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Abstract: The application of edge computing combined with the Internet of Things (edge-IoT) has
been rapidly developed. It is of great significance to develop a lightweight network for gearbox
compound fault diagnosis in the edge-IoT context. The goal of this paper is to devise a novel and
high-accuracy lightweight neural network based on Legendre multiwavelet transform and multi-
channel convolutional neural network (LMWT-MCNN) to fast recognize various compound fault
categories of gearbox. The contributions of this paper mainly lie in three aspects: The feature images
are designed based on the LMWT frequency domain and they are easily implemented in the MCNN
model to effectively avoid noise interference. The proposed lightweight model only consists of three
convolutional layers and three pooling layers to further extract the most valuable fault features
without any artificial feature extraction. In a fully connected layer, the specific fault type of rotating
machinery is identified by the multi-label method. This paper provides a promising technique
for rotating machinery fault diagnosis in real applications based on edge-IoT, which can largely
reduce labor costs. Finally, the PHM 2009 gearbox and Paderborn University bearing compound fault
datasets are used to verify the effectiveness and robustness of the proposed method. The experimental
results demonstrate that the proposed lightweight network is able to reliably identify the compound
fault categories with the highest accuracy under the strong noise environment compared with the
existing methods.

Keywords: compound fault diagnosis; edge-IoT; gearbox; Legendre multiwavelet transform; convolutional
neural network

1. Introduction

With the emergence of IoT, a large amount of innovative applications in fault diagnosis
fields have been rapidly increasing [1]. For instance, Kumar et al. [2] proposed a fault
diagnosis method based on IoT and semi-supervised learning for a panel-level solar photo-
voltaic array. Tran et al. [3] studied a novel fault recognition based on IoT and deep learning
for induction motors. However, the existing centralized cloud computing models find it
very difficult to cope with the massive number of IoT devices applied to the acquisition of
fault data of rotating machinery and the long distance data transmission between devices
and clouds. Consequently, it is very important to develop fast fault diagnosis methods
of rotating machinery to avoid major safety accidents and economic losses in industrial
production. Fortunately, the edge computing technique operated in the smaller number
of IoT devices provides a promising direction addressing the deficiency of the centralized
cloud computing [4]. For example, Wang et al. [5] proposed a lightweight convolutional
neural network method for the intelligent fault diagnosis of bearing in the Industrial IoT
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context. Pan et al. [6] proposed a novel edge-IoT framework based on blockchain and smart
contracts. Huang et al. [7] studied the development and application of multi-source sensing
data fusion models and algorithms in mechanical equipment fault diagnosis and prediction
based on IoT with artificial intelligence and big data processing technology.

For rotating machinery, gearbox is the most important power transmission component
in mechanical equipment, which mainly consists of gears, shafts and bearings. Its health
status directly affects whether the mechanical equipment can work normally. Due to
different types of faults coupled together, non-stationarity and a large amount of noise, it is
very difficult to effectively extract the most valuable fault characteristics from the raw data
by using the existing methods [8]. If the specific fault category can be accurately recognized
and predicted in the edge-IoT context, then the huge losses caused by the fault should be
effectively avoided [9]. Thus, it is significantly meaningful to develop a high accuracy fault
diagnosis method for the gearbox compound faults under a strong noise environment.

It is known that feature extraction and identification of the fault patterns are the
two main steps to accomplish the fault diagnosis of rotating machinery [10]. Usually,
the traditional feature extraction methods mainly consist of statistical feature extraction [11],
signal analysis techniques such as Fourier transform [12], wavelet transform [13], empirical
modal decomposition [14], and more. Then, the typical pattern recognition methods include
support vector machines [15], extreme learning machines [16], artificial neural networks [17]
and other improved approaches [18]. For example, Wang et al. [18] completed the diagnosis
of the gearbox compound faults by using a double-extreme learning machine to implement
the process of clustering and classification, respectively.

Although the traditional fault diagnosis methods have achieved some satisfactory
results, there still exist many shortcomings. In summary, firstly, the traditional methods
largely rely on expert knowledge and prior knowledge to obtain high quality features.
Secondly, the traditional approaches typically exhibit poor generalization ability and lack
high diagnostic accuracy, as they are easily influenced by environmental factors such as the
strong noise interference [19].

In recent years, some new intelligent diagnosis methods based on deep learning
have been widely used in the gearbox fault diagnosis fields [19], which have a strong
self-learning ability and can obtain distinguishable fault features from the raw data after
multiple iterations of learning [20]. For example, Autoencoder [21], convolutional neural
networks [22], residual neural networks [23], recurrent neural networks [24], long short-
term memory neural networks [25], and more, are implemented to identify the fault
categories of rotating machinery. It is noted that the convolutional neural network and
graph attention network have been widely applied in various research fields characterized
by high computational data requirements due to their powerful modeling representation
capability [26,27]. In addition, there is also the use of transfer learning to investigate deep
network models, which can adaptively recognize various faults [28].

However, the diagnostic methods based on deep learning are largely dependent on
hardware and high training cost, and the models often do not have strong generalization
capability or anti-noise ability. It is noted that some researchers combined signal processing
methods with deep learning to develop more effective fault diagnosis methods, which
are more robust and have less learning cost [29]. For example, Bai et al. [30] used Fourier
transform to process the sensor signal into an image and then applied a MCNN to mine
fault characteristics. Chen et al. [31] utilized wavelet transform to decompose the raw
data and then identified the internal features through a MCNN and a softmax classifier.
Hong et al. [13] decoupled the compound faults signals by balanced multiwavelets and
maximum correlated kurtosis deconvolution and then extracted the fault frequencies by
spectrum analysis. But, it is greatly difficult to obtain high diagnosis accuracy in the situa-
tion of accurately locating the specific fault type from the compound faults, especially good
robustness against noise under the strong noise conditions by using the existing methods.

To summarize, the difficulties of the existing methods in gearbox compound fault
diagnosis mainly lie in three aspects. First, the complexity of the compound faults with
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highly non-stationary and a large amount of noise usually leads to attain low diagnosis
accuracy for locating the specific fault type. Second, the traditional methods largely depend
on artificial feature extraction and more complicated algorithms to select the most valuable
features. Third, the deep learning-based methods need more complex model architectures
and extensive training to finish the compound fault diagnosis. Especially, the ability of the
extraction feature based on the deep models is significantly affected by the strong noise.

In view of the problems mentioned above, a novel and high accuracy fault diagno-
sis method, LMWT-MCNN, is proposed in this work for the gearbox compound faults.
The proposed method decomposes the raw data into a few low and high frequency com-
ponents using LMWT. Then, the feature images are designed based on these frequency
components. Finally, the powerful feature learning ability of the MCNN model is imple-
mented to further extract the more salient and valuable fault features from the feature
images without artificial feature selection.

It is noted that LMWT has more base functions and many excellent properties to
match the complex fault characteristics of gearbox. Therefore, the feature images obtained
by LMWT can effectively represent the discriminative fault characteristics of gearbox,
and there is no redundancy and leakage due to its orthogonality. Furthermore, the ampli-
tude of the noise in the feature images is usually smaller than that of the fault frequency
components [32], thus the process of the max pooling layers in the MCNN model can effec-
tively remove the noise frequency components, which demonstrates the strong anti-noise
ability of the proposed method. In addition, the proposed method uses multiple labels to
effectively identify the specific fault type of the gearbox compound faults [33].

Finally, the effectiveness and robustness of the proposed method are verified by
the PHM 2009 dataset from the 2009 Prognostics and Health Management Competition
(https://phmsociety.org/data-analysis-competition/, accessed on 21 October 2023) [34]
and the Paderborn University bearing compound fault datasets (https://mb.uni-paderborn.
de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download/, ac-
cessed on 21 October 2023) [35]. The two datasets are conducted by some fault diagnosis
methods but it is difficult to achieve high diagnostic accuracy [14,25,33,36–43].

However, the experimental results obtained in this paper demonstrate that the pro-
posed method has the great merits of the highest diagnosis accuracy and more robustness
than other existing methods. In summary, the main contributions and advantages of this
paper are described as follows.

(1) This paper constructs two feature images based on LMWT frequency domain by
using a sample data, which can effectively match the complex fault characteristics of
rotating machinery.

(2) This paper proposes an end-to-end compound fault diagnosis model based on edge-
IoT. The proposed model not only avoids the complex artificial feature extraction,
but also is a lightweight network only consisting of three convolutional layers and
corresponding three pooling layers.

(3) This paper provides an effective model for extracting multiple fault features in the
strong noise environment and it is very suitable for the compound fault diagnosis in
real applications.

(4) This work conducts some comparative experiments on two datasets of rotating ma-
chinery, which verifies the effectiveness and robustness of the developed method.
The corresponding recognition results indicate that the proposed model achieves the
highest diagnosis accuracy and shows powerful anti-noise ability.

The remainder of this paper is organized as follows: Section 2 introduces edge-IoT,
LMWT, and the CNN model. The decomposition and reconstruction of a sample of the
gearbox fault case 2 are elaborately described for understanding how to decompose the
raw data into different frequency components by LMWT. In Section 3, the two feature
images of a sample are constructed based on the frequency components in detail. Then,
the flowchart of the hybrid fault diagnosis method of LMWT and MCNN models based
on edge-IoT is elaborately described. In Section 4, the proposed method is implemented

https://phmsociety.org/data-analysis-competition/
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to identify different fault categories of rotating machinery, and the diagnosis results are
utilized to compare with the existing methods. Finally, Section 5 gives some conclusions
about this research and prospects for future work.

2. Research Methodology

In this section, the framework of edge-IoT is first described in detail. In the second
step, the concept and properties of LMW bases are introduced, and the decomposition
and reconstruction of a sample are specifically described in this context. In the third step,
the structure of CNN model is elaborately described. Finally, the multi-label method for
gearbox compound fault diagnosis is briefly introduced.

2.1. The Data Acquisition and Fault Diagnosis System Based on Edge-IoT

It is known that the mechanical equipment intelligent fault diagnosis mainly consists
of three processing procedures: signal acquisition, feature extraction and classification
diagnosis. The data acquisition stage has a significant impact on the industrial application
of mechanical fault diagnosis. Traditional fault diagnosis systems are mostly based on
the centralized cloud computing structure [1]. However, if the data volume of the termi-
nal is large, the centralized transmission of data based on the centralized cloud has high
requirements for the bandwidth of the transmission network, which will consume huge
bandwidth and computing resources [4]. Wu et al. [44] proposed the edge-cloud archi-
tecture for IoT devices with the function of mechanical equipment intelligent diagnosis,
which can effectively cope with the difficulty of the large volume data of the terminal
and arrive the requirement for online fault diagnosis. Consequently, this paper adopts
a data acquisition and intelligent fault diagnosis systems based on edge-IoT for gearbox
compound faults, which is demonstrated in Figure 1 as follows.

Figure 1. Rotating machinery compound fault data acquisition and fault diagnosis system based
on edge-IoT.

As shown in Figure 1, different sensor groups are used to collect the equipment fault
data of rotating components such as gearbox, bearing, gear, wind turbines and other
mechanical equipment in different environments. Then, the end controller receives the
large amount of data attained by the device, and the end server receives the proposed
model from the master server. The collected large amount of data are transported to
the edge calculation node, which has the proposed lightweight model for online fault
diagnosis. The proposed end-to-end lightweight network is effectively utilized to attain the
highest accuracy fault diagnosis results on the edge computing nodes. Finally, the obtained
diagnosis results with a small amount of data are transported into the centralized cloud
platform to be analyzed and visualized by the master controller.

To summarize, the edge computing lightweight model based on IoT can process sensor
data directly at the edge of the network, which not only meets the expansion needs of the
computing power of terminal devices, but also solves the issue of long delay in accessing
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cloud data centers. Compared with the centralized cloud computing, the proposed fault
diagnosis method based on edge-IoT makes data analysis, communication, control, and
storage closer to the sensing point, with low delay, less energy consumption, and high
accuracy performance.

2.2. Legendre Multiwavelet Bases

Legendre polynomials of degree k denoted by Lk(x) are described as

L0(x) = 1, L1(x) = x,
Lk+2(x) = 2k+3

k+2 xLk+1(x)− k+1
k+2 Lk(x),

(1)

where k = 0, 1, · · · , p− 1, and p is the number of the adopted LMW bases. According to
the literature [45], the Legendre scale basis functions φk(x) is represented by

φk(x) =
{ √

2k + 1Lk(2x− 1), x ∈ [0, 1],
0, x /∈ [0, 1].

(2)

Furthermore, a subspace Vp,n of piecewise polynomials is defined as

Vp,n = { f : f |Inl is a polynomial of degreestrictly less than p; f vanishes elsewhere}, (3)

which constitutes a linear space, where n = 0, 1, · · · is the resolution level, and l = 0,
1, · · · , 2n − 1 is the translation parameter, and the corresponding interval Inl is represented
by Inl = [2−nl, 2−n(l + 1)). It is obvious to the whole set {φk}

p−1
k=0 forms an orthonormal

basis for the subspace Vp,0. Then, the subspace Vp,n is also spanned using φk by dilation
and translation,

Vp,n = span
{

φk,nl(x) = 2n/2φk,n(2
nx− l)

}
, (4)

which forms an orthonormal basis in the subspace Vp,n. If the vibration signals with various
faults of rotating machinery are analyzed only in the subspace Vp,n, the low frequency
components are essentially obtained at the resolution level n. Whereas a lot of characteris-
tics of rotating machinery are salient to the high frequency components, the orthogonal
complement of Vp,n in Vp,n+1, i.e., the multiwavelet subspace Wp,n needs to be described as

Vp,n ⊕Wp,n = Vp,n+1, Vp,n ⊥Wp,n. (5)

It is known that Alpert [45] has constructed this multiwavelet subspace, which is im-
plemented to effectively compute the integral and differential operators. The corresponding
results can be explained by the two scales relation of the form

φk(x) =
√

2
p−1

∑
k′=0

(
h(0)kk′ φk′(2x) + h(1)kk′ φk′(2x− 1)

)
, (6)

ψk(x) =
√

2
p−1

∑
k′=0

(
g(0)kk′ φk′(2x) + g(1)kk′ φk′(2x− 1)

)
, (7)

where ψk is the multiwavelet basis. In this work, the above coefficient matrices H0 =(
h(0)ij

)
p×p

, H1 =
(

h(1)ij

)
p×p

, G0 =
(

g(0)ij

)
p×p

, and G1 =
(

g(1)ij

)
p×p

are implemented

to learn the fault characteristics by convolution of the rotating machinery fault data to
facilitate thoroughly extraction of comprehensive features.

In addition, in order to intuitively understand Legendre scale bases and wavelet basis
functions, let the finest resolution level n = 1 and order p = 4, respectively, and plot these
bases which are described in Figures 2 and 3.
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Figure 2. Legendre scale bases with n = 1 and p = 4.

Figure 3. Legendre wavelet bases with n = 1 and p = 4.

From Figures 2 and 3, the rich properties, such as compact support, vanishing mo-
ments, orthogonality, various regularities are clearly shown, and LMWT provides a power-
ful tool for comprehensively extracting the fault characteristics of the rotating machinery
data through a few Legendre scale and wavelet bases. Various regularities should be more
appropriate to adaptively identify the complex fault characteristics instead of the traditional
fault diagnosis methods that rely on engineering experience.

2.3. The Decomposition and Reconstruction of LMWT

LMWT can be considered as a mathematical tool that converts a signal into a series of
scale and wavelet coefficients, respectively. According to the multiresolution analysis theory
and the basis knowledge of LMW explained in the above subsection, the decomposition
procedure j + 1→ j resolution level is based on

sk,jm =
p−1

∑
k′=0

(
h(0)kk′ sk′ ,(j+1),2m + h(1)kk′ sk′ ,(j+1),(2m+1)

)
, (8)

dk,jm =
p−1

∑
lk′−0

(
g(0)kk′ sk′ ,(j+1),2m + g(1)kk′ sk′ ,(j+1),(2m+1)

)
, (9)

where sk,jm and dk,jm are the low frequency and high frequency components at the resolution
level j, i.e., the approximation coefficients and detail coefficients, respectively. The integer m
is the number of the data obtained by the resolution level j + 1 and m = 0, 1, · · · , 2j. There-
fore, the signals are decomposed into a hierarchical structure of details and approximations
at the finest resolution level n as follows.

f := ∑ dk,jm + sk,0m. (10)

Correspondingly, the reconstruction j + 1→ j resolution level is described as

sk,(j+1),2m =
p−1

∑
k′=0

(
h(0)kk′ sk′ ,jm + g(0)kk′ dk′ ,jm

)
, (11)

sk,(j+1),(2m+1) =
p−1

∑
k′=0

(
h(1)kk′ sk′ ,jm + g(1)kk′ dk′ ,jm

)
. (12)
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Furthermore, a specific sample of the PHM 2009 dataset for case 2 is utilized to
demonstrate the effectiveness and stability of LMWT. Then, the raw gearbox fault data of
the sample with 4096 points for case 2 are described in Figure 4.
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Figure 4. Raw data of gearbox with 4096 points for case 2.

Specifically, the convolution procedure of LMWT with the order of wavelet bases
p = 2 is described by the above sample as follows.

Step 1: The choice of finest resolution data is adopted as the raw data.
Step 2: According to the decomposition Equations (8) and (9), the raw data is doubled due

to using two wavelet. Then, the doubled raw data is segmented into two parts
corresponding to 2m and 2m + 1, which are easily processed by the four filters.

Step 3: The processed data produce the correspondingly low frequency and high frequency
components according to the decomposition Equations (8) and (9) at resolution
level 1 by two Legendre scale bases and two Legendre wavelet bases.

Step 4: The detailed frequency components are elaborately demonstrated in Figure 5 as follows.
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Figure 5. Low frequency (a,c) and high frequency (b,d) components for case 2 by LMW decomposition.

As illustrated in Figure 5, the resolution level 1 by LMW decomposition (LMWD)
generates a total of four frequency components without losing any frequency information
because of orthogonality. Then, according to the reconstruction Formulas (11) and (12),
the gearbox fault data for case 2 can be reconstructed with high accuracy and no Gibbs
phenomena, and it is described in Figure 6.

Figure 6. Reconstruction of the raw gearbox fault data and corresponding reconstruction error by LMWT.
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As shown in Figure 6, the order of the magnitude of the reconstruction error is 10−17,
which demonstrates the effectiveness and stability of this transformation.

2.4. A Brief Introduction to CNN

As one of the most important deep learning structure models, CNN model has been
widely applied with great success to various fault recognition fields [46]. In this subsec-
tion, the structure of CNN model is first explained in detail. Then, the loss function is
elaborately introduced.

The main structure of CNN model is a multi-layer network, which consists of one
input layer, alternative convolutional layers and pooling layers, fully connected layers,
and one output layer. The convolutional layers applied a number of convolutional kernels
to serve as the local filters to slide over the whole input neurons at the previous layer for
generating various feature maps. The convolutional operation between the input neurons
and the learnable convolutional kernels can be described by

xl
j = σ

(
∑

i
xl−1

i ∗ kl
ij + bl

j

)
, (13)

where xl
j is jth feature map at the lth layer, xl−1

i denotes the ith input feature map at (l− 1)th

layer, kl
ij denotes the convolutional kernel which connected ith input feature map with jth

feature map, bl
j denotes the bias, and ∗ denotes the convolutional operation. σ(·) is an

activation function, such as the sigmoid function, hyperbolic tangent function and rectified
linear units (ReLU). In contrast with the other activation functions, ReLU applies unilateral
inhibition method to alleviate the risk of vanishing gradient problems and accelerate
the convergence, which has been widely used in CNN model. The ReLU function is
described as

ReLU(x) =

{
x, if x > 0,
0, if x ≤ 0.

(14)

Pooling layers are used to decrease the number of the neurons in the network and
achieve low resolution of feature maps, which usually follow the convolution layers ad-
jacently. In CNN model, max-pooling, average-pooling, and stochastic-pooling are the
common operations in pooling layers. After multi-stage convolutional layers and pooling
layers, a fully connected layer is added to integrate the discriminative local information of
the category; in the full connection layer, dropout technology is often used as a regulariza-
tion method to restrain overfitting.

Furthermore, extracted features of the convolutional layers are flattened and then
inputted into the fully connected layers, which work in a similar manner as the traditional
back-propagating neural network.

Finally, the output layer uses the classifier for data classification. In the classifier,
the softmax function is adopted as the classifier to classify the normal and fault data. To be
specific, the estimated probability denoted by qc(x) can be calculated as follows.

qc(x) = Prob(yc) =
eyc

∑C
c′=1 eyc′ , (15)

where the observation x belongs to cth class, yc is the cth fault class in the full connected
layers, and C is the number of the fault classes. Since the cross-entropy loss of CNN model
can accelerate the updating speed of weights and convergence speed of the whole model
in comparison with the squared error loss in common classification tasks, in this paper,
the cross-entropy loss function is applied to diagnose the various fault categories of rotating
machinery and is described as
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L(p(x), q(x)) = −
C

∑
c=1

pc(x) log(qc(x)), (16)

which is implemented to measure the distance between output probability of the network
and real target, i.e., the real probability pc(x).

In contrast with the traditional fully connected neural network, the CNN model is
only sensitive to the local receptive field by employing sparse connections to a small scope
of neurons, and applies a weight sharing strategy to decrease the number of parameters.
Therefore, the CNN model can significantly decrease the computational burden of the
whole network and make the network easier to train.

2.5. Multi-Label Approach for Compound Fault Diagnosis

The compound fault vibration signal possesses typical nonlinear and nonstationary
properties, and the coupled fault characteristics are immersed in the strong noise. Thus, it is
very difficult to effectively extract the coupled characteristics from the raw vibration signal.

The proposed model in this paper locates the compound faults by the multi-label
method. To be specific, the label vector of each health condition is represented by multi-hot
labels with 1 at multiple indices rather than single hot label. That is, the occurrence of
the corresponding fault type is recorded as 1. Subsequently, a softmax layer serves as the
output layer in the proposed architecture, where the output represents the probability of
each type of fault occurrence. If the position with the highest probability in the network
output is the same as the position of 1 in the multi-label, the diagnosis result is regarded as
the situation of correction.

Finally, a cross-entropy loss function is implemented to calculate the loss value by
the comparison between the output and the multi-label value for updating network pa-
rameters. This labelling method can locate the specific fault type of rotating machinery
compound faults, where the specific fault type is effectively distinguished through the
trained network model.

3. The Proposed Method

In this section, the feature images obtained from the gearbox compound fault data by
LMWD are first devised. Then, a two-channel CNN model based on the feature images is
elaborately described. Finally, the proposed method based on edge-IoT is clearly explained.
Correspondingly, their flowcharts are specifically explained in Sections 3.1, 3.2 and 3.3,
respectively.

3.1. Constructing Feature Images by LMWD Frequency Domain

In this subsection, the LMWD frequency domain is implemented to construct two
feature images by the sample of the gearbox dataset for case 2. This sample is obtained from
the original signal sampled by the systematic sampling method. Compared with simple
sampling, the data characteristics obtained by systematic sampling are more obvious [47].
At the same time, the sampling interval of the system sampling is 0.1 times of the period
to ensure uniformity of the samples. In addition, using the same construction method,
the image based on the raw data and the feature image based on Daubechies wavelet
transform (DWT) are also devised to the comparative experiments in Section 4.

Specifically, the sample with 4096 points as shown in Figure 7 is decomposed into
eight high frequency components CD1,1, CD1,2, CD2,1, CD2,2, CD3,1, CD3,2, CD4,1, CD4,2
and two low frequency components CA4,1, CA4,2 by two Legendre scale bases and two
Legendre wavelet bases at the resolution level 4 as described in Figure 7 as follows.
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Figure 7. The constructed feature images from the LMWD frequency domain. (a) Feature image
based on the first LMW base. (b) Feature image based on the second LMW base.

More precisely, the specific steps of the constructing feature images using the LMWD
frequency domain are described in detail as follows.

Step 1: The raw sample data are doubled and then decomposed by two Legendre scale
bases and two Legendre wavelet bases at the resolution level 4. The length of each
frequency component from the CD1,1 to the CA4,1 is gradually halved by the first
LMW base. Similarly, the frequency component from the CD1,2 to the CA4,2 of the
second LMW base are attained.

Step 2: For clarity, only the first LMW base is used to explain how to construct the feature
image. The frequency components of different resolution levels are flattened to a
feature signal with the same length as the raw sample data. Then, the feature signal
is rearranged into a feature image in a matrix form with a size of 64 ∗ 64 as shown
in Figure 7.

In addition, to clearly explain the feature image differences between LMW bases
and the traditional methods, the method of the constructing images is also applied to the
raw data and the feature signal based on DWT, and the specific results are described in
Figure 8, respectively.

Figure 8. The constructed images by two methods. (a) Feature image based on the raw sample data.
(b) Feature image based on DWT.

Finally, the two feature images obtained by LMWD are used for convolution opera-
tions in the MCNN model. Due to the various regularity and orthogonality of the LMW
bases, the obtained feature images can effectively match the different fault categories of
rotating machinery without loss of information. Furthermore, the feature images are easily
implemented into a two-channel CNN model for effectively extracting the most valuable
fault features and accurately recognizing the rotating machinery compound faults.
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3.2. Multi-Channel CNN Based on LMWT

This subsection mainly describes how to combine LMWT with MCNN model for
gearbox compound fault classification, and the following flowchart of the proposed model
elaborately describes the principle of this technique.

According to the flowchart shown in Figure 9, the general steps of the proposed model
are elaborately described as follows.

Step 1: The vibration signals of gearbox compound faults are sampled from the data
acquisition system as shown in Figure 1.

Step 2: The vibration signals of the gearbox compound faults are divided into 600 samples
according to the length of 4096 points for each sample of each fault category.

Step 3: Each sample is transformed into two feature images by LMWT using two Legendre
scale bases and two Legendre wavelet bases. Then, seventy-five percent of the
feature images are randomly selected for the training samples and the rest twenty-
five percent for the testing samples, respectively.

Step 4: The lightweight structure of the proposed model consists of three convolutional
layers with 3 ∗ 3 kernels, three batch normalization (BN) layers and three max
pooling layers with 2 ∗ 2 kernels. First, the convolutional layers convolute the local
regions with a series of filter kernels to generate new feature maps. The 3 ∗ 3 con-
volutional kernel is able to learn more excellent features with less computations
relatively. Then, the BN layers are used to reduce the computational complexity of
the network and accelerate network convergence. Finally, the max pooling layers
perform down-sampling operations on the feature maps to decrease the size of the
feature maps. The purpose of using max pooling is to extract the maximum value
of the input feature map and remove the smaller noise frequency components.

Step 5: Finally, a fully-connected layer and a multi-hot cross entropy classifier are attached
on the top to accomplish the compound fault recognition of the gearbox.

To summarize, each sample is decomposed into two feature images by LMWT, then the
feature images are fed into the MCNN model, which addresses the lightweight combination
of the LMWT and MCNN models.

Figure 9. Flowchart of the LMWT-MCNN model for gearbox compound fault diagnosis.

3.3. The Flowchart of the Proposed Method Based on Edge-IOT

This subsection mainly discusses the overall workflow of the proposed method based
on edge-IoT, encompassing the entire process from fault data acquisition to fault diagnosis
and maintenance. The schematic diagram for this process is depicted in Figure 10 and is
specifically divided into six steps as follows.
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Step 1: The fault signals are sampled from the mechanical equipment by the sensors.
Step 2: The acquisition data are decomposed by LMWT to construct the feature images on

the edge node of the edge cloud.
Step 3: The lightweight LMWT-MCNN model for fault diagnosis is trained on the central-

ized cloud by using labeled fault dataset. This involves initializing parameters and
updating them using the loss computed from the model’s output. Once the loss of
the model converges, the training process is complete.

Step 4: Then, the feature images obtained from the testing samples are fed into the trained
lightweight LMWT-MCNN model downloaded from the centralized cloud to attain
the highest diagnosis accuracy.

Step 5: The diagnosis results are transmitted into the centralized cloud.
Step 6: The diagnosis results and their visualization are applied to the mechanical equip-

ment maintenance.

Finally, the two compound fault datasets of the rotating machinery are implemented
to verify the effectiveness and robustness of the proposed model.

Figure 10. Flowchart of the proposed fault diagnosis method based on edge-IoT.

4. Diagnosis Results and Analysis

In this section, the PHM 2009 gearbox dataset used in this work is first described
in detail. Then, the developed LMWT-MCNN model is implemented to diagnose the
various compound fault categories of the gearbox. Furthermore, the diagnosis accuracy
obtained by the proposed model is used to compare with the CNN method based on the
raw data (Raw data-CNN), CNN method based on DWT (DWT-CNN) and other existing
methods. Finally, another compound fault dataset of rotating machinery provided by
Paderborn University is implemented to further verify the effectiveness of the proposed
model. The comparison of the experimental results shows that the proposed model achieves
the highest recognition accuracy and is more stable and robust than the existing methods.
In addition, all approaches described above are implemented with Python and tested on a
computer with an AMD Ryzen 7 5800H CPU @ 3.20 GHz/4.40 GB RAM.
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4.1. Description of the PHM 2009 Gearbox Dataset

In this subsection, the vibration signals of the PHM 2009 gearbox dataset are described
in detail, and the corresponding six compound fault categories are shown in Figure 11.
Then, how to adopt the configuration parameters of the MCNN model, the training samples,
and the testing samples of the proposed model for the gearbox compound fault diagnosis
are specifically introduced, respectively.

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case1

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case2

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case3

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case4

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case5

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.02

0.04

Case6

A
m

p
li

tu
d
e

Sampling points

Figure 11. The vibration signals of the six fault types of the PHM 2009 dataset.

The PHM2009 gearbox dataset is a compound fault dataset that encompasses the
majority of common gearbox faults under various load conditions. The specific fault
categories contain the gear chipped tooth fault, gear broken tooth fault, bearing inner ring
fault, bearing ball fault, bent shaft fault, and shaft imbalance fault. Then, the fault data
acquisition procedure of the PHM 2009 dataset is explained in Figure 12 as follows.

Figure 12. Schematic of the gearbox used in the PHM 2009 dataset.
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As shown in Figure 12, the structure of the data acquisition consists of the input side
accelerator, the output side accelerator, and the tachometer signal. Two kinds of gears (spur
gear and helical gear) are used in this data acquisition system. In this article, only the fault
data from the input side accelerator and the helical gear are utilized to diagnose the six fault
categories of the gearbox. For the effectiveness of classification, the six health conditions are
artificially set as the corresponding multi-labels, which are described in Table 1 as follows.

Table 1. Detailed description and the pattern label of the PHM 2009 dataset.

Case Label Description

Case 1 {1, 0, 0, 0, 0, 0, 0} Label (1): Healthy
Case 2 {0, 1, 0, 0, 0, 0, 0} Label (2): Chipped tooth
Case 3 {0, 0, 0, 0, 0, 1, 0} Label (6): Bent Shaft
Case 4 {0, 0, 0, 0, 1, 0, 1} Label (5): Ball; Label (7): Shaft Imbalance
Case 5 {0, 0, 1, 1, 0, 0, 0} Label (3): Broken tooth; Label (4): Inner
Case 6 {0, 0, 1, 1, 0, 1, 0} Label (3): Broken tooth; Label (4): Inner; Label (6): Bent Shaft

The fault signals are collected at 30, 35, 40, 45, and 50 Hz speed and low load. The sam-
pling frequency is 66.7 kHz and the sampling time is 8 s. That is, for one operating speed,
there are 533,312 sample points. For each speed condition, the validation experiments in
this paper use 4096 sampling points as a sample. Therefore, there exist 600 samples taken
for each fault type. In order to meet the actual diagnostic requirements as much as possible,
450 samples of each health condition are randomly prepared for the training samples and
the remaining 150 samples are used for testing the diagnosis accuracy of the proposed
method. The specific configuration parameters of the gearbox fault data processing are
elaborately demonstrated in Table 2 as follows.

Table 2. Detailed description of the configuration parameters for the gearbox data processing.

Fault
Types

Points/
Sample

Samples/
Fault

Training
Samples

Testing
Samples

Number of
Wavelets

Resolution
Level

6 4096 600 450 150 2 4

Finally, the temporal waveform of the raw data samples of the six working conditions
of the gearbox are described in Figure 11, respectively.

As illustrated in Figure 11, the differences between the most fault patterns cannot be
easy to be distinguished. Consequently, it is very necessary to utilize the proposed model
to effectively rectify different compound fault categories of the gearbox.

4.2. Results and Analysis

Usually, the different structures of MCNN have some impacts on the experimental
results. In order to find a stable and effective LMWT-MCNN structure, the configuration
parameters of MCNN should be continuously adjusted according to the diagnosis accuracy.
As shown in Table 3, Model 1 has the highest diagnostic accuracy and relatively less
time spent. Model 2 adds the attention mechanism (AM) after MCNN, and its diagnostic
accuracy does not improve and the time cost also increases. The configuration parameters
of Models 3, 4, and 5 are slightly adjusted based on Model 1, but the experimental results
are not as good as those of Model 1.

Based on the comparison results, the structure of the proposed model is finally adopted
as Model 1 because of achieving the highest compound fault diagnosis accuracy. In the
forthcoming experiments, the optimizer for training the model will be set to Adam, with a
learning rate of 0.01, a maximum training epoch of 120, and a Weight decay of 0.0005.
Notably, the learning rate reduced by 30% every 30 training epochs. In addition, each
experiment is repeated ten times to validate the generalizability of the proposed model,
and the experiment results are shown in Figure 13 as follows.
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Table 3. Comparison of different LMWT-MCNN structures.

Models Epochs Convolution Learning
Rate

Accuracy
(%)

Training
Time (s)

Model 1 120 (1, 64) + (64, 32) + (32, 16) 0.01 98.33 319
Model 2 120 (1, 64) + (64, 32) + (32, 16) + AM 0.01 97.76 313
Model 3 120 (1, 32) + (32, 16) 0.01 96.78 252
Model 4 120 (1, 64) + (64, 32) + (32, 16) + (16, 8) 0.01 96.36 341
Model 5 280 (1, 32) + (32, 16) + (16, 8) 0.001 91.22 647
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97.44
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Figure 13. The classification accuracy of each trial by the proposed model.

In Figure 13, the results of ten repeated experiments conducted under the aforemen-
tioned parameter settings are presented, respectively. The average testing accuracy of the
ten repeated experiments is maintained about 98.01%, and its standard deviation is only
0.32%. The standard deviation is smaller compared to other methods, which demonstrates
that there are no particularity and contingency in the experiments by the proposed method.

In addition, to highlight the lightweight property of the proposed model, we compare
the model with other lightweight fault diagnosis models in recent years. The comparison
focuses on computational complexity and memory footprint, as displayed in Table 4.
Specifically, we measure the network’s computational complexity in FLOPs and quantify
the memory footprint by the number of parameters.

Table 4. The floating point of operations (FLOPs) and the parameter quantity (Params) of differ-
ent models.

Models FLOPs Params

LMWT-MCNN 0.023 G 0.091 M
LMS-MAFFNet [48] 0.027 G 0.177 M
MA1DCNN [49] 0.060 G 0.850 M
ARAHNet [50] 0.072 G 7.435 M
CDCN [51] 0.053 G 0.198 M

The results of the comparison in Table 4 significantly show that the proposed method
possesses the lowest computational complexity and memory footprint. This finding in-
dicates that our model is an exceptional lightweight model. Consequently, the proposed
lightweight model can be seamlessly integrated into edge-IoT systems to achieve optimal
performance in the compound fault diagnosis of rotating machinery.

Furthermore, Raw data-CNN method and the DWT-CNN method are implemented
to recognize the same gearbox compound fault categories. The Precision, Recall, F-measure
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and Accuracy of the gearbox compound fault diagnosis results are utilized to thoroughly
verify the effectiveness of the proposed method, which are described as follows.

Precision = TP
TP+FP , Recall = TP

TP+FN ,

F-measure = 2 Precision × Recall
Precision + Recall , Accuracy = TP+FP

TP+TN+FP+FN ,
(17)

where TP, TN, FP, and FN are the true positive, the true negative, the false positive,
and the false negative, respectively. The precision measures the accuracy of positive
predictions, while the recall represents the ability to identify true positive cases among
correctly real positive. Then, the F-measure is a weighted harmonic average of the precision
and recall, resulting in a higher value only when both the precision and recall values are
high. In the end, the accuracy denotes the proportion of the correct data to the total data.
Then, the testing results of different fault diagnosis methods for the gearbox compound
fault diagnosis are shown in Table 5.

Table 5. The detailed comparison results of different methods.

Methods Precision Recall F-Measure Accuracy

Raw data-CNN 78.53% 82.70% 76.66% 81.33%
DWT-CNN 95.34% 95.44% 95.28% 95.33%
LMWT-MCNN 98.06% 98.19% 98.12% 98.01%

As shown in Table 5, the proposed model achieves the highest precision of 98.06%,
recall of 98.19%, F-measure of 98.12%, and accuracy of 98.01%. In contrast, the Raw data-
CNN method exhibits the lowest diagnosis accuracy of 81.33%. These comparative results
demonstrate that the proposed model has the superior feature learning capability and
exceptional classification accuracy.

In the next experiment, the Gaussian white noise is added to the signals to test the anti-
noise capability of the proposed model. Noise ratios ranging from −24 to 6 are applied to
verify the performance of various fault diagnosis methods. The detailed comparison results
by different methods under various noisy conditions are shown in Figure 14 as follows.

Figure 14. The comparison of different methods under various noisy conditions.

The diagnosis results shown in Figure 14 demonstrate that the proposed model has
a strong ability to anti-noise and effectively identify each fault category of the gearbox.
The proposed model achieves the best performance and more robustness in comparison
with other methods under noise environment.

To further verify the effectiveness of the proposed method, the loss curve and iteration
accuracy curve are demonstrated in Figure 15 as follows.
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Figure 15. The loss and accuracy curves of different methods. (a) Loss curve. (b) Accuracy curve.

As demonstrated in Figure 15, the loss value of the proposed model arrives at the
stable situation at about 30 iterations; the training accuracy of the proposed model attains
the stable value at a few iterations, which confirm the excellent performance compared
with other methods.

Moreover, the t-SNE method is utilized to visualize the extracted features in two-
dimensional space for different fault diagnosis methods mentioned above, which demon-
strates that the proposed method has a good feature extraction ability for the gearbox
compound faults. To be specific, Figure 16a shows the clustering results obtained by
the raw data. Other clustering maps based on the extracted features by the Raw data-
CNN method, the DWT-CNN method, and the proposed model are elaborately shown in
Figure 16b–d, respectively.

Figure 16. The t-SNE visualization by different methods. (a) Raw data. (b) Raw data-CNN method.
(c) DWT-CNN method. (d) The proposed model.

From the visualized results of Figure 16a–d, it is demonstrated that the proposed
model has been more effective and stable in distinguishing each fault characteristic of the
gearbox than other methods. As demonstrated in Figure 16a, the data samples of the six
health conditions are randomly distributed, which indicates that the difference among the
raw data is small, and it is necessary to achieve effective classification by the developed
methods. In Figure 16b, the features learned by the Raw data-CNN method have a better
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clustering than the raw data, but it is still difficult to effectively separate different fault
types. In comparison with Figure 16c and Figure 16d, the two methods achieve effective
separation of the six fault categories. However, in Figure 16c, there are still several samples
overlapping between case 3, case 5 and case 6. As shown in Figure 16d, the proposed model
almost achieves effective separation of the six compound fault types, and the distribution of
the extracted features for each fault pattern is more concentrated. Therefore, the extracted
features of the same health condition by using the proposed model are the best clustered.

Finally, in order to further show the superiority and effectiveness of the proposed
model, other popular methods are also utilized to compare with the proposed method,
and the comparison results are listed in Table 6 in detail.

Table 6. Average test accuracy and standard deviation of different methods.

Methods Description Accuracy (%)

Elman AdaBoost-Bagging [14] Elman neural network + optimized AdaBoost-Bagging dual-ensemble algorithm 90.6 ± 3.62

Bi-LSTM [25] Bidirectional Long Short-Term Memory 93.67

WT-MLCNN [33] Wavelet Transform + Multi-label Convolutional Neural Network 94.02 ± 0.75

SA-DAL [36] Subdomain adaptation + Deep adversarial learning 97.5 ± 5.26

TQWT+SVM [37] Tunable Q-factor wavelet transform + Support Vector Machine 97.7

WT-RF [38] Wavelet Transform + Random Forest 96.79 ± 1.45

LMWT-MCNN (Proposed) Legendre MultiWavelet Transform + Multichannel Convolutional
Neural Network 98.01 ± 0.32

The effectiveness of the proposed model in the compound fault diagnosis of the
gearbox is verified in Table 6. The average accuracy of of the proposed method reaches
98.01%, which is higher than other advanced methods. Furthermore, the standard devi-
ation of these repeated trials is 0.32%, which is also smaller than other methods as show
in Table 6. The experimental results demonstrate the superiority and reliability of the
proposed method.

To summarize, the above comparison results further demonstrate that the proposed
model is able to effectively identify the gearbox compound health conditions.

4.3. Another Compound Fault Diagnosis Experiment of Rotating Machinery

The bearing is the important part of gearbox, thus the compound fault dataset of
the bearings provided by Paderborn University is utilized to verify the generalization
of the proposed model. In this dataset, all fault data are derived from accelerated life
testing, including both IR (Inner Ring) and OR (Outer Ring) bearing faults. These faults
include point pitting faults and plastic deformation faults on the IR and OR of the bearings.
The test bench equipment consists of a permanent magnet synchronous motor, a torque
measurement shaft, a test module, and a synchronous servo motor utilized as a load motor,
which is described in Figure 17 as follows.

Figure 17. Experimental setup of Paderborn University bearing dataset.

As illustrated in Figure 17, by employing a rolling element bearing module, varying
test bearings are subjected to a constant radial load, thereby acquiring and storing vibration
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signals from the inner shell. The Paderborn University bearing dataset contains six healthy
conditions and 26 damaged bearing vibration sets. A vibration transducer with a sampling
frequency of 64 kHz is used to collect vibration data. The operation settings of a rotational
speed of 1500 rpm, load torque of 0.7 Nm, and a radial force of 1000 N are applied in the
current research.

The upcoming experiments use fault data from six different health conditions to
validate the proposed model. Similar to the PHM2009 dataset, each fault type contains
600 samples, and each sample includes 4096 data points. Then, the samples are randomly
divided into the training set and the testing set. The specific fault categories and samples
of dataset used in this paper are shown in Table 7 in detail.

Table 7. Detailed descriptions of the Paderborn University bearing compound fault dataset.

Faults Label Description

K001 {1, 0, 0, 0, 0} Label (1): Normal
KA04 {0, 1, 0, 0, 0} Label (2): fatigue: pitting in OR
KA15 {0, 0, 1, 0, 0} Label (3): Plastic deforms: Indentations in OR
KI16 {0, 0, 0, 1, 0} Label (4): fatigue: pitting in IR
KB24 {0, 1, 0, 1, 0} Label (2, 4): fatigue: pitting in OR and IR
KB27 {0, 0, 1, 0, 1} Label (3, 5): Plastic deforms: Indentations in OR and IR

To eliminate the influence of randomness and individuality, the experiment is repeated
by ten trials, and the experimental results by different methods under different noise
conditions are elaborately shown in Table 8 as follows.

Table 8. Average testing accuracy of the second compound fault dataset by different methods.

SNR (dB) 6 4 2 0 −2 NaN

Raw data-CNN 84.56 ± 4.68 81.04 ± 2.30 79.71 ± 3.95 77.06 ± 2.15 75.43 ± 4.04 83.72 ± 3.72
DWT-CNN 94.27 ± 3.90 92.83 ± 5.40 89.67 ± 7.25 89.06 ± 6.19 88.99 ± 7.24 96.71 ± 2.30
LMWT-MCNN 99.50 ± 0.27 99.48 ± 0.22 99.47 ± 0.15 99.47 ± 0.34 99.46 ± 0.22 99.57 ± 0.20

As described in Table 8, the proposed model achieves the highest diagnosis accuracy
and the best stability compared with Raw data-CNN and DWT-CNN under different SNRs.
To be specific, for the situation of −2 dB, the accuracy of the proposed model reaches
99.46%, but the accuracy of DWT-CNN method is only about 88.99%, and the lowest
accuracy of Raw data-CNN is only about 75.43%. It is obvious that the proposed model
also shows the best accuracy as the SNR changes from 0 dB to 6 dB than other methods.
These experimental results further demonstrate that the proposed model has the excellent
anti-noise ability.

Finally, to effectively show the superiority of the proposed model, other popular
methods such as CNN-ELM-JDM, MPDBN-WT, AMVMD-SCNN, and ASN are also utilized
to compare with each other. The comparison results of the testing accuracy are listed in
Table 9 in detail.

As demonstrated in Table 9, the proposed model achieves the highest testing accuracy
of 99.57% in comparison with the state-of-the-art methods. In addition, the lowest testing
accuracy is 97.63% by the CNN-ELM-JDM method.

To summarize, the highest testing accuracy is achieved by the proposed lightweight
model based on LMWT and MCNN compared with the existing methods. Consequently,
the proposed lightweight model provides a promising technique for the implementation of
online compound fault diagnosis of rotating machinery based on edge-IoT.
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Table 9. Comparison results of several existing methods.

Methods Description Accuracy (%)

CNN-ELM-JDM [39] Convolutional neural network and extreme learning machine based on joint
distribution modification 97.63

MPDBN-WT [40] Mixed pooling deep belief network + wavelet transform 98.84

AMVMD-SCNN [42] Adaptive multivariate variational mode decomposition and multi-scale
convolutional neural network 98.60

ASN [43] Attention stream net 99.10

LMWT-MCNN (Proposed) Legendre MultiWavelet Transform + Multichannel Convolutional Neural Network 99.57

5. Conclusions

The effective and reliable intelligent fault diagnosis method based on edge-IoT is
developed in this paper for the compound fault diagnosis of rotating machinery. Some
comparative experiments are conducted on the PHM 2009 gearbox and the Paderborn
University bearing compound fault datasets with different noise to verify the effectiveness
and robustness of the proposed method. The experimental results show that the proposed
method achieves the highest diagnosis accuracies of 98.01% and 99.57% without any noise,
respectively, compared with the existing methods. Especially in the low signal-to-noise
ratio environment, the proposed method still shows more effectiveness and robustness
than other methods. To summarize, this paper proposes an effective lightweight network
model for rotating machinery online fault diagnosis based on the edge-IoT context, which
obtains the high accuracy, strong anti-noise ability, small storage, and low calculation costs
to overcome the defects of large sensor data transmission, large cloud computing, and long-
distance data transmission, and more. In future work, LMWT should be combined with
other deep learning models to effectively rectify the compound fault types of rotating
machinery with highly non-stationary, weak, and early faults.
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