
header is a key protocol that ensures a dependable, sequential, and error-free exchange
of information between devices. TCP includes a verification mechanism that confirms
the precise reception of data by the recipient. While this may result in slightly slower
transmission speeds, it ensures the completeness and integrity of the transmitted data.

The control device uses the EIP Stack and LS Elc. frame format to transfer data to the
PLC, allowing for real-time collection and storage of received data. The TCP/IP data frame
is consistent with the LS Elc. standard frame format, which is a standardized structure
that facilitates seamless communication with Elc’s equipment. It ensures compatibility
and efficient data exchange when communicating with Elc’s devices. By understanding
the attributes and features of these components, a comprehensive comprehension of EIP
communication and its corresponding frame structure can be obtained, as shown in Figure 6,
which displays LS Elc.’s exclusive XGT communication frame construction for exchanging
data with their physical equipment (PLC). The LSIS data communication frame comprises
LS ELECTRIC’s exclusive data (Company ID), Command, Data Type, and Data. The
frame design is depicted in Figure 5. Specifics of each frame element are shown in Table 2
(Company Header) and Table 3 (Command, Data Type).

Sensors 2023, 23, 8580 7 of 14

Sensors 2023, 23, x 7 of 15

The control device uses the EIP Stack and LS Elc. frame format to transfer data to the
PLC, allowing for real-time collection and storage of received data. The TCP/IP data frame
is consistent with the LS Elc. standard frame format, which is a standardized structure
that facilitates seamless communication with Elc’s equipment. It ensures compatibility
and efficient data exchange when communicating with Elc’s devices. By understanding
the attributes and features of these components, a comprehensive comprehension of EIP com-
munication and its corresponding frame structure can be obtained, as shown in Figure 6,
which displays LS Elc.’s exclusive XGT communication frame construction for exchanging
data with their physical equipment (PLC). The LSIS data communication frame comprises
LS ELECTRIC’s exclusive data (Company ID), Command, Data Type, and Data. The frame
design is depicted in Figure 5. Specifics of each frame element are shown in Table 2 (Com-
pany Header) and Table 3 (Command, Data Type).

Figure 6. XGT proprietary frame structure.

Table 2. Header structure for XGT-only protocols.

Field Name Field Size (Byte) Field Value

Company ID 10

• “LSIS-XGT” + “NULL NULL(Reserved)
(ASCII CODE: 4C 53 49 53 20 58 47 54 00 00)

• “LGIS-GLOFA”
(ASCII CODE: 4C 47 49 53 20 47 4C 4F 46 41)

PLC Info 2

• Client ➔ Server: Don’t care(0x00)
• Server ➔ Client:

Bit00-05: CPU Type
(XGK/I/R-CPUH: 0x01. XGK/I-CPUS: 0x02, XGK-
CPUA: 0x03. XGK/I-CPUE: 0x04. XGK/I-CPUU: 0x05,
XGK-CPUHN: 0x11. XGK-CPUSN: Ox12, XGI-
CPUUN: 0x15)

Bit06: 0 (Duplexing Master), 1 (Duplexing Slave)
Bit07: 0 (CPU Run), 1(CPU Error)
Bit08~12: System State (RUN: 0x01. STOP: 0x02. ER-
ROR: Ox04. DEBUG:0x08)
Bit13~15: Reserved

CPU Info 1

Determine that it is an XGK/XGI/XGR series.
• XGK: 0xA0
• XGI: 0xA4
• XGR: 0xA8

• XGB(MK): 0xB0
• XGB(IEC): 0xB4

Source of Frame 1
Client (HMI, Human Machine Interface) → Server (PLC):
0x33
Server (PLC) ➔ Client (HMI): 0x11

Invoke ID 2
ID to distinguish the order between frames.
(Send this number in the response frame)

Length 2 The byte size of the command structure
Ethernet
Position 1

Bit0-3: Slot number of the Ethernet module
Bits4-7: Base number of the Ethernet module

Reserved
2(BCC)

1 0x00: Reserved Area (Byte Sum of Header)

Figure 6. XGT proprietary frame structure.

Table 2. Header structure for XGT-only protocols.

Field Name Field Size (Byte) Field Value

Company ID 10

• “LSIS-XGT” + “NULL NULL(Reserved)

(ASCII CODE: 4C 53 49 53 20 58 47 54 00 00)

• “LGIS-GLOFA”

(ASCII CODE: 4C 47 49 53 20 47 4C 4F 46 41)

PLC Info 2

• Client

Sensors 2023, 23, x 7 of 15

The control device uses the EIP Stack and LS Elc. frame format to transfer data to the
PLC, allowing for real-time collection and storage of received data. The TCP/IP data frame
is consistent with the LS Elc. standard frame format, which is a standardized structure
that facilitates seamless communication with Elc’s equipment. It ensures compatibility
and efficient data exchange when communicating with Elc’s devices. By understanding
the attributes and features of these components, a comprehensive comprehension of EIP com-
munication and its corresponding frame structure can be obtained, as shown in Figure 6,
which displays LS Elc.’s exclusive XGT communication frame construction for exchanging
data with their physical equipment (PLC). The LSIS data communication frame comprises
LS ELECTRIC’s exclusive data (Company ID), Command, Data Type, and Data. The frame
design is depicted in Figure 5. Specifics of each frame element are shown in Table 2 (Com-
pany Header) and Table 3 (Command, Data Type).

Figure 6. XGT proprietary frame structure.

Table 2. Header structure for XGT-only protocols.

Field Name Field Size (Byte) Field Value

Company ID 10

• “LSIS-XGT” + “NULL NULL(Reserved)
(ASCII CODE: 4C 53 49 53 20 58 47 54 00 00)

• “LGIS-GLOFA”
(ASCII CODE: 4C 47 49 53 20 47 4C 4F 46 41)

PLC Info 2

• Client ➔ Server: Don’t care(0x00)
• Server ➔ Client:

Bit00-05: CPU Type
(XGK/I/R-CPUH: 0x01. XGK/I-CPUS: 0x02, XGK-
CPUA: 0x03. XGK/I-CPUE: 0x04. XGK/I-CPUU: 0x05,
XGK-CPUHN: 0x11. XGK-CPUSN: Ox12, XGI-
CPUUN: 0x15)

Bit06: 0 (Duplexing Master), 1 (Duplexing Slave)
Bit07: 0 (CPU Run), 1(CPU Error)
Bit08~12: System State (RUN: 0x01. STOP: 0x02. ER-
ROR: Ox04. DEBUG:0x08)
Bit13~15: Reserved

CPU Info 1

Determine that it is an XGK/XGI/XGR series.
• XGK: 0xA0
• XGI: 0xA4
• XGR: 0xA8

• XGB(MK): 0xB0
• XGB(IEC): 0xB4

Source of Frame 1
Client (HMI, Human Machine Interface) → Server (PLC):
0x33
Server (PLC) ➔ Client (HMI): 0x11

Invoke ID 2
ID to distinguish the order between frames.
(Send this number in the response frame)

Length 2 The byte size of the command structure
Ethernet
Position 1

Bit0-3: Slot number of the Ethernet module
Bits4-7: Base number of the Ethernet module

Reserved
2(BCC)

1 0x00: Reserved Area (Byte Sum of Header)

Server: Don’t care(0x00)
• Server

Sensors 2023, 23, x 7 of 15

The control device uses the EIP Stack and LS Elc. frame format to transfer data to the
PLC, allowing for real-time collection and storage of received data. The TCP/IP data frame
is consistent with the LS Elc. standard frame format, which is a standardized structure
that facilitates seamless communication with Elc’s equipment. It ensures compatibility
and efficient data exchange when communicating with Elc’s devices. By understanding
the attributes and features of these components, a comprehensive comprehension of EIP com-
munication and its corresponding frame structure can be obtained, as shown in Figure 6,
which displays LS Elc.’s exclusive XGT communication frame construction for exchanging
data with their physical equipment (PLC). The LSIS data communication frame comprises
LS ELECTRIC’s exclusive data (Company ID), Command, Data Type, and Data. The frame
design is depicted in Figure 5. Specifics of each frame element are shown in Table 2 (Com-
pany Header) and Table 3 (Command, Data Type).

Figure 6. XGT proprietary frame structure.

Table 2. Header structure for XGT-only protocols.

Field Name Field Size (Byte) Field Value

Company ID 10

• “LSIS-XGT” + “NULL NULL(Reserved)
(ASCII CODE: 4C 53 49 53 20 58 47 54 00 00)

• “LGIS-GLOFA”
(ASCII CODE: 4C 47 49 53 20 47 4C 4F 46 41)

PLC Info 2

• Client ➔ Server: Don’t care(0x00)
• Server ➔ Client:

Bit00-05: CPU Type
(XGK/I/R-CPUH: 0x01. XGK/I-CPUS: 0x02, XGK-
CPUA: 0x03. XGK/I-CPUE: 0x04. XGK/I-CPUU: 0x05,
XGK-CPUHN: 0x11. XGK-CPUSN: Ox12, XGI-
CPUUN: 0x15)

Bit06: 0 (Duplexing Master), 1 (Duplexing Slave)
Bit07: 0 (CPU Run), 1(CPU Error)
Bit08~12: System State (RUN: 0x01. STOP: 0x02. ER-
ROR: Ox04. DEBUG:0x08)
Bit13~15: Reserved

CPU Info 1

Determine that it is an XGK/XGI/XGR series.
• XGK: 0xA0
• XGI: 0xA4
• XGR: 0xA8

• XGB(MK): 0xB0
• XGB(IEC): 0xB4

Source of Frame 1
Client (HMI, Human Machine Interface) → Server (PLC):
0x33
Server (PLC) ➔ Client (HMI): 0x11

Invoke ID 2
ID to distinguish the order between frames.
(Send this number in the response frame)

Length 2 The byte size of the command structure
Ethernet
Position 1

Bit0-3: Slot number of the Ethernet module
Bits4-7: Base number of the Ethernet module

Reserved
2(BCC)

1 0x00: Reserved Area (Byte Sum of Header)

Client:

Bit00-05: CPU Type
(XGK/I/R-CPUH: 0x01. XGK/I-CPUS: 0x02,
XGK-CPUA: 0x03. XGK/I-CPUE: 0x04.
XGK/I-CPUU: 0x05, XGK-CPUHN: 0x11.
XGK-CPUSN: Ox12, XGI-CPUUN: 0x15)
Bit06: 0 (Duplexing Master), 1 (Duplexing
Slave)
Bit07: 0 (CPU Run), 1(CPU Error)
Bit08~12: System State (RUN: 0x01. STOP:
0x02. ERROR: Ox04. DEBUG:0x08)
Bit13~15: Reserved

CPU Info 1

Determine that it is an XGK/XGI/XGR series.

• XGK: 0xA0
• XGI: 0xA4
• XGR: 0xA8

• XGB(MK): 0xB0
• XGB(IEC): 0xB4

Source of Frame 1
Client (HMI, Human Machine Interface)→
Server (PLC): 0x33
Server (PLC)

Sensors 2023, 23, x 7 of 15

The control device uses the EIP Stack and LS Elc. frame format to transfer data to the
PLC, allowing for real-time collection and storage of received data. The TCP/IP data frame
is consistent with the LS Elc. standard frame format, which is a standardized structure
that facilitates seamless communication with Elc’s equipment. It ensures compatibility
and efficient data exchange when communicating with Elc’s devices. By understanding
the attributes and features of these components, a comprehensive comprehension of EIP com-
munication and its corresponding frame structure can be obtained, as shown in Figure 6,
which displays LS Elc.’s exclusive XGT communication frame construction for exchanging
data with their physical equipment (PLC). The LSIS data communication frame comprises
LS ELECTRIC’s exclusive data (Company ID), Command, Data Type, and Data. The frame
design is depicted in Figure 5. Specifics of each frame element are shown in Table 2 (Com-
pany Header) and Table 3 (Command, Data Type).

Figure 6. XGT proprietary frame structure.

Table 2. Header structure for XGT-only protocols.

Field Name Field Size (Byte) Field Value

Company ID 10

• “LSIS-XGT” + “NULL NULL(Reserved)
(ASCII CODE: 4C 53 49 53 20 58 47 54 00 00)

• “LGIS-GLOFA”
(ASCII CODE: 4C 47 49 53 20 47 4C 4F 46 41)

PLC Info 2

• Client ➔ Server: Don’t care(0x00)
• Server ➔ Client:

Bit00-05: CPU Type
(XGK/I/R-CPUH: 0x01. XGK/I-CPUS: 0x02, XGK-
CPUA: 0x03. XGK/I-CPUE: 0x04. XGK/I-CPUU: 0x05,
XGK-CPUHN: 0x11. XGK-CPUSN: Ox12, XGI-
CPUUN: 0x15)

Bit06: 0 (Duplexing Master), 1 (Duplexing Slave)
Bit07: 0 (CPU Run), 1(CPU Error)
Bit08~12: System State (RUN: 0x01. STOP: 0x02. ER-
ROR: Ox04. DEBUG:0x08)
Bit13~15: Reserved

CPU Info 1

Determine that it is an XGK/XGI/XGR series.
• XGK: 0xA0
• XGI: 0xA4
• XGR: 0xA8

• XGB(MK): 0xB0
• XGB(IEC): 0xB4

Source of Frame 1
Client (HMI, Human Machine Interface) → Server (PLC):
0x33
Server (PLC) ➔ Client (HMI): 0x11

Invoke ID 2
ID to distinguish the order between frames.
(Send this number in the response frame)

Length 2 The byte size of the command structure
Ethernet
Position 1

Bit0-3: Slot number of the Ethernet module
Bits4-7: Base number of the Ethernet module

Reserved
2(BCC)

1 0x00: Reserved Area (Byte Sum of Header)

Client (HMI): 0x11

Invoke ID 2 ID to distinguish the order between frames.
(Send this number in the response frame)

Length 2 The byte size of the command structure

Ethernet
Position 1 Bit0-3: Slot number of the Ethernet module

Bits4-7: Base number of the Ethernet module

Reserved
2(BCC) 1 0x00: Reserved Area (Byte Sum of Header)

Table 3. XGT-specific protocol commands and command codes.

Command Command Code Data Type Description

Write Request: h’ 0058 Individual

h’ 0000 BIT

Request to write data for each data type

h’ 0100 BYTE

h’ 0200 WORD

h’ 0300 DWORD

h’ 0400 LWORD

Continuous h’ 1400 BYTE Request to write a byte variable in blocks

Sensors 2023, 23, 8580 8 of 14

4.2. Decoding LS Elc.’s Frame Format

The LS IS frame format’s company header segment contains crucial data, providing
information about LS Elc. company, specific PLC equipment, module specifications, and
other relevant particulars. Technical terms’ abbreviations will be explained when first
used. The command field is divided into two unique commands: reading the memory
value of PLC EIP equipment and writing values to the memory. The language is objective,
value-neutral, and free from bias, keeping a formal register. The text follows conventional
academic structure and style, adhering to the requirements of spelling, grammar, and for-
matting in British English. The data type component includes several data types, including
Bit, Byte, Word, DWord, and LWord. Word, as a processing unit, enables the CPU to handle
16 bits at the same time. Double word, or DWord, emerged with the development of CPU
performance, enabling it to process up to 32 bits at once. Long word, or LWord, can process
64 bits, double the capacity of DWord. By understanding the complexities of LS Elc.’s
frame format, which includes the company header, command, data type, and related data
structures, a comprehensive grasp of the communication protocol and data manipulation
abilities can be attained. In Table 2, the company header designates a unique machine type
identified by the conversion of “LSIS-XGTs” into hexadecimal values followed by NULL
characters [30]. This hexadecimal value serves as the identifier for the machine owned by
Sun Moon University.

When transmitting data from a personal computer (PC) acting as a client to a PLC
utilizing PLC EIP as a server, the PLC Info field should be populated with 0x00. Alter-
natively, if using PLC EIP as a server, it is necessary to specify the pertinent information
regarding the current PLC, including details such as CPU type, redundancy, CPU error
troubleshooting, and others. When transmitting frames from a PC client to a PLC EIP
server, it is appropriate to use 0x33 as the client-to-server source indicator. Each frame that
is transmitted is assigned a unique identifier by the Invoke ID to avoid any confusion for
multiple frames. The length field indicates the total length of the command, data type, and
data area.

The Ethernet location in which the EIP module is installed should also be noted. For
research and development purposes, slot 0 was utilized, with a value of 0x00 inputted. The
reserved area designates the section allocated for frame formatting by LS Electric (LS Elc.),
which ensures optimal frame organization [30].

There are four commands used by the XGT-specific protocol, each of which handles
read/write, request/response. The available data types for each command are bits, bytes,
words, doublewords, and longwords when discrete, and bytes only when contiguous [31].

The Programmable Logic Controller’s (PLC) memory was accessed and altered from
the control device through a write request frame. As per Table 4, the write command
function directly specifies the device memory and its data type. Up to 16 independent
device memories can be written simultaneously.

Table 4. Frame structure of write commands among XGT specific protocol commands and com-
mand codes.

Field Name Field Size (Byte) Field Value

Command 2 0x0058: Request to write

Data Type 2 See the data type table [32]

Reserved Area 2 -

Number of blocks 2 The number of variables you want to
write to, up to 16

Variable Length 2 Maximum of 16 characters for the length
of the direct variable

Variable Name Variable Length Only direct variables can be used

Sensors 2023, 23, 8580 9 of 14

Table 4. Cont.

Field Name Field Size (Byte) Field Value

Data Size 2 Byte size of the data

Data Data Size The data you want to write

. Repeat as many times as variables/max
16 characters

Variable Length 2 Maximum of 16 characters for the length
of the direct variable

Variable Name Variable Length Only direct variables can be used

Data Size 2 Byte size of the data

Data Data Size The data you want to write

Table 5 presents an instance of a write command formed by combining Tables 2–4.
This showcases the creation of a frame that includes the write request command, the word
data type, the reservation, the number of blocks, the length of the variable, the name of
the variable (the Word type of the M variable, 100), the size of the data, and the data to be
written to individual memory.

Table 5. Request frame example for a write command.

Frame
Name Header Command Data

Type Reversed Number
of Blocks

Variable
Length

Variable
Name Data Size Data

Code
(Example) .. h’ 0058 h’ 0002 h’ 0000 h’ 0002 h’ 0006 %MW100 h’ 0002 h’ 1234

The company header is appended with command, data type, and data components to
form a unified packet to be transmitted. An illustration in the program shows a command
aimed at assigning a value to a variable. The program employs two types of write com-
mands: individual write and continuous write. An individual write permits up to 2 bytes to
be written, whereas a continuous write permits up to 1400 bytes. Using the aforementioned
program, let us formulate and verify programs for individual and consecutive writes,
following the ensuing instructions: 1. Execute the command to write the data value ‘1’ to
variable D at position 0. 2. Write the data value “Hello World” to variable D at position
0. It is crucial to note that the particular implementation of these programs may differ
depending on the programming language, platform, and tools utilized. See Figure 6 for
reference.

Figure 7 depicts an illustration of a command packet transmitted through a PLC EIP
module. Specifically, this example exhibits how an ASCII code is formed by amalgamating
the frames outlined in Tables 2–4 to form a comprehensive code. The ensuing code section
is provided below.

Verifying the obtained outcomes using the XG5000 4.7.2 [33], the software tool 4.7.2
tailored for designing and debugging the XGT PLC series. Figure 8a,b depicts the results.
Utilize an individual write mechanism to handle up to 2 bytes for writing a value of ‘1’ to
block D0. It is crucial to validate the precision of the write function employing LS Electric’s
device monitor. Write the value “Hello World” from block D0 to block n using a contiguous
write that can write up to 1400 bytes. After writing, verify with LS Elc.’s device monitor
that the value is in hexadecimal format. In Figure 8b, the hexadecimal value corresponds to
the “Hello World” text. This example demonstrates how to issue a write command from the
control device to the PLC to adjust a particular memory location within the PLC. When this
memory location is changed to a value of ‘1’, it triggers the PLC’s mechanism and executes
the instruction block depicted in Figure 9. This block then sends the message ‘Hello World’

Sensors 2023, 23, 8580 10 of 14

to the robot, as displayed in Figure 10. Sending the complete frame via a transmitting and
receiving program written in C.

Sensors 2023, 23, x 10 of 15

Figure 7. Example of transmitting the prepared write command communication frame to the PLC
EIP module for write command.

Verifying the obtained outcomes using the XG5000 4.7.2 [33], the software tool 4.7.2
tailored for designing and debugging the XGT PLC series. Figure 8a,b depicts the results.
Utilize an individual write mechanism to handle up to 2 bytes for writing a value of ‘1’ to
block D0. It is crucial to validate the precision of the write function employing LS Electric’s
device monitor. Write the value “Hello World” from block D0 to block n using a contigu-
ous write that can write up to 1400 bytes. After writing, verify with LS Elc.’s device mon-
itor that the value is in hexadecimal format. In Figure 8b, the hexadecimal value corre-
sponds to the “Hello World” text. This example demonstrates how to issue a write com-
mand from the control device to the PLC to adjust a particular memory location within
the PLC. When this memory location is changed to a value of ‘1’, it triggers the PLC’s
mechanism and executes the instruction block depicted in Figure 9. This block then sends
the message ‘Hello World’ to the robot, as displayed in Figure 10. Sending the complete
frame via a transmitting and receiving program written in C.

(a) (b)

Figure 8. Example of a memory block in a PLC viewed through the XG5000 4.7.2 software: (a) Indi-
vidual writing a value of 1 to block D0; (b) Continuous write from block D0 to block n: writing
“Hello World”.

Figure 9. Creating a PLC EIP block.

Figure 10. Verifying data reception on the robot (Linux Debian).

Figure 7. Example of transmitting the prepared write command communication frame to the PLC
EIP module for write command.

Sensors 2023, 23, x 10 of 15

Figure 7. Example of transmitting the prepared write command communication frame to the PLC
EIP module for write command.

Verifying the obtained outcomes using the XG5000 4.7.2 [33], the software tool 4.7.2
tailored for designing and debugging the XGT PLC series. Figure 8a,b depicts the results.
Utilize an individual write mechanism to handle up to 2 bytes for writing a value of ‘1’ to
block D0. It is crucial to validate the precision of the write function employing LS Electric’s
device monitor. Write the value “Hello World” from block D0 to block n using a contigu-
ous write that can write up to 1400 bytes. After writing, verify with LS Elc.’s device mon-
itor that the value is in hexadecimal format. In Figure 8b, the hexadecimal value corre-
sponds to the “Hello World” text. This example demonstrates how to issue a write com-
mand from the control device to the PLC to adjust a particular memory location within
the PLC. When this memory location is changed to a value of ‘1’, it triggers the PLC’s
mechanism and executes the instruction block depicted in Figure 9. This block then sends
the message ‘Hello World’ to the robot, as displayed in Figure 10. Sending the complete
frame via a transmitting and receiving program written in C.

(a) (b)

Figure 8. Example of a memory block in a PLC viewed through the XG5000 4.7.2 software: (a) Indi-
vidual writing a value of 1 to block D0; (b) Continuous write from block D0 to block n: writing
“Hello World”.

Figure 9. Creating a PLC EIP block.

Figure 10. Verifying data reception on the robot (Linux Debian).

Figure 8. Example of a memory block in a PLC viewed through the XG5000 4.7.2 software: (a) In-
dividual writing a value of 1 to block D0; (b) Continuous write from block D0 to block n: writing
“Hello World”.

Sensors 2023, 23, x 10 of 15

Figure 7. Example of transmitting the prepared write command communication frame to the PLC
EIP module for write command.

Verifying the obtained outcomes using the XG5000 4.7.2 [33], the software tool 4.7.2
tailored for designing and debugging the XGT PLC series. Figure 8a,b depicts the results.
Utilize an individual write mechanism to handle up to 2 bytes for writing a value of ‘1’ to
block D0. It is crucial to validate the precision of the write function employing LS Electric’s
device monitor. Write the value “Hello World” from block D0 to block n using a contigu-
ous write that can write up to 1400 bytes. After writing, verify with LS Elc.’s device mon-
itor that the value is in hexadecimal format. In Figure 8b, the hexadecimal value corre-
sponds to the “Hello World” text. This example demonstrates how to issue a write com-
mand from the control device to the PLC to adjust a particular memory location within
the PLC. When this memory location is changed to a value of ‘1’, it triggers the PLC’s
mechanism and executes the instruction block depicted in Figure 9. This block then sends
the message ‘Hello World’ to the robot, as displayed in Figure 10. Sending the complete
frame via a transmitting and receiving program written in C.

(a) (b)

Figure 8. Example of a memory block in a PLC viewed through the XG5000 4.7.2 software: (a) Indi-
vidual writing a value of 1 to block D0; (b) Continuous write from block D0 to block n: writing
“Hello World”.

Figure 9. Creating a PLC EIP block.

Figure 10. Verifying data reception on the robot (Linux Debian).

Figure 9. Creating a PLC EIP block.

Sensors 2023, 23, x 10 of 15

Figure 7. Example of transmitting the prepared write command communication frame to the PLC
EIP module for write command.

Verifying the obtained outcomes using the XG5000 4.7.2 [33], the software tool 4.7.2
tailored for designing and debugging the XGT PLC series. Figure 8a,b depicts the results.
Utilize an individual write mechanism to handle up to 2 bytes for writing a value of ‘1’ to
block D0. It is crucial to validate the precision of the write function employing LS Electric’s
device monitor. Write the value “Hello World” from block D0 to block n using a contigu-
ous write that can write up to 1400 bytes. After writing, verify with LS Elc.’s device mon-
itor that the value is in hexadecimal format. In Figure 8b, the hexadecimal value corre-
sponds to the “Hello World” text. This example demonstrates how to issue a write com-
mand from the control device to the PLC to adjust a particular memory location within
the PLC. When this memory location is changed to a value of ‘1’, it triggers the PLC’s
mechanism and executes the instruction block depicted in Figure 9. This block then sends
the message ‘Hello World’ to the robot, as displayed in Figure 10. Sending the complete
frame via a transmitting and receiving program written in C.

(a) (b)

Figure 8. Example of a memory block in a PLC viewed through the XG5000 4.7.2 software: (a) Indi-
vidual writing a value of 1 to block D0; (b) Continuous write from block D0 to block n: writing
“Hello World”.

Figure 9. Creating a PLC EIP block.

Figure 10. Verifying data reception on the robot (Linux Debian). Figure 10. Verifying data reception on the robot (Linux Debian).

5. Results

In this section, we provide a comprehensive analysis of three key dimensions. First, we
delve into the results of our data transfer experiments, carefully examining metrics such as
data transfer rates, latency, and error rates. This analysis provides valuable insights into the
efficiency and reliability of data transfer within the LS Electric system [10,34]. Secondly, we
examine the intricate workings of the trigger activation and coil control mechanisms within
the system, shedding light on their responsiveness and their key role in ensuring seamless
and efficient communication between the various system components. Finally, we detail the
measures implemented to maintain data integrity and content accuracy during transmission.
These safeguards have a significant impact on overall system performance, underlining the
critical importance of accurate and error-free data within the LS Electric system.

Sensors 2023, 23, 8580 11 of 14

5.1. Verification of Data Transmission

To establish communication between a PLC using EIP protocol and a Linux Debian
client, it is necessary to follow certain steps in a professional manner. Firstly, Point-to-
Point (P2P) communication should be implemented [33]. This involves establishing a
communication setup between the PLC and the Linux Debian client in order to facilitate
data transmission. Configuration of network settings and ensuring that both devices are
connected to the same network segment is crucial for this setup. Then, a data frame must
be created to facilitate the smooth transmission of data. Defining and organizing the data
frame, which contains the information to be transmitted from the PLC to the Linux Debian
client, is essential. The data frame should cover the necessary variables, tags, or parameters
for transmission 3.

Provide the IP address and port of the Linux Debian client. The communication
configuration settings of the Programmable Logic Controller (PLC) should clearly state
the IP address and port number for the Linux Debian client. This allows the PLC to
establish a connection with the designated client and directly transmitted data to the correct
destination. When following these steps, a dependable and effective communication
channel can be established between the PLC, which uses the EIP protocol, and the Linux
Debian client. This enables smooth data transmission by utilizing P2P communication,
defining a suitable data frame, and specifying the exact IP address and port of the Linux
Debian client. To guarantee success, three frames—HEAD, TAIL, and BODY—are required.
The HEAD and TAIL frames possess vital packet information, whereas the BODY frame
carries customizable user data.

5.2. Protocol and Frame Components for User Data Transmission

There are two protocol types: the standard STD protocol and the SUM protocol,
which includes a checksum to the standard variety. The selection of the protocol type is
determined by a parameter in the temperature controller. The STD protocol begins with
the start character STX (0x02) and concludes with the end characters CR (0x0D) and LF
(0x0A), and it is the default protocol included in the HEAD for user frame definitions.
The user frame protocol is widely used, with the TAIL section of each frame featuring a
carriage return (CR) and line feed (LF) to signal the end of data and mark the beginning of
a new data frame. This guarantees proper formatting of the protocol and accurate receipt
on the receiving device. Table 6 illustrates the inclusion of CR and LF in the TAIL of the
frame. Table 7 outlines the composition of a segment, with the header (HEAD) containing
the STX value of 02 and the footer (TAIL) containing the CR and LF values of 0D and
0A, respectively. The body of the segment consists of 11 bytes of data. Consequently, the
transmitted data of the segment is made up of 1 byte for the header, 2 bytes for the footer,
and 11 bytes for the body, resulting in a total of 14 bytes.

Table 6. Start of Text (STX) standard protocol.

STX Node
Number Command Data Carriage

Return Line Feed

0x02 1~99 - - 0x0D 0x0A

To guarantee the successful delivery of the custom frame, it is crucial to register the
IP address and port number of the receiving destination, that is, Linux Debian, with an IP
address of 192.168.0.26 and a port number of 8888. Upon registration of these details, the
custom frame will be sent to the destination. The blocks serve the purpose of identifying
the optimal recipient for a particular segment. One block is tasked with reading 11 bytes
from variable D 1. This occurs upon fulfilling the startup condition and then transmitting
the segment to recipient 0, who is the Linux Debian client. Refer to Figure 9 for a clear
summary of the main points: 1.

Sensors 2023, 23, 8580 12 of 14

Table 7. Adding segments (HEAD, TAIL, BODY).

- FRAME DATA

HEAD (1) HEAD_00

TAIL (2) TAIL_00 TAIL_01

BODY (14) HEAD SEGMENT_00 TAIL

The term “channel” pertains to the target receiver and denotes the Linux Debian
client in particular. 2. Channel selection determines if the segment should be received or
transmitted by the Linux Debian client 3. The starting condition acts as a trigger for the
mentioned blocks to commence their operations. The term “frame”, as the data format
utilized for transmitting information to the receiver, was previously defined in Section 4.
In this particular example, it pertains to a segment consisting of 14 bytes that has been
produced. Section 5 outlines the “variable setting content”, which designates the initial
memory location for the variable from where the data will be transmitted. In this instance,
data will be transmitted from the initial address to the 11th byte, as demonstrated.

5.3. Trigger Activation and Coil Control in the LS Electric System

1. The trigger condition is initiated when the value 1 is assigned to the D variable 0.
2. The term “<Coil>(P00024)”, as shown in Figure 9, denotes a coil function that exists

on the LS Electric side. This particular coil function performs the action of switching
on and off within a specific duration when the trigger condition has been reached.

3. The aforementioned program is intended to trigger the block’s startup condition by
activating the <Coil> when the D variable 0 is assigned a value of 1. The aforemen-
tioned program is intended to trigger the block’s startup condition by activating the
<Coil> when the D variable 0 is assigned a value of 1. The following points provide a
more professional summary: 1.

4. The aforementioned program is intended to trigger the block’s startup condition by
activating the <Coil> when the D variable 0 is assigned a value of 1.

5. The block’s startup condition is activated when the D variable 0 is assigned a value of
1. 2. “<Coil>” denotes a coil function located on the LS Electric side.

6. The LS Electric side turns on and off for a specific duration when the trigger condition
is met. 3. The program is intended to activate the block’s start-up condition by turning
on the “<Coil>” when there is a value of 1 assigned to D variable 0.

7. After the value 1 is written to block D0, the coil switches to the “On” position. Fur-
thermore, the bit value of P00024 changes to alternate between on and off states for a
duration determined by the user.

5.4. Ensuring Data Integrity and Content Accuracy

In order to confirm the successful transmission of the 14-byte segment created by the
user-defined frame on the Linux Debian Client, it is essential to verify that the STX 02
value for the HEAD and the CR and LF values of 0D and 0A, respectively, for the TAIL,
are received at both positions. The BODY, situated between the HEAD and TAIL, serves to
confirm the receipt of the value. The hexadecimal code within the BODY section confirms
the transmission and receipt of the phrase “Hello World” displayed in Figure 10.

6. Conclusions and Discussion

In this research, our discussion highlights the pivotal role played by the simulator in
verifying data transmission across various components, including the PLC EIP simulator
and Rainbow Robotics’ virtual simulator. This thorough testing phase has been instrumen-
tal in validating communication protocols and ensuring the seamless flow of data among
these critical elements.

Furthermore, we emphasize the importance of the Linux Debian and Windows client
programs developed using C/C++. These programs have allowed us to perform compre-

Sensors 2023, 23, 8580 13 of 14

hensive testing, confirming the physical communication of PLC EIP(XGL EFMTB) and
TCP/IP with the clients. This practical validation has reinforced the robustness and reliabil-
ity of the communication protocols and their compatibility with designated clients. Our use
of C/C++ programs for data transmission and reception has enabled meticulous analysis
of headers and custom packet formation for PLC Ethernet/IP. This has facilitated in-depth
scrutiny of the data transmission process, ensuring precise and efficient communication
between devices. In summary, our research has leveraged simulators, C/C++ programs,
and the development of data transmission and reception programs to successfully verify
and validate EIP communication in PLCs. In future work, the simulation of communication
using other TCP-based protocols could be an interesting avenue for exploration. In future
work, we see opportunities for further refinement and expansion. Leveraging the simulator
and C/C++ programs, we will explore advanced functionalities and conduct more intricate
testing scenarios. Additionally, we will consider the integration of emerging technolo-
gies and protocols to enhance the capabilities of PLC EIP communication. By building
on the foundations laid in this study, future research will contribute to the continuous
improvement of reliability, compatibility, and overall performance in the field of industrial
communication systems.

Author Contributions: Methodology, J.S. and S.L. (Sungchul Lee); validation, J.K.; formal anal-
ysis, S.L. (Seungjae Lee); resources, S.L. (Sungchul Lee); writing—original draft, J.S. and R.R.;
writing—review and editing, R.R. and S.L. (Sungchul Lee); supervision, J.K.; project administra-
tion, J.S.; funding acquisition, J.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Korea Evaluation Institute of Industrial Technology (KEIT)
grant funded by the Korean government (MOTIE) (No. 20014485, Development of small-size, high-
precision, and 500g-payload capable, collaborative robot technology). This work was supported by
the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
(No. RS-2022-00165749).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, C.; Fu, J.; Su, H.; Ren, L. Recent advancements in agriculture robots: Benefits and challenges. Machines 2023, 11, 48.

[CrossRef]
2. Xian, W.; Yu, K.; Han, F.; Fang, L.; He, D.; Han, Q.-L. Advanced Manufacturing in Industry 5.0: A Survey of Key Enabling

Technologies and Future Trends. IEEE Trans. Ind. Inform. 2023, 1–15. [CrossRef]
3. Park, J.-H.; Kim, Y.-S.; Seo, H.; Cho, Y.-J. Analysis of Training Deep Learning Models for PCB Defect Detection. Sensors 2023, 23,

2766. [CrossRef] [PubMed]
4. Brito, T.; Queiroz, J.; Piardi, L.; Fernandes, L.A.; Lima, J.; Leitão, P. A Machine Learning Approach for Collaborative Robot Smart

Manufacturing Inspection for Quality Control Systems. Procedia Manuf. 2022, 51, 11–18. [CrossRef]
5. Liu, W.; Venayagamoorthy, G.K.; Wunsch, D.C., II. Design of an adaptive neural network based power system stabilizer. Neural

Netw. 2003, 16, 891–898. [CrossRef] [PubMed]
6. Zunino, C.; Valenzano, A.; Obermaisser, R.; Petersen, S. Factory communications at the dawn of the fourth industrial revolution.

Comput. Stand. Interfaces 2020, 71, 103433. [CrossRef]
7. Kiran, R.; Jetti, S.R.; Venayagamoorthy, G.K. Online training of a generalized neuron with particle swarm optimization. In

Proceedings of the IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006.
[CrossRef]

8. Danielis, P.; Skodzik, J.; Altmann, V.; Schweissguth, E.B.; Golatowski, F.; Timmermann, D.; Schacht, J. Survey on real-time
communication via ethernet in industrial automation environments. In Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8. [CrossRef]

9. XGL-EXMTB. Available online: https://www.ls-electric.com/ko/product/view/P01134 (accessed on 15 June 2023).

https://doi.org/10.3390/machines11010048
https://doi.org/10.1109/TII.2023.3274224
https://doi.org/10.3390/s23052766
https://www.ncbi.nlm.nih.gov/pubmed/36904970
https://doi.org/10.1016/j.promfg.2020.10.003
https://doi.org/10.1016/S0893-6080(03)00129-1
https://www.ncbi.nlm.nih.gov/pubmed/12850048
https://doi.org/10.1016/j.csi.2020.103433
https://doi.org/10.1109/IJCNN.2006.247237
https://doi.org/10.1109/ETFA.2014.7005074
https://www.ls-electric.com/ko/product/view/P01134

Sensors 2023, 23, 8580 14 of 14

10. Lu, S.; Cai, Z.J.; Liu, T. Study on intelligent communication module for programmable logic controller. In Proceedings of the 2009
International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume
4, pp. 45–49. [CrossRef]

11. ODVA. Available online: https://www.odva.org/ (accessed on 15 June 2023).
12. Bajpai, S.; Ranjan, R.; Lee, S.; Lee, K.O.; Kye, J. Development of EIPAdapter for Explicit Messaging in Cooperative Robot

Communication. In Proceedings of the 22nd International Conference on Control, Automation and Systems (ICCAS), Jeju,
Republic of Korea, 27–30 November 2022. [CrossRef]

13. Sagstetter, F.; Lukasiewycz, M.; Steinhorst, S.; Wolf, M.; Bouard, A.; Harris, W.R.; Jha, S.; Peyrin, T.; Poschmann, A.; Chakraborty, S.
Security challenges in automotive hardware/software architecture design. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March 2013. [CrossRef]

14. Cao, Y.; Jiang, T.; Kaiwartya, O.; Sun, H.; Zhou, H.; Wang, R. Toward Pre-Empted EV Charging Recommendation Through
V2V-Based Reservation System. IEEE Trans. Syst. Man Cybern. Syst. 2021, 5, 3026–3039. [CrossRef]

15. Zhang, K.; Kianfar, J. An Automatic Incident Detection Method for a Vehicle-to-Infrastructure Communication Environment:
Case Study of Interstate 64 in Missouri. Sensors 2022, 22, 9197. [CrossRef] [PubMed]

16. Gupta, M.; Benson, J.; Patwa, F.; Sandhu, R. Secure V2V and V2I communication in intelligent transportation using cloudlets.
IEEE Trans. Serv. Comput. 2020, 15, 1912–1925. [CrossRef]

17. Khan, A.R.; Jamlos, M.F.; Osman, N.; Ishak, M.I.; Dzaharudin, F.; Yeow, Y.K.; Khairi, K.A. DSRC technology in Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) IoT system for Intelligent Transportation System (ITS): A review. In Recent Trends in
Mechatronics Towards Industry 4.0; Selected Articles from iM3F; Springer: Malaysia, Asia, 2020. [CrossRef]

18. Cherdo, Y.; Miramond, B.; Pegatoquet, A.; Vallauri, A. Unsupervised Anomaly Detection for Cars CAN Sensors Time Series
Using Small Recurrent and Convolutional Neural Networks. Sensors 2023, 23, 5013. [CrossRef] [PubMed]

19. Lee, T.-Y.; Lin, I.-A.; Wang, J.-J.; Tsai, J.-T. A Reliability Scheduling Algorithm for the Static Segment of FlexRay on Vehicle
Networks. Sensors 2018, 18, 3783. [CrossRef] [PubMed]

20. Hank, P.; Müller, S.; Vermesan, O.; Van Den Keybus, J. Automotive ethernet: In-vehicle networking and smart mobility. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March 2013.
[CrossRef]

21. Pensawat, T. Real-Time Ethernet Networks Simulation Model; DiVA: diva2:238095; Halmstad University, School of Information
Science, Computer and Electrical Engineering (IDE): Halmstad, Sweden, 2006; pp. 11–13.

22. Alessandria, E.; Seno, L.; Vitturi, S. Performance analysis of EIPnetworks. IFAC Proc. Vol. 2007, 40, 391–398. [CrossRef]
23. Gwak, K.-Y.; Lee, S.-W. A Development of PC/Ethernet based Fieldbus Network for Large Realtime Data Communication. In

Proceedings of the International Conference on Control, Automation and Systems, KINTEX, Gyeong Gi, Republic of Korea,
2–5 June 2005; pp. 362–367.

24. Wang, Z.; Zhang, Y.; Chen, Y.; Liu, H.; Wang, B.; Wang, C. A Survey on Programmable Logic Controller Vulnerabilities, Attacks,
Detections, and Forensics. Processes 2023, 11, 918. [CrossRef]

25. Folgado, F.J.; González, I.; Calderón, A.J. Data Acquisition and Monitoring System Framed in Industrial Internet of Things for
PEM Hydrogen Generators. Int. Things 2023, 22, 100795. [CrossRef]

26. Tapia, E.; Sastoque-Pinilla, L.; Lopez-Novoa, U.; Bediaga, I.; López de Lacalle, N. Assessing Industrial Communication Protocols
to Bridge the Gap between Machine Tools and Software Monitoring. Sensors 2023, 23, 5694. [CrossRef] [PubMed]

27. Do-more®PLC Simulator. Available online: https://www.automationdirect.com/do-more/brx/software/simulator (accessed
on 15 June 2023).

28. EIPExplorer & C# Stack. Available online: https://sourceforge.net/projects/enipexplorer/ (accessed on 15 August 2023).
29. Wrieshark. Available online: https://www.wireshark.org/ (accessed on 15 August 2023).
30. LS-ELECTRIC. Available online: https://sol.ls-electric.com/us/en/main (accessed on 15 June 2023).
31. XGL-EFMTB_T8_Manual_V3.4_202211_KR. Available online: https://sol.ls-electric.com/kr/ko/product/document/1809 (ac-

cessed on 15 June 2023).
32. XG5000. Available online: https://sol.ls-electric.com/ww/en/product/document/2897 (accessed on 21 August 2023).
33. LS ELECTRIC. XGL-EFMTB User Manual; LS ELECTRIC: Seoul, Republic of Korea, 2021; pp. 1–114. Available online: https://www.

manualslib.com/products/Ls-Electric-Xgl-Efmtb-12838634.html (accessed on 15 June 2023).
34. LS ELECTRIC. EtherNet/IP I/F Module User Manual; LS ELECTRIC: Seoul, Republic of Korea, 2020; pp. 1–144. Available online:

automationdirect.com (accessed on 15 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/AICI.2009.380
https://www.odva.org/
https://doi.org/10.23919/ICCAS55662.2022.10003850
https://doi.org/10.7873/DATE.2013.102
https://doi.org/10.1109/TSMC.2019.2917149
https://doi.org/10.3390/s22239197
https://www.ncbi.nlm.nih.gov/pubmed/36501898
https://doi.org/10.1109/TSC.2020.3025993
https://doi.org/10.1007/978-981-33-4597-3_10
https://doi.org/10.3390/s23115013
https://www.ncbi.nlm.nih.gov/pubmed/37299741
https://doi.org/10.3390/s18113783
https://www.ncbi.nlm.nih.gov/pubmed/30400669
https://doi.org/10.7873/DATE.2013.349
https://doi.org/10.3182/20071107-3-FR-3907.00054
https://doi.org/10.3390/pr11030918
https://doi.org/10.1016/j.iot.2023.100795
https://doi.org/10.3390/s23125694
https://www.ncbi.nlm.nih.gov/pubmed/37420858
https://www.automationdirect.com/do-more/brx/software/simulator
https://sourceforge.net/projects/enipexplorer/
https://www.wireshark.org/
https://sol.ls-electric.com/us/en/main
https://sol.ls-electric.com/kr/ko/product/document/1809
https://sol.ls-electric.com/ww/en/product/document/2897
https://www.manualslib.com/products/Ls-Electric-Xgl-Efmtb-12838634.html
https://www.manualslib.com/products/Ls-Electric-Xgl-Efmtb-12838634.html
automationdirect.com

	Introduction
	Related Work
	Work Methodology
	Proposed Structure
	Physical Communication Verification: PLC EIP (XGL EFMTB) and Clients
	Decoding LS Elc.’s Frame Format

	Results
	Verification of Data Transmission
	Protocol and Frame Components for User Data Transmission
	Trigger Activation and Coil Control in the LS Electric System
	Ensuring Data Integrity and Content Accuracy

	Conclusions and Discussion
	References

