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Abstract: Smart cities have emerged as a specialized domain encompassing various technologies,
transitioning from civil engineering to technology-driven solutions. The accelerated development of
technologies, such as the Internet of Things (IoT), software-defined networks (SDN), 5G, artificial
intelligence, cognitive science, and analytics, has played a crucial role in providing solutions for
smart cities. Smart cities heavily rely on devices, ad hoc networks, and cloud computing to integrate
and streamline various activities towards common goals. However, the complexity arising from
multiple cloud service providers offering myriad services necessitates a stable and coherent platform
for sustainable operations. The Smart City Operational Platform Ecology (SCOPE) model has been
developed to address the growing demands, and incorporates machine learning, cognitive correlates,
ecosystem management, and security. SCOPE provides an ecosystem that establishes a balance
for achieving sustainability and progress. In the context of smart cities, Internet of Things (IoT)
devices play a significant role in enabling automation and data capture. This research paper focuses
on a specific module of SCOPE, which deals with data processing and learning mechanisms for
object identification in smart cities. Specifically, it presents a car parking system that utilizes smart
identification techniques to identify vacant slots. The learning controller in SCOPE employs a two-tier
approach, and utilizes two different models, namely Alex Net and YOLO, to ensure procedural
stability and improvement.

Keywords: cloud computing; IoT; smart city; performance; secure data management; modeling

1. Introduction

The concept of a smart city has emerged with multiple new challenges and opportuni-
ties in IT governance, development, security, and emerging technologies. Digital systems
for smart cities are becoming a new breed of software with real-time updates, connectivity,
and functionality. It is, therefore, highly desirable to formulate such frameworks and
models that support the concept and functionality of a smart city [1].

A smart city is a well-defined and new concept that many institutions and researchers
focus on nowadays. Inappropriate parking of vehicles at parking spots may lead to a
deadlock situation for the rest of the other vehicles. It is an issue for the entire world to
handle such a situation. The problem is in locating an appropriate parking spot in minimal
time and by using fewer resources and without wasting time, ensuring safe and secure
parking. By using the Internet of Things, artificial intelligence, and other communication
devices, this problem can be resolved [2].

Internet of Things (IoT) and artificial intelligence are the major research areas used
to solve challenges related to transportation and other smart city problems. IoT refers
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to the services of interconnected devices, people, networks, and other valuable things
that are provided with radio frequency identification (RFID). Publishing data onto the
cloud requires no human-to-human interaction. These IoT-enabled devices use multiple
communication, networking, and data-linking protocols.

The rapid development of the Internet of Things (IoT) enables ubiquitous connectivity
among various machines through wireless communication, significantly impacting people’s
daily life in many domains, such as smart cities, smart homes, garbage monitoring, smart
parking, smart transportation, etc. The surrounding information is sensed by IoT devices
and shared with people for efficient services and among themselves. In smart parking,
short-term wireless networks are used. Multiple techniques such as Bluetooth, ZigBee,
Wi-Fi, long-term evolution (LTE), etc. achieve efficient communication [3]. These methods
can provide reliable communications and high-speed data transmissions between IoT
devices. The Low Power Wide Area (LPWA) networks, which employ a novel wireless
protocol, are also very famous in the field of transmission in the current era due to their
long-range communication at low power. They offer high energy efficiency, low power
consumption, and high coverage capabilities. Figure 1 compares LPWA networks and
many other connectivity technologies regarding power consumption, bandwidth, cost, and
range.
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Smart cities are complex ecosystems that involve many stakeholders (e.g., managed
service providers, network operators, logistic centers), and must work together to achieve
the best services. These ecosystems consist of the interactions between an environment
and organisms. The emergence of multiple types of ecosystems can be seen in the world
of online applications and electronics in which devices interact with one another. The
ecosystems composed of multiple connected devices can do most of the data processing on
their own and do not need any human intervention. Humans can interact with these devices
to instruct the respective actor and set them up. Therefore, many smart infrastructures such
as multi-sensor ecosystems are installed for collecting data on many roadsides [4].

Many other methods are used to collect data by using light detection and ranging
(LiDAR), global positioning system (GPS), variable messaging signs (VMSs), and inertial
measurement units (IMUs). The live information collected by these devices is then passed
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to the autonomous cloud gateway servers. One operational part of a city’s ecosystem are
the smart parking systems. In smart cities, the notion of automatic parking systems is
growing, and can enhance the comfort and safety of drivers. An automated parking lot
system helps drivers to park their cars quickly and safely without any issues.

Various machine learning (ML) and deep learning (DL) techniques have been used by
many researchers to develop a novel system for better results. Moreover, these consist of
machine learning models (such as support vector machines (svm), regression tree, random
forest), time series models (such as AutoRegressive Integrated Moving Average (ARIMA)
and AutoRegressive Moving Average (ARMA)), and ensemble techniques used to predict
various domains (such as bank fraudulent detection, spam mail detection, future decision-
making traffic congestion control). Artificial neural networks (ANN), which can learn
independently, perform nonlinear fitting, etc., have also been used for the said problem.
ML, DL, and ANN solve many problems in smart cities, such as smart buildings, roads,
and parking. Other than these machine learning (ML) techniques, the queuing theory has
also been used to predict the wait time before parking occupancy in parking lots, or in
many other areas such as pattern recognition, speech recognition, signal processing, and
control systems [5].

The development of smart cities is rapidly progressing, and is driven by the advance-
ments in technology, data connectivity, and intelligent systems. One crucial aspect of this
transformation is the effective utilization of wireless connections, which enable seamless
communication and data exchange in urban environments. However, while the role of
wireless connectivity is substantial, it is just one piece of the larger puzzle that consti-
tutes a smart city’s infrastructure and functionality. A parking system in a smart city is
a technologically advanced and integrated solution designed to optimize and streamline
the management of parking spaces within urban environments. These systems leverage
various technologies and data-driven approaches to address the challenges associated
with parking, such as congestion, limited availability of parking spots, and inefficient
space utilization.

The smart city concept represents a transformative approach to urban planning and
management, which harnesses technology, data, and innovative solutions to address
the complex challenges faced by modern urban centers. It aims to create more efficient,
sustainable, and livable cities by integrating various aspects of urban life with cutting-edge
technologies.

1.1. Problem Statement

In the context of smart cities, urban congestion and limited parking spaces have
become pressing challenges. Traditional parking management systems often fall short in ef-
ficiently utilizing available parking spaces and providing a seamless experience for drivers.
To address this issue, this research focuses on developing an IoT-based autonomous park-
ing scenario that leverages transfer learning techniques. The primary problem addressed
within this research paper is the need for a more efficient and seamless parking system
that not only optimizes parking space usage but also contributes to reducing urban traffic
congestion and enhancing the quality of urban life.

1.2. Research Motivations

This research has formulated the following research motivations:

a Rapid urbanization has led to a surge in the number of vehicles on the road, resulting
in chronic traffic congestion in many cities.

b The advancement of Internet of Things (IoT) technology presents an opportunity to
revolutionize urban transportation and parking management.

c The potential for machine learning and transfer learning techniques to adapt and
optimize autonomous parking systems across different smart city environments is a
compelling avenue for exploration.
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1.3. Significance of Our Study

This research aims to develop an innovative and efficient IoT-based autonomous
parking system that enhances parking space utilization, reduces traffic congestion, and
promotes the sustainable development of smart cities. This study’s significance lies in its
potential to transform the way cities manage parking and urban mobility, ultimately leading
to more sustainable, efficient, and user-centric smart cities. Alleviating traffic congestion
is a critical concern in modern urban planning and transportation management. It refers
to the efforts and strategies aimed at reducing or mitigating the congestion of vehicles
on road networks during peak hours. Traffic congestion can lead to numerous negative
consequences, including increased travel time, environmental pollution, fuel consumption,
and stress, for commuters. The outcomes of our research have the potential to benefit not
only the residents and visitors of smart cities but also the global urban community facing
similar challenges.

1.4. Research Objectives

The following objectives are defined for this research:

a Develop a robust module for an IoT-based autonomous parking system, dedicated
to real-time data collection, analysis, and decision making. By leveraging advanced
sensors and analytics, it will enable an automated detection of vacant and occupied
parking spaces, improving the user experience and reducing the time spent searching
for parking.

b Explore and apply transfer learning techniques to adapt the autonomous parking system
to different smart city environments, promoting scalability and ease of deployment.

c Conduct extensive testing and evaluation of the developed system in real-world smart
city environments to assess its effectiveness in optimizing parking space utilization
and reducing traffic congestion.

2. Literature Review

IoT-based applications use recent developments in communication technology, arti-
ficial intelligence, sensor devices, ubiquitous computing, and wireless sensor networks
(WSN). Cloud computing combined with the Internet of Things is speeding up the de-
velopment of solutions that enable us to monitor traffic movement in smart cities. Many
solutions have been devised to find parking spaces in smart cities to improve the quality
of life. To provide comfort, smart parking systems help drivers to find available and free
parking spaces, and they also keep in mind the number of free parking spaces available and
the distance between them. Machine learning and deep learning methods have brought
advancements and innovation in monitoring the mobility of vehicles in smart cities. Paidi
et al. [6] suggested that combining computer vision and deep learning techniques can
help find free parking lots. They discussed various techniques, technologies, and the
applicability of sensors that can locate the availability of free parking space. Cai et al.’s [7]
work was based on locating and measuring the traffic flow in parking lots with a novel
vehicle filter based on deep learning techniques. The proposed system provided better
accuracy as compared to other cheap industry benchmark systems. Vu and Huang [8]
proposed a combination of spatial transform and deep contrastive network to conclude the
investigation of parking space availability. The authors demonstrated that the technique
was robust for parking displacements, distortion, variations in car sizes, effects of spatial
variations, etc.

Zhang et al. [9] introduced a self-parking system based on deep learning techniques.
In their proposed system, they marked the parking points in the image and then classified
those points as occupied or free slots. Therefore, they developed an image database of park-
ing slots that contains 12,165 images of outdoor and indoor parking slots. Chen et al. [10]
reviewed the technologies of vision-based traffic semantic understanding in Intelligent
Transportation Systems (ITSs).
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Tekouabou et al. [11] introduced a combination of ensemble techniques and IoT devices
to predict the number of free parking slots in smart cities and evaluated their system
performance with the Birmingham parking dataset. They used the bagging ensemble
technique and achieved a 94% prediction accuracy. Luo et al. [12] addressed the challenge of
endogeneity in assessing the impact of Transport Infrastructure Connectivity (TIC) on local
conflict resolution. They introduced novel evidence of TIC’s effects on conflict resolution
through a natural experiment and the application of machine learning techniques, thus
mitigating the concern of endogeneity. Orrie et al. [13] described wireless communication
for the recommendations of the nearest parking spaces or reserve places with a GPS. After
every 2 min, the system transmits information about the availability of free spaces. If no
parking spaces are available, no actions are taken; on the other hand, within 2 km of their
location, any user can reserve a place. The user receives a message on their smartphones
with directions. If a car is parked in every slot, no action is performed; this application
requires a Wi-Fi connection.

Karthi et al. [14] introduced a system in which they used a database and cloud to
communicate to manage parking spaces in real time. The proposed system uses ultrasonic
sensors that are placed on the ground, is connected via the internet, and has a mobile
application for users to make reservations. Tabassum et al. [15] proposed, developed, and
assessed four classifiers: multinomial Naive Bayes, decision tree, logistic regression, and
random forest. The hyperparameters of the models were tuned, and it was concluded that
the random forest outperformed the other classifiers with a 91.73% test and 100% training
accuracy. The prediction systems based on neural networks have shown the importance
of various factors, such as the day of the week, time of the day, temperature, and location.
In contrast, traffic, events, rainfall, and vacation time play a secondary role. Therefore,
it is crucial to develop and implement educational campaigns that target both drivers
and pedestrians. Moreover, the differences between left- and right-hand driving and the
potential risks associated with this should also be highlighted [16].

AlexNet was first proposed in 2012 by Alex Krizhevsky, and it is a simple, fundamen-
tal, and effective convolutional neural network that is mainly composed of different layers,
namely convolutional layers, pooling layers, fully connected layers, and rectified linear
unit (ReLU) layers [17]. It consists mainly of eight layers, in which five are convolutional,
and three are fully connected. The first five convolutional layers extract the input features
to generate convolved feature maps. In the pooling layer, average or max pooling oper-
ations are used on the convolved feature maps within the given neighborhood window
to aggregate the information. AlexNet is booming due to its practical strategies, such as
the dropout regularization technique and the ReLU non-linearity layer. ReLU can prevent
overfitting and significantly accelerate the training phase, and it is a half-wave rectifier
function. YOLO was introduced in 2016 by Joseph Redmon et al.; it performed well in
object detection, and could detect objects in real time at 45 frames per second. There is also
a smaller version of YOLO called Fast YOLO, which performs at 155 frames per second. In
this study, we propose a mixed edge-based and cloud-based framework with the final goal
of PM2.5 value prediction. In order to validate the proposed approach, we evaluate the
quality of predictions using both original and preprocessed data on a real-world dataset
from air quality sensors distributed in Calgary, Canada. [18] YOLO-V3 uses darknet as
its backbone, and has a CNN with 53 layers; it is stacked with 53 more layers of CNNs,
making the total convolutional layers equal to 106. Traffic flow prediction methods often
depend on historical traffic data, including traffic volume and speed, but they may not be
well suited for high-capacity expressways or periods of peak traffic congestion [19].

In this study, a driving simulator is employed to create driving scenarios and examine
the driving performance of drivers with varying levels of experience in situations where
they are faced with traffic rule violations performed by other road users. The experimental
findings reveal that certain novice drivers disregard the positioning of their vehicles when
encountering traffic violations, resulting in collisions with other road users. Furthermore,
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some novice drivers can only execute either steering or braking to evade collisions in these
critical situations [20].

The obtained results show an average mean absolute percentage error improvement of
40.18% in the prediction accuracy by using the proposed preprocessing technique. Table 1
represents the year-wise key findings of different research focuses.

Table 1. Year-wise different research findings.

Paper Title Year Research Focus Key Finding

A survey of IoT-based
smart parking systems in
smart cities [21].

2019 IoT-based smart
parking systems.

Provides a comprehensive
overview of IoT-based
parking systems, their

components, and challenges.

Deep reinforcement
learning for autonomous
parking [22].

2020

Autonomous parking
with deep
reinforcement
learning.

Discusses a deep
reinforcement learning

approach for
autonomous parking.

Learning-based smart
parking system [23]. 2021 Intelligent detection

of free parking slots.
Discusses convolution

neural networks.

Autonomous detection of
parking lots with
multi-sensor data fusion
using machine deep
learning techniques [24].

2021
Deep convolutional
neural network
F-MTCNN.

Provides vision-based target
detection and

object classification.

Autonomous parking space
detection for electric
vehicles based on the
improved YOLOV5-OBB
algorithm [25].

2023 Receptive field block.
Discusses parking space
detection and coordinate

attention mechanism.

3. Solution Design and Implementation
Conceptual Description of the Solution

Smart City Operation Platform Ecology (SCOPE) is a model which focuses on the
provisioning of smart services and functions as a management system (Figure 2). It takes a
smart city as an ecosystem with various inhabitants having specific needs and demands.
One important component of this model is the controller that provides the learning algo-
rithm and starts the system in terms of initialization. In this research, we are using the same
module to identify parking. Three main modules used in this system include the initializa-
tion module, learning controller, and synthesizer. The initialization module serves as the
starting point of the system. It is responsible for preparing and processing the raw input
data. This module may involve tasks such as data preprocessing, which could include the
cleaning, normalization, and transformation of the data. The initialization module provides
preprocessing and tagging of datasets based on the properties required to formulate initial,
refined, and output datasets. The learning controller is a crucial part of the system, as it
manages the learning and decision-making processes. It likely includes machine learning
algorithms or other AI techniques to analyze and learn from the processed data which
it receives. The synthesizer is a separate component that plays a role in generating or
synthesizing outputs or results. It might take the refined data from the learning controller
and create meaningful outputs or solutions related to car parking.
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There are 12,417 labeled images in the PKLot [26] parking dataset. The images in
the dataset cover different kinds of climate conditions, such as rainy, sunny, and overcast
preprocessing, in terms of the initial set, noise reduction, and elimination of other impurities
to make a refined dataset for tagging and solution development periods (Figure 3). These
images present distinct features because the dataset has different parking lots.
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This dataset is segmented into two classes: empty parking space class and the oc-
cupied space class. The total number of images after segmentation is 695,899, of which
337,780 (48.54%) comprise empty parking space images and 358,119 (51.46%) comprise
occupied space images. Figure 4b (empty sub image) and 4c (occupied sub image) show
the segmented parking spaces.
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4. Performance Evaluation of the System
4.1. Phase-I Using SCOPE with AlexNet

This pre-training transfer mechanism allows the CNN network’s parameters to be
transferred from the natural imagery dataset to the car parking dataset. AlexNet is pre-
trained on 1000 image classes and the last layers of AlexNet can be modified accord-
ing to our dataset. The input layer of AlexNet only accepts RGB images with a size of
227 × 227 × 3, therefore, the images will be resized according to the input layer. Each layer
in this network (e.g., convolutional layer, pooling layer) has a different filter size and has
its own stride. According to the pre-trained AlexNet, every convolutional layer ends with
a max pooling layer that will generate the greatest value based on a specified filter size.

Each convolutional layer visualizes the object features in the images, such as texture,
angle, and the edge of the target images. Figure 5 shows the training graph using a
customized AlexNet pre-trained network. This graph shows the accuracy of the training
and validation dataset using five epochs with a 0.0001 learning rate. There are 625 total
iterations and 125 iterations per epoch. Figure 6 shows the graph of the training process
of the loss and validation of the dataset using five epochs with a 0.0001 learning rate. The
number of iterations and losses are shown along the x-axis and y-axis, respectively.

4.2. Phase-II Using SCOPE with YOLO

YOLO-V3 is also used to detect empty and occupied parking lots in real time. YOLO-
V3 is a significantly better and faster than other techniques, such as R-CNN, and while
R-CNN can be considered faster, it requires a lot of computations and repetition of pro-
cesses [27]. On the other hand, YOLO-V3, as its name suggests, does all of its work in
just one scan. In simple words, YOLO-V3 uses convolutional neural networks for ob-
ject detection, and it is approximately six times faster than R-CNN. It can perform the
following tasks:

• Detect multiple objects in an image.
• Predict multiple classes.
• Identify the locations of objects in the image.

The YOLO training process is shown in Figure 7. Furthermore, during the training
process, each image will be resized by a width of 416, and height of 426 is also required in



Sensors 2023, 23, 8753 9 of 15

the configuration file, which may be changed as needed. The 6000 iterations (max_batches)
are identified to predict two classes (empty parking slots and occupied parking slots),
and steps of 4800 and 5400 iterations (as per the policy) equal to 80% and 90% of the
max_batches. The training configuration file uses a network size width = 416 and a
height = 416, which means that every image will be resized to the network’s size during
training and detection.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

stride. According to the pre-trained AlexNet, every convolutional layer ends with a max 
pooling layer that will generate the greatest value based on a specified filter size.  

Each convolutional layer visualizes the object features in the images, such as texture, 
angle, and the edge of the target images. Figure 5 shows the training graph using a cus-
tomized AlexNet pre-trained network. This graph shows the accuracy of the training and 
validation dataset using five epochs with a 0.0001 learning rate. There are 625 total itera-
tions and 125 iterations per epoch. Figure 6 shows the graph of the training process of the 
loss and validation of the dataset using five epochs with a 0.0001 learning rate. The num-
ber of iterations and losses are shown along the x-axis and y-axis, respectively.  

 
Figure 5. The training process of accuracy and validation of the proposed model with transfer learn-
ing (AlexNet). The light blue curve ( ) represents training accuracy and its smooth training 
accuracy curve is shown using the dark blue curve ( ). Further, the black curve ( ) 
represents the training validation of the proposed model.  

 

Figure 5. The training process of accuracy and validation of the proposed model with transfer
learning (AlexNet). The light blue curve (

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

stride. According to the pre-trained AlexNet, every convolutional layer ends with a max 
pooling layer that will generate the greatest value based on a specified filter size.  

Each convolutional layer visualizes the object features in the images, such as texture, 
angle, and the edge of the target images. Figure 5 shows the training graph using a cus-
tomized AlexNet pre-trained network. This graph shows the accuracy of the training and 
validation dataset using five epochs with a 0.0001 learning rate. There are 625 total itera-
tions and 125 iterations per epoch. Figure 6 shows the graph of the training process of the 
loss and validation of the dataset using five epochs with a 0.0001 learning rate. The num-
ber of iterations and losses are shown along the x-axis and y-axis, respectively.  

 
Figure 5. The training process of accuracy and validation of the proposed model with transfer learn-
ing (AlexNet). The light blue curve ( ) represents training accuracy and its smooth training 
accuracy curve is shown using the dark blue curve ( ). Further, the black curve ( ) 
represents the training validation of the proposed model.  

 

) represents training accuracy and its smooth
training accuracy curve is shown using the dark blue curve (

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

stride. According to the pre-trained AlexNet, every convolutional layer ends with a max 
pooling layer that will generate the greatest value based on a specified filter size.  

Each convolutional layer visualizes the object features in the images, such as texture, 
angle, and the edge of the target images. Figure 5 shows the training graph using a cus-
tomized AlexNet pre-trained network. This graph shows the accuracy of the training and 
validation dataset using five epochs with a 0.0001 learning rate. There are 625 total itera-
tions and 125 iterations per epoch. Figure 6 shows the graph of the training process of the 
loss and validation of the dataset using five epochs with a 0.0001 learning rate. The num-
ber of iterations and losses are shown along the x-axis and y-axis, respectively.  

 
Figure 5. The training process of accuracy and validation of the proposed model with transfer learn-
ing (AlexNet). The light blue curve ( ) represents training accuracy and its smooth training 
accuracy curve is shown using the dark blue curve ( ). Further, the black curve ( ) 
represents the training validation of the proposed model.  

 

). Further, the black curve
(

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

stride. According to the pre-trained AlexNet, every convolutional layer ends with a max 
pooling layer that will generate the greatest value based on a specified filter size.  

Each convolutional layer visualizes the object features in the images, such as texture, 
angle, and the edge of the target images. Figure 5 shows the training graph using a cus-
tomized AlexNet pre-trained network. This graph shows the accuracy of the training and 
validation dataset using five epochs with a 0.0001 learning rate. There are 625 total itera-
tions and 125 iterations per epoch. Figure 6 shows the graph of the training process of the 
loss and validation of the dataset using five epochs with a 0.0001 learning rate. The num-
ber of iterations and losses are shown along the x-axis and y-axis, respectively.  

 
Figure 5. The training process of accuracy and validation of the proposed model with transfer learn-
ing (AlexNet). The light blue curve ( ) represents training accuracy and its smooth training 
accuracy curve is shown using the dark blue curve ( ). Further, the black curve ( ) 
represents the training validation of the proposed model.  

 

) represents the training validation of the proposed model.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

stride. According to the pre-trained AlexNet, every convolutional layer ends with a max 
pooling layer that will generate the greatest value based on a specified filter size.  

Each convolutional layer visualizes the object features in the images, such as texture, 
angle, and the edge of the target images. Figure 5 shows the training graph using a cus-
tomized AlexNet pre-trained network. This graph shows the accuracy of the training and 
validation dataset using five epochs with a 0.0001 learning rate. There are 625 total itera-
tions and 125 iterations per epoch. Figure 6 shows the graph of the training process of the 
loss and validation of the dataset using five epochs with a 0.0001 learning rate. The num-
ber of iterations and losses are shown along the x-axis and y-axis, respectively.  

 
Figure 5. The training process of accuracy and validation of the proposed model with transfer learn-
ing (AlexNet). The light blue curve ( ) represents training accuracy and its smooth training 
accuracy curve is shown using the dark blue curve ( ). Further, the black curve ( ) 
represents the training validation of the proposed model.  

 
Figure 6. The training process of loss and validation of the proposed model with transfer learning
(AlexNet). The light orange curve (

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

Figure 6. The training process of loss and validation of the proposed model with transfer learning 
(AlexNet). The light orange curve ( ) represents the number of losses and its smooth loss 
curve is shown using the dark orange line ( ). Lastly, the black curve ( ) represents 
the loss validation of the proposed model. 

4.2. Phase-II Using SCOPE with YOLO 
YOLO-V3 is also used to detect empty and occupied parking lots in real time. YOLO-

V3 is a significantly better and faster than other techniques, such as R-CNN, and while R-
CNN can be considered faster, it requires a lot of computations and repetition of processes 
[27]. On the other hand, YOLO-V3, as its name suggests, does all of its work in just one 
scan. In simple words, YOLO-V3 uses convolutional neural networks for object detection, 
and it is approximately six times faster than R-CNN. It can perform the following tasks: 
• Detect multiple objects in an image. 
• Predict multiple classes. 
• Identify the locations of objects in the image. 

The YOLO training process is shown in Figure 7. Furthermore, during the training 
process, each image will be resized by a width of 416, and height of 426 is also required in 
the configuration file, which may be changed as needed. The 6000 iterations 
(max_batches) are identified to predict two classes (empty parking slots and occupied 
parking slots), and steps of 4800 and 5400 iterations (as per the policy) equal to 80% and 
90% of the max_batches. The training configuration file uses a network size width = 416 
and a height = 416, which means that every image will be resized to the network’s size 
during training and detection.  

The learning rate (learning_rate = 0.001) is a hyperparameter that adjusts and controls 
the weights of the network. The learning rate needs to be high at the beginning of the 
training process. Once you set the learning rate value, train the model, and wait for the 
learning rate to eventually decrease over time and enable the model to converge. The 
learning rate which decreases the policy is mentioned in the configuration file. The blue 
curve in Figure 7 shows the training loss, and the red curve shows the mean average pre-
cision (mAP), which is 99.9%.  

) represents the number of losses and its smooth loss
curve is shown using the dark orange line (

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

Figure 6. The training process of loss and validation of the proposed model with transfer learning 
(AlexNet). The light orange curve ( ) represents the number of losses and its smooth loss 
curve is shown using the dark orange line ( ). Lastly, the black curve ( ) represents 
the loss validation of the proposed model. 

4.2. Phase-II Using SCOPE with YOLO 
YOLO-V3 is also used to detect empty and occupied parking lots in real time. YOLO-

V3 is a significantly better and faster than other techniques, such as R-CNN, and while R-
CNN can be considered faster, it requires a lot of computations and repetition of processes 
[27]. On the other hand, YOLO-V3, as its name suggests, does all of its work in just one 
scan. In simple words, YOLO-V3 uses convolutional neural networks for object detection, 
and it is approximately six times faster than R-CNN. It can perform the following tasks: 
• Detect multiple objects in an image. 
• Predict multiple classes. 
• Identify the locations of objects in the image. 

The YOLO training process is shown in Figure 7. Furthermore, during the training 
process, each image will be resized by a width of 416, and height of 426 is also required in 
the configuration file, which may be changed as needed. The 6000 iterations 
(max_batches) are identified to predict two classes (empty parking slots and occupied 
parking slots), and steps of 4800 and 5400 iterations (as per the policy) equal to 80% and 
90% of the max_batches. The training configuration file uses a network size width = 416 
and a height = 416, which means that every image will be resized to the network’s size 
during training and detection.  

The learning rate (learning_rate = 0.001) is a hyperparameter that adjusts and controls 
the weights of the network. The learning rate needs to be high at the beginning of the 
training process. Once you set the learning rate value, train the model, and wait for the 
learning rate to eventually decrease over time and enable the model to converge. The 
learning rate which decreases the policy is mentioned in the configuration file. The blue 
curve in Figure 7 shows the training loss, and the red curve shows the mean average pre-
cision (mAP), which is 99.9%.  

). Lastly, the black curve (

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

Figure 6. The training process of loss and validation of the proposed model with transfer learning 
(AlexNet). The light orange curve ( ) represents the number of losses and its smooth loss 
curve is shown using the dark orange line ( ). Lastly, the black curve ( ) represents 
the loss validation of the proposed model. 

4.2. Phase-II Using SCOPE with YOLO 
YOLO-V3 is also used to detect empty and occupied parking lots in real time. YOLO-

V3 is a significantly better and faster than other techniques, such as R-CNN, and while R-
CNN can be considered faster, it requires a lot of computations and repetition of processes 
[27]. On the other hand, YOLO-V3, as its name suggests, does all of its work in just one 
scan. In simple words, YOLO-V3 uses convolutional neural networks for object detection, 
and it is approximately six times faster than R-CNN. It can perform the following tasks: 
• Detect multiple objects in an image. 
• Predict multiple classes. 
• Identify the locations of objects in the image. 

The YOLO training process is shown in Figure 7. Furthermore, during the training 
process, each image will be resized by a width of 416, and height of 426 is also required in 
the configuration file, which may be changed as needed. The 6000 iterations 
(max_batches) are identified to predict two classes (empty parking slots and occupied 
parking slots), and steps of 4800 and 5400 iterations (as per the policy) equal to 80% and 
90% of the max_batches. The training configuration file uses a network size width = 416 
and a height = 416, which means that every image will be resized to the network’s size 
during training and detection.  

The learning rate (learning_rate = 0.001) is a hyperparameter that adjusts and controls 
the weights of the network. The learning rate needs to be high at the beginning of the 
training process. Once you set the learning rate value, train the model, and wait for the 
learning rate to eventually decrease over time and enable the model to converge. The 
learning rate which decreases the policy is mentioned in the configuration file. The blue 
curve in Figure 7 shows the training loss, and the red curve shows the mean average pre-
cision (mAP), which is 99.9%.  

) represents
the loss validation of the proposed model.



Sensors 2023, 23, 8753 10 of 15Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. The training process of the proposed model using YOLOv3. 

In this research, the performance of the proposed model is measured using accuracy, 
false negative rate (FNR), true positive rate (TPR), true negative rate (TNR), positive pre-
dictive value (PPV), negative predictive value (NPV), false positive rate (FPR), false dis-
covery rate (FDR), and F1-Score. 

The performance of the proposed model is evaluated based on the counts of valida-
tion records correctly and incorrectly predicted by the proposed trained model. The accu-
racy of the proposed model provides the information about how many images are cor-
rectly classified in the confusion matrix by using the trained proposed model, as shown 
in Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
൫𝜏ఘ + 𝜏ఔ൯ 

𝑁
  (1)

The error rate or miss rate or false negative rate (FNR) of the proposed model is cal-
culated using Equation (2), and provides the information about how many images are 
incorrectly identified in the confusion matrix. 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  
൫ℱఘ + ℱఔ൯ 

𝑁
 (2)

The other metric of the measure of performance is sensitivity or recall or the true 
positive rate (TPR), and is calculated with Equation (3). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝜏ఘ

൫𝜏ఘ + ℱఔ൯
 (3)

Figure 7. The training process of the proposed model using YOLOv3.

The learning rate (learning_rate = 0.001) is a hyperparameter that adjusts and controls
the weights of the network. The learning rate needs to be high at the beginning of the
training process. Once you set the learning rate value, train the model, and wait for the
learning rate to eventually decrease over time and enable the model to converge. The
learning rate which decreases the policy is mentioned in the configuration file. The blue
curve in Figure 7 shows the training loss, and the red curve shows the mean average
precision (mAP), which is 99.9%.

In this research, the performance of the proposed model is measured using accuracy,
false negative rate (FNR), true positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV), false positive rate (FPR), false
discovery rate (FDR), and F1-Score.

The performance of the proposed model is evaluated based on the counts of validation
records correctly and incorrectly predicted by the proposed trained model. The accuracy
of the proposed model provides the information about how many images are correctly
classified in the confusion matrix by using the trained proposed model, as shown in
Equation (1).

Accuracy =

(
τρ + τν

)
N

(1)

The error rate or miss rate or false negative rate (FNR) of the proposed model is
calculated using Equation (2), and provides the information about how many images are
incorrectly identified in the confusion matrix.

Miss rate =

(
Fρ +Fν

)
N

(2)
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The other metric of the measure of performance is sensitivity or recall or the true
positive rate (TPR), and is calculated with Equation (3).

Sensitivity =
τρ(

τρ +Fν

) (3)

One more performance measure metric which is used is specificity or the true negative
rate (TNR), and it is measured with Equation (4).

Speci f icity =
τν(

τν +Fρ

) (4)

The precision or positive predictive value of the proposed model is measured with
Equation (5).

Precision =
τρ(

τρ +Fρ

) (5)

Equation (6) is used to find out the negative predictive value (NPV) of the proposed
model.

NPV =
τν

(τν +Fν)
(6)

The false positive rate (FPR) of fallout of the proposed model is measured with
Equation (7)

FPR =
Fρ(

τν +Fρ

) (7)

Equation (8) represents the false discovery rate (FDR) of the proposed model.

FDR =
Fρ(

Fρ + τρ

) (8)

F1-Score is the import metric used to evaluate the proposed model. It is based on
precision and recall, and is calculated by taking the geometric mean of recall and precision
as shown in Equation (9).

F1− Score =
2 ∗ TPR ∗ PPV

TPR + PPV
(9)

Table 2 shows the confusion matrix from the training phase of the proposed model
used for automated parking lot detection prediction. These metrics are applied in the
training and validation dataset, which is divided into 80% for the training dataset and 20%
for the validation dataset. In this study, 80% of the training data set is used for building
the proposed model and 20% of the dataset is used for measuring the proposed model’s
accuracy. The results of the training and validation dataset in the form of a confusion matrix
are shown in Tables 2–4. There are 20,000 randomly selected images from the parking lot
dataset which are used for transfer learning with the use of a customized AlexNet network,
in which 16,000 (80%) images are used for training and 4000 (20%) images are used to
validate the training model, as shown in the respective tables.

Table 2. Confusion matrix of the training of the proposed model during the prediction of automated
parking lot detection.

Expected Output (Ee, Eo) Oe (Empty) Oo (Occupied) Total

Input Ee (Empty) 7991 9 8000
Eo (Occupied) 12 7988 8000

Total 8003 7997 16,000
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Table 3. Confusion matrix of the validation of the proposed model using AlexNet during prediction
of automated parking lot detection.

Expected Output (Ee, Eo) Oe (Empty) Oo (Occupied) Total

Input Ee (Empty) 1997 3 2000
Eo (Occupied) 4 1996 2000

Total 2001 1999 4000

Table 4. Confusion matrix of the validation of the proposed model using YOLO during the prediction
of automated parking lot detection.

Expected Output (Ee, Eo) Oe (Empty) Oo (Occupied) Total

Input Ee (Empty) 76,173 863 77,036
Eo (Occupied) 2027 68,022 70,049

Total 78,200 68,885 147,085

Evaluation of the proposed model (transfer learning with AlexNet) using training and
validation data, which employs various statistical measures for performance assessment as
shown in Table 5.

Table 5. Performance evaluation of proposed model (transfer learning with AlexNet) using training
and validation data with different statistical measures.

Results Accuracy FNR
Miss Rate

TPR
Sensitivity

TNR
Specificity

PPV
Precision NPV FPR FDR F1-Score

Training 0.9987
(99.87%)

0.0013
(0.13%)

0.9989
(99.89%)

0.9985
(99.85%)

0.9985
(99.85%)

0.9989
(99.89%)

0.0015
(0.15%)

0.0015
(0.15%)

0.9986
(99.87%)

Validation 0.9973
(99.73%)

0.0028
(0.28%)

0.9970
(99.70%)

0.9975
(99.75%)

0.9975
(99.75%)

0.9970
(99.70%)

0.00250
(0.25%)

0.00250
(0.25%)

0.9972
(99.73%)

Evaluation of the proposed model (transfer learning with YOLO) using training and
validation data, which employs various statistical measures for performance assessment as
shown in Table 6.

Table 6. Performance evaluation of proposed model (transfer learning with YOLO) using validation
data with different statistical measures.

Results Accuracy FNR
Miss Rate

TPR
Sensitivity

TNR
Specificity

PPV
Precision NPV FPR FDR F1-Score

Validation 0.9804
(98.04%)

0.0196
(1.96%)

0.9888
98.88%)

0.9711
(97.11%)

0.9741
(97.41%)

0.9875
(98.75%)

0.02894
(2.89%)

0.02592
(2.59%)

0.9814
(98.14%)

The description of the confusion matrix is shown in Table 1, and the results are shown
below.

• True positive
(
τρ

)
= 7991; the model accurately classified 7991 images in the empty lot

class out of 8000 images.
• True negative τν = 7988; the model accurately classified 7988 images in the empty lot

class out of 8000 images.
• False positive

(
Fρ

)
= 12; consequently, the model mistakenly identified 12 images of

the occupied lot class as the empty lot class.
• False negative (Fν) = 9; consequently, the model mistakenly identified 9 images of the

empty lot class as the occupied lot class.

A total of 7991 and 7988 images were correctly identified as the empty lot and occupied
lot classes, respectively.
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Tables 6 and 7 represent the proposed model’s measurements by using Equations (1)–(9).
The accuracy, FNR, TPR, TNR, PPV, NPV, FPR, FDR, and F1-Score metrics of training and
validation dataset of the proposed model are shown in Table 6. The rapid advancement
of intelligent connected technologies and cellular vehicle-to-everything communication
(C-V2X) presents new opportunities for addressing the challenges of connected auto-
mated vehicles (CAVs) at continuous signalized intersections, especially in the context of
ecodriving [28].

Table 7. The performance comparison of the proposed model with approaches in the literature.

Literature Training Validation

Accuracy (%) Miss Rate (%) Accuracy (%) Miss Rate (%)

Fabian (2013) [22] 96.40 3.60 96.2 3.80
Amato et al. (2018) [23] 96.36 3.64 96.1 3.90
Kashif et al. (2020) [24] 97.60 2.40 96.6 3.40
Proposed model (YOLO) 99.89 0.11 98.04 1.96
Proposed model (AlexNet) 99.87 0.13 99.73 0.27

5. Conclusions and Future Work

The emergence of smart cities has provided many challenges and requirements, in-
cluding the autonomous data capturing ability and analytical provision for the end user
and system to make decisions. For autonomous data capturing, IoT has become an ideal
domain that provides the integration of multiple devices to capture dynamic data; therefore,
the role of IoT, artificial intelligence, and analytics in the solutions related to smart cities is
always prominent. As mentioned earlier, SCOPE is a model used for the management of
the ecosystems of smart cities with cloud computing that gains autonomy using learning
mechanisms and analytics. This paper has presented the data processing and learning
components of SCOPE to validate two scenarios, i.e., by engaging AlexNet as the learning
controller and by replacing AlexNet with YOLO-V3. The selected scenario investigated in
this study is the identification of parking lot statuses, and, for this purpose, both models
performed successfully as the learning controllers and provided significant results. The
accuracy of AlexNet and YOLO models reached 99.87 and 99.89, respectively, while the
comparison of the other models with previous results, which were significant, was also
improved with the help of the proposed SCOPE model. It is important to note that the
SCOPE model was evaluated on multiple other object identification scenarios for smart
cities and has provided significant results in all scenarios. Future research should aim
to explore the seamless integration of autonomous parking solutions with smart traffic
management systems. This would involve real-time communication between vehicles and
traffic infrastructure to optimize both parking and traffic flow within smart cities.
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