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Abstract: The traditional Transformer model primarily employs a self-attention mechanism to capture
global feature relationships, potentially overlooking local relationships within sequences and thus
affecting the modeling capability of local features. For Support Vector Machine (SVM), it often
requires the joint use of feature selection algorithms or model optimization methods to achieve
maximum classification accuracy. Addressing the issues in both models, this paper introduces a
novel network framework, CTSF, specifically designed for Industrial Internet intrusion detection.
CTSF effectively addresses the limitations of traditional Transformers in extracting local features
while compensating for the weaknesses of SVM. The framework comprises a pre-training component
and a decision-making component. The pre-training section consists of both CNN and an enhanced
Transformer, designed to capture both local and global features from input data while reducing data
feature dimensions. The improved Transformer simultaneously decreases certain training parameters
within CTSF, making it more suitable for the Industrial Internet environment. The classification
section is composed of SVM, which receives initial classification data from the pre-training phase and
determines the optimal decision boundary. The proposed framework is evaluated on an imbalanced
subset of the X-IIOTID dataset, which represent Industrial Internet data. Experimental results
demonstrate that with SVM using both “linear” and “rbf” kernel functions, CTSF achieves an
overall accuracy of 0.98875 and effectively discriminates minor classes, showcasing the superiority of
this framework.

Keywords: Industrial Internet; intrusion detection; convolutional neural network; Transformer;
Support Vector Machines

1. Introduction

Industrial Internet [1] is an emerging domain that amalgamates conventional indus-
trial systems with internet technologies. Leveraging advanced techniques like the Internet
of Things (IoT), cloud computing, and big data analytics, it facilitates the interconnect-
edness and intelligent management of large-scale devices within industrial production
environments. The proliferation of Industrial Internet and its digital transformation has
brought forth numerous challenges [2]. Firstly, as the networking degree of industrial
control systems escalates, industrial networks become exposed to a plethora of threats.
Malicious actors can disrupt, interfere, or even gain control over industrial systems through
network intrusion and malevolent activities, severely impacting industrial production and
infrastructure. Secondly, security vulnerabilities and weaknesses in the Industrial Internet
have gradually become targets for attackers. Industrial control systems often employ anti-
quated devices and software, lacking timely security patches and updates. Concurrently,
attackers exploit advanced network attack techniques such as zero-day vulnerabilities and
targeted assaults on specific industrial protocols, infiltrating and penetrating the Industrial
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Internet. Lastly, the Industrial Internet harbors a substantial amount of sensitive produc-
tion data and operational information. Should these data fall into the hands of malicious
entities, it can lead to substantial losses for enterprises. Furthermore, malicious intrusions
can result in severe consequences including production interruptions, equipment damage,
and industrial accidents, thereby posing significant threats to the production and economic
interests of enterprises.

To bolster the security of Industrial Internet systems, traditional network security
methods are adapted for use in Industrial Internet contexts. Figure 1 depicts a generalized
security architecture for safeguarding Industrial Internet platforms. The left portion of
the diagram represents the entire lifecycle management process of data in the Industrial
Internet, with a higher susceptibility to malicious attacks during the data collection and
transmission phases. In the middle section of the diagram, passive defense measures against
malicious attacks are presented, including the common service models in cloud computing:
SaaS, PaaS, and IaaS. These models play a pivotal role in establishing and providing
secure computing and storage environments. On the right side of the diagram, active
defense measures against malicious attacks are depicted; the Intrusion Detection System
(IDS) represents an active defense component within the depicted framework, playing a
significant role in the Industrial Internet context. IDS, a form of network security tool [3,4],
is designed to monitor and identify potential intrusion activities, thereby safeguarding
the integrity of Industrial Internet systems. By implementing effective IDS solutions, the
Industrial Internet can ensure the reliability, integrity, and confidentiality of its systems,
thereby establishing a stable and secure environment for industrial production. IDS can
be categorized into signature-based IDS (SIDS) and anomaly-based IDS (AIDS) [5]. SIDS
relies on predefined attack patterns or feature databases for intrusion detection, performing
matching against network traffic, system logs, or other data using known attack pattern
signatures. However, it can only identify known intrusions. On the other hand, AIDS is a
method that detects abnormal activities by analyzing the normal behavioral patterns of
a system. AIDS constructs baseline models of normal network traffic, system behavior,
and user activities to detect anomalous behavior that deviates from the established normal
model. This approach can identify unknown attacks and emerging threats.
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In the context of AIDS, machine learning techniques (ML) are extensively employed to
enhance the automation and intelligence of IDS, thereby reducing false positive rates and
better addressing evolving network threats [6–8]. Support Vector Machine (SVM), a classi-
cal ML algorithm, finds widespread application in intrusion detection [9,10]. SVM boasts
significant advantages in handling high-dimensional data, generalization, small-sample
data, and linear and non-linear problems. However, in IDS, data features can sometimes be
redundant, or their impact on accurately classifying data points might be marginal. Hence,
SVM models are often used in conjunction with feature selection algorithms and model
optimization methods to maximize SVM’s classification accuracy [11]. An effective feature
selection approach involves the use of deep learning networks (DL) [12–14]. DL, achieved
through the combination and training of multi-layered neural networks, can automatically
acquire sophisticated abstract feature representations from raw data, greatly streamlin-
ing the feature extraction process. At its core, DL utilizes neural network models [15],
comprising multiple layers of neurons, with each layer performing a series of non-linear
transformations and feature extractions on input data. As the network depth increases,
DL gradually learns more abstract and complex feature representations, thereby achieving
a deep understanding and analysis of the data. Transfomer, a DL network architecture
based on self-attention mechanisms [16], dynamically computes attention weights for each
position based on the relationships between different feature positions in the input data.
By summing the weighted attention weights for all positions, the Transformer model can
simultaneously consider the feature information of the entire input data, thus capturing
global feature relationships more effectively. However, when it comes to local relationships
within input data, its modeling capacity is limited.

The self-attention mechanism calculates attention weights by considering all positions
in the sequence, making it challenging to focus attention effectively on locally related
positions. Capturing local features is crucial for Industrial Internet intrusion detection. The
network traffic and data in Industrial Internet environments typically contain a wealth
of subtle local information; this information may appear in specific segments or time
intervals within the entire data stream, such as specific behaviors, patterns, or features
associated with attacks. Capturing these local features enables more accurate identification
of anomalies or potential intrusion behaviors. Furthermore, focusing solely on global
features can make the model more susceptible to interference from normal variations or
noise, leading to false alarms. By capturing local features, the model can better distinguish
between normal and abnormal changes, thus reducing the false positive rate. Shallow
convolutional kernels of convolutional neural networks (CNN) [17–19] precisely extract
local features from data and leverage parameter sharing mechanisms to significantly reduce
the network’s parameter count.

Therefore, the CNN-Transformer network structure not only automatically extracts
features but also compensates for the Transformer model’s deficiencies in local feature
extraction by harnessing CNN’s precise extraction of local features [20].

In consideration of various factors, this paper presents a network framework named
CTSF for intrusion detection in the Industrial Internet. CTSF’s pre-training phase initially
submits input data to a CNN for extracting sufficient local features. Subsequently, these
features undergo positional encoding and are passed to an enhanced Transformer’s encoder
structure. The self-attention mechanism is employed for holistic feature extraction. Finally,
the decoder, composed of fully connected layers, further abstracts the encoded features.
After ample training in the pre-training phase, CTSF extracts the final layer’s output from
this phase, which is then passed to the SVM in the decision-making segment for further
training, ultimately yielding classification outcomes. In theory, due to CTSF addressing
the limitations of traditional Transformer and SVM models, its classification accuracy is
expected to be higher than the unimproved models it comprises. This proposition will
also be substantiated in the subsequent experimental section. The decoder of CTSF’s pre-
training phase consists of fully connected layers and does not receive label data or employ
self-attention mechanisms for label-specific feature extraction. This is due to the fact that
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in the context of abnormal traffic in the Industrial Internet, label data often represent a
category of attack and possess only one-dimensional features. While utilizing self-attention
mechanisms to extract features from label data might yield marginal effects, it significantly
increases the overall network parameters. Figure 2 illustrates the fundamental process of
the traditional Transformer in handling data with high-dimensional label classes, as well
as the modified version proposed in this paper for processing Industrial Internet network
traffic data.
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high-dimensional label classes and the basic process of the modified Transformer proposed in this
paper for processing Industrial Internet network traffic data.

1. Introduces a novel network framework, CTSF, tailored for intrusion detection in
the Industrial Internet. This framework is rooted in the actual conditions of the
Industrial Internet environment and modifies the traditional Transformer model’s
decoder structure to better handle abnormal traffic.

2. The CTSF framework leverages the advantage of CNN in extracting local features, com-
pensating for the traditional Transformer’s shortcomings in this aspect, and effectively
applying to intrusion detection in the Industrial Internet.

3. This paper conducts simulation experiments on the Industrial Internet dataset X-
IIOTID with CTSF, and the results demonstrate CTSF’s ability to accurately recognize
small-sample categories, achieving an overall accuracy of 0.98875.

The remaining sections of this paper are organized as follows: Section 2 discusses the
relevant background; Section 3 provides a comprehensive description of CTSF’s structure,
forward propagation, and training process; Section 4 introduces the selected dataset and
its processing methodology, model selection for comparative experiments, specifications
of each model’s parameters, model evaluation metrics, and final experimental outcomes;
Section 5 concludes the paper and proposes future avenues for improvement.
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2. Related Work
2.1. SVM

SVM, a classical method in the field of machine learning, has been widely applied
and has shown remarkable performance in intrusion detection [21]. With its unique char-
acteristics and advantages, SVM has become a powerful tool for addressing classification
and regression problems. SVM typically requires the use of feature selection algorithms to
achieve its maximum effectiveness [11]. Almaiah et al. introduced an intrusion detection
model employing SVM with feature selection using principal component analysis and
various kernel functions [22]. They examined the influence of different kernel functions on
SVM and found that SVM combined with the ‘rbf’ kernel function and principal component
analysis feature selection technique achieved the highest accuracy. Saheed et al. attempted
to address the dynamics of network attack patterns using the k-means clustering algorithm,
followed by feature selection using genetic algorithms, and finally employed SVM for
classification [23]. This approach achieved an impressive accuracy of 99% at low FAR,
showcasing remarkable success. Not only in the realm of feature selection, but in other
domains as well, researchers have utilized CNN for rapid feature extraction and employed
the extracted features as input data for SVM classification. For instance, in the field of
medical tumor detection, Khairandish et al. combined CNN with SVM [24], harnessing
the automatic feature extraction capabilities of CNN and the high accuracy and speed
of SVM to successfully distinguish between benign and malignant brain tumors. In the
domain of weed recognition, Tao et al. used CNN to extract features from crop images [25],
eliminating the need for manual feature extraction and demonstrating that CNN-SVM
achieves higher classification accuracy and robustness.

2.2. CNN

CNN finds extensive application in intrusion detection within the Industrial Internet,
automatically learning and extracting features from input data [26,27]. Utilizing convo-
lutional and pooling layers, CNN can effectively capture both local and global patterns
in sequential data, encompassing crucial feature correlations and dependencies. These
learned features can be employed to identify potential intrusion behaviors and anomalous
activities. Pingale S V and his team have proposed a robust Remora Whale Optimization
(RWO)-based hybrid deep model [28]. This model preprocesses data, extracts features using
CNN, and then employs a hybrid algorithm for training, achieving outstanding classifi-
cation performance. El-Ghamry et al. employed various CNN architectures [29], such as
VGG16, Inception, and Xception, to further abstract and process network traffic converted
into color images. They also compared the performance of these CNN architectures with
other machine learning algorithms, ultimately demonstrating the performance advantage
and high classification accuracy of CNN architectures. Qazi et al. proposed a deep learning
architecture based on one-dimensional convolutional neural networks [30], which main-
tained structural simplicity and low computational cost while exhibiting remarkably high
classification accuracy. Halbouni et al. developed an intrusion detection system using a
CNN-based learning algorithm [31], empirically confirming that increasing the number
of layers and neurons per layer can enhance model performance. This intrusion detection
system achieved a 99.55% accuracy and 99.63% detection rate in multi-class classification.
Despite CNN’s remarkable performance in intrusion detection, its effectiveness in global
feature extraction is limited by the receptive field range [32]. To overcome this limitation,
some researchers have begun combining CNN with models that excel in extracting global
features, and one such model to be mentioned next is the Transformer.

2.3. Transformer

Transformer, a neural network model based on self-attention mechanisms, has been
widely employed in the field of natural language processing. However, its advantages
in sequence modeling and global feature extraction can also be applied to the domain of
intrusion detection. Wu et al. introduced a Robust Transformer-based Intrusion Detec-
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tion System (RTIDS) [33], which employs positional embedding techniques to correlate
sequential information among features. Through a variant of stacked encoder–decoder
architecture, it learns low-dimensional feature representations from high-dimensional raw
data. Experimental comparisons with neural networks such as RNNs and LSTMs that
extract sequence information validate the effectiveness of this Transformer-based intrusion
detection system.

Wang et al. proposed a Transformer-based NIDS method for IoT [34], utilizing the
self-attention mechanism in encoders and decoders to learn contextual relationships among
input network features, resulting in outstanding classification performance on the ToN-LoT
dataset. Liu et al. introduced an enhanced intrusion detection model based on Trans-
former [35], primarily altering the positional encoding method of the traditional Trans-
former model. By embedding the positional information of features, they effectively cap-
tured feature dependencies, consequently improving classification accuracy. Tan et al.
presented a Transformer-based intrusion detection system [36] which, due to the absence
of recurrence and the use of slot-based functions, can achieve real-time detection efficiency
exceeding that of bidirectional LSTMs.

While Transformer exhibits strong capabilities in global feature extraction in the
aforementioned studies, it still has limitations when applied to Industrial Internet of
Things intrusion detection. Firstly, it lacks an explicit mechanism for local modeling. The
Transformer model primarily models relationships between elements in a sequence using
self-attention mechanisms, without a dedicated mechanism for explicit handling of local
features. This implies that the Transformer model might rely on global context when
processing local information, potentially leading to imprecise capture of local features.
Secondly, in industrial IoT environments, network traffic labels often consist of only one
dimension. In the traditional Transformer architecture, the decoder employs self-attention
mechanisms to process label data. When network traffic is passed into the Transformer
architecture, the decoder expends significant time and parameters to extract features from
one-dimensional label data, which is undesirable.

Addressing the aforementioned issues, one solution for the first problem is to combine
the advantages of CNN-based local feature extraction and Transformer-based global feature
extraction, thereby compensating for the deficiencies of both architectures. A solution to
the second problem is proposed in the third section of this paper.

2.4. CNN-Transformer

The CNN-Transformer fusion combines the advantages of both the CNN and Trans-
former model, simultaneously possessing the capabilities of local feature extraction and
global context modeling [37]. Yao R et al. introduced a hybrid intrusion detection system
architecture based on CNN-Transformer [38]. They first employed an XGBoost-based fea-
ture selection strategy to eliminate irrelevant features from network traffic. Subsequently,
they constructed a CNN to extract local features from the traffic and then utilized a Trans-
former to establish feature correlations and extract global features. The effectiveness and
superiority of this hybrid structure were demonstrated through testing on the KDDCup99,
NSL-KDD, and CICIDS-2017 datasets. Luo S et al. proposed a layered intrusion detec-
tion model with spatio-temporal feature fusion based on CNN-Transformer [39]. They
leveraged CNN to extract spatial features and employed the Transformer’s positional
encoder to embed location information into input data, cleverly capturing time features
while globally modeling data. This model highlights the significance of the Transformer’s
attention mechanism in soft feature selection. Their experiments on the UNSW-NB15
dataset underscore the advancement of the proposed model. Indeed, what sets CTSF apart
from the models proposed by the aforementioned researchers is the incorporation of SVM
as a new final decision-making component. With the inclusion of SVM, CTSF combines
the strengths of both the softmax classifier and the SVM classifier, thus further enhancing
classification accuracy.
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3. Framework Analysis

In the field of industrial production and operations, specific types of equipment,
sensors, and control systems generate network traffic data within the Industrial Internet
environment. This data serves to record real-time status, performance parameters, and
operational conditions of industrial processes, facilitating remote monitoring, data analysis,
and automated control. These devices encompass a range of sensors (such as temperature,
humidity, pressure, and flow sensors), PLCs (Programmable Logic Controllers), SCADA
systems (Supervisory Control and Data Acquisition systems), industrial robots, IoT devices,
data acquisition cards, industrial switches, routers, and more. Through these devices, the
Industrial Internet environment can produce diverse network traffic data to support the
efficient management and optimization of industrial processes. This data contains various
information crucial for achieving intelligent production, monitoring, and management. To
extract features more accurately from network traffic for enhanced classification precision,
a novel intrusion detection framework named CTSF is proposed in this paper. It comprises
two components: a pre-training section and a decision-making section. The pre-training
section of CTSF is composed of a CNN and an improved Transformer structure tailored
to the domain of Industrial Internet intrusion detection, while the classification section
involves an SVM classifier. The overall structure is illustrated in Figure 3. In this section,
we will derive the forward propagation process of CTSF, present the parameters utilized
during this process, and elucidate their respective significance as shown in Table 1. The
parameters in Table 1 represent abstract symbols, and these symbols collaborate during the
inference process of forward propagation, mathematically illustrating the feature extraction
and model prediction processes of CTSF.

Table 1. The parameters employed in the inference process of CTSF forward propagation and the
corresponding meaning of each parameter.

No. Parameters Meaning

1 n The number of features a piece of network traffic data has
2 X A feature vector corresponding to a network traffic event
3 Nc The “length” of the convolution kernel
4 stepc The moving step of the convolution kernel
5 Xc_i The initial eigenvector of each step is convolved to obtain the process value
6 wc The weight parameters of the convolution kernel
7 bc The bias vector of the convolution kernel
8 Xc The feature vector obtained after each convolution kernel of CTSF executes all steps
9 Np The “length” of Xc, it is numerically equal to n

10 Nm The “length” of the max pooling kernel
11 stepm The moving step size of the pooling kernel
12 Xm The feature vector is obtained by Xc through the maximum pooling layer
13 XM The feature vector obtained after X undergoes all convolution operations and pooling operations of CTSF
14 Xt The feature vector obtained after X passes through the position encoder part of the CTSF
15 →

p i Represents the vector corresponding to position i, containing pairs of sine and cosine for each frequency.
16 a Represents an integer value that controls the odd and even conditions in

→
p i.

17 ωk frequency
18 f

(
i)(a) : The function that generates the position vector

→
p i

(a)

19 dmodel Represents the dimension of each feature deepening
20 num Numerically equal to the feature dimension of XM

21 WQ, WK , WV
Corresponds to the weight matrix of the query matrix, the weight matrix of the key matrix, and the
weight matrix of the value matrix

22 Qi The query vector for the i-th header in the CTSF pre-training part
23 numh The number of heads in the multi-head attention mechanism
24 Ki The key vector for the i-th header in the CTSF pre-training section
25 Vi The value vector for the i-th header in the CTSF pre-training section
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Table 1. Cont.

No. Parameters Meaning

26 Ai The output of the self-attention mechanism of the i-th head
27 XA The results obtained by the self-attention mechanism of all heads are combined to obtain
28 µ, σ represent the mean and standard deviation of XA, respectively
29 XNA The vector obtained after XA passes through the standard layer
30 FR1 Represents the process of mapping Xt to XNA

31 XR1
CTSF establishes a residual connection at the multi-head attention mechanism layer, and this value
represents the result of the residual connection

32 FR2 Represents XR1 through the mapping process of the fully connected layer and the normalized layer

33 XR2
CTSF establishes a residual connection in the feedforward fully connected layer, and this value
represents the result of the residual connection

34 Fl Represents XR2 through the mapping process of the fully connected layer
35 P Represents the result of the original feature vector X after sufficient pre-training
36 w f The weight parameter matrix of the feed-forward fully connected layer of the CTSF pre-training part
37 b f The bias value vector of the feed-forward fully connected layer of the CTSF pre-training part
38 wd The weight parameter matrix of the decoder layer of the CTSF pre-training part
39 bd The bias value vector of the decoder layer of the CTSF pre-training part
40 wl Represents the weight parameters of the SVM
41 bl Represents the bias value of the SVMSensors 2023, 23, x FOR PEER REVIEW 9 of 24 
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3.1. Pre-Training Part
3.1.1. CNN in the Pre-Training Part

In the pre-training phase, CTSF primarily employs CNN for extracting local features
from the input data. Assume a network traffic event X with a shape of (1, n), where n
represents the number of features in X. A convolutional kernel is used with a shape of
(1, Nc) and a movement stride of stepc. Considering that the convolution operation reduces
the dimension of the original feature vector, CTSF applies zero-padding to both ends of the
data before convolution.

This step aims to minimize the potential loss of edge features. The padding process is
demonstrated by Formula (1):

X = [0, x1, x2, x3, ..., xn, 0] (1)

After the padding operation, the shape of X becomes (1, n + 2). Following the
padding, CTSF proceeds with the convolution operation. Each initial feature vector at every
stride undergoes convolution to yield the process value Xc_i. This process is illustrated
by Formula (2):

Xc_i = ReLU
(

wcXT
i:i+Nc

+ bc

)
(2)

Here, wc and bc represent the weight parameters and bias vector of the convolutional
kernel, respectively. After completing all strides for each convolutional kernel, CTSF
obtains Xc, with a shape of

(
1, Np

)
, where Np is computed as demonstrated in Formula

(3). In fact, Np is numerically equal to n, as is due to the padding operation performed by
CTSF before the convolution.

Np =

⌈
n− Nc + 3

stepc

⌉
(3)

Subsequently, Xc will undergo a max-pooling layer with a shape of (1, Nm) and a
stride of stepm. The process of obtaining Xm is illustrated in Formulas (4)–(6):

Xm_i = Max(Xc_i, Xc_i+1, ..., Xc_i+Nm−1, ..., Xc_i+Nm) (4)

Numm =

⌈
n− Nm + 1

stepm

⌉
(5)

Xm = [Xm_1, Xm_2, ..., Xm_Numm−1, Xm_Numm ] (6)

After undergoing multiple layers of identical convolutional operations, X results in
XM, and the mapping relationship is depicted in Formula (7):

XM = fcnn(X) (7)

3.1.2. Transformer in the Pre-Training Part

The encoder section of the pre-training phase’s Transformer structure consists of two
encoder layers, each containing multi-head self-attention mechanisms, normalization layers,
and feed-forward fully connected layers with residual connections. The primary purpose of
the encoder is to capture the global features within the input data XM. With the application
of the self-attention mechanism, the encoder can effectively model XM, capturing both
global and selective local feature information. The decoder section comprises a fully
connected layer with an output dimension matching the number of output channels from
the CNN in the pre-training phase. The improved decoder part eliminates the self-attention
mechanism and avoids extracting information from the labels. Instead, it transforms the
features extracted from the encoder into a higher-level feature representation, reducing the
training parameters in CTSF while better understanding abstract features within the input
data. The structure of the pre-training phase’s Transformer is illustrated in Figure 4.
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This section receives the feature information XM passed from the CNN section and
first processes it with positional encoding. Formulas (8)–(11) illustrate the process through
which CTSF obtains Xt.

→
p i

(a)
= f (i)(a) :=

{
sin(ωk · i), i f a = 2k

cos(ωk · i), i f a = 2k + 1
(8)

ωk =
1

100002k/dmodel
(9)
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Xt_i = XM_i +
→
p i (10)

Xt = [Xt_1, Xt_2,...,Xt_num] (11)

Here, a represents an integer value that controls the odd and even conditions in
→
p i,

num which is equal to the feature dimension of XM, and dmodel represents the dimension
by which each feature is deepened.

In the multi-head attention layer of the encoder part, each feature in Xt has three
attributes: Q = Xt ·WQ, K = Xt ·WK, V = Xt ·WV , where WQ, WK, and WV are learnable
weight matrices. Features and attributes in Xt are evenly mapped into multiple subspaces
where the following is true: the query matrix Q maps the input sequence to the query
subspace, resulting in query vectors Q1, Q2, Q3...Qnumh−1, Qnumh; the key matrix K maps
the input sequence to the key subspace, resulting in key vectors K1, K2, K3...Knumh−1, Knumh;
and the value matrix V maps the input sequence to the value subspace, resulting in value
vectors V1, V2, V3...Vnumh−1, Vnumh. Here, numh represents the number of heads in the multi-
head attention mechanism. Next, CTSF calculates the attention weights for each head. For
the i-th head, CTSF computes the similarity between the query vector Qi and the key vector
Ki, scales the similarity by the dimension dK of Ki, normalizes the similarity using the
softmax function, and finally computes the weighted average of values using the attention
weights to obtain the output Ai of the self-attention mechanism (Formula (12)).

Ai = Attention(Qi, Ki, Vi) = so f tmax(
QiKi

T
√

dK
)Vi (12)

CTSF combines the outputs of the self-attention mechanism from all heads to obtain
XA (Formula (13)). At this point, the encoder part has adequately captured both the global
and partial local features of XM.

XA = [A1, A2, A3, ..., Anumh−1, Anumh] (13)

Formula (14) shows the process of obtaining XNA from XA through the normaliza-
tion layer:

XNA =
XA − µ

σ
(14)

Here, µ represents the mean of XA, and σ represents the standard deviation of XA.
CTSF establishes residual connections in the multi-head attention layer, as demonstrated in
Formula (15).

XR1 = Xt + FR1(Xt) (15)

Here, FR1 represents the mapping process from Xt to XNA. Subsequently, XR1 un-
dergoes a feed-forward fully connected layer and a normalization layer. Moreover, CTSF
establishes residual connections in the feed-forward fully connected layer, as manifested in
Formula (16):

XR2 = XR1 + FR2(XR1) (16)

In this context, FR2 denotes the mapping process of XR1 accomplished through the
fully connected layer and the normalization layer. Subsequently, CTSF forwards X to the
decoder, where it undergoes further abstraction through the decoder’s fully connected
layers and partial feature dimension reduction (with CTSF’s decoder output channels
being fewer than the decoder input channels), thereby reducing model training parameters.
The results are then passed to the fully connected layer outside the decoder, followed by
classification using the softmax function. (Formula (17))

cls = so f tmax(Fl(XR2)) (17)

Here, Fl represents the mapping process of XR2 through the fully connected layer.
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3.2. Decision-Making Part

The CTSF framework reassigns well-pretrained initialization classification data to SVM
for retraining. This design first combines the classification results of softmax and SVM to
further enhance accuracy. Secondly, SVM maps this data to a high-dimensional space using
a kernel function and optimizes model parameters with the hinge loss function. It searches
for an optimal hyperplane in the feature space that effectively separates different class
samples while maximizing the margin between the hyperplane and the nearest sample
points to improve the framework’s generalization capability. After training, the SVM
produces a score vector for each class using the decision function F(P), where P represents
the output from the trained pre-training section: F(P) = sign(wl P + bl). Here, wl and bl
represent weight parameters and bias values, respectively. introducing the argmax function.
This will yield the predicted result, denoted as pred. Formula (18) shows this process:

pred = argmax(F(P)) (18)

3.3. The Training Process of the CTSF

The training of CTSF consists of two parts: the initial training of the pre-training
section and the final training of the decision section. Table 2 presents the overall training
process of CTSF in the form of pseudocode:

Table 2. Pseudocode of CTSF overall training process.( The content after the ’#’ symbol is a comment.)

Input:
train_data_iterator: It stores all the X and the attack types corresponding to X that are needed to train the model.
wc, bc, WQ, WK , WV , w f , b f , wd, bd, wl , bl : Matrix of weight parameters and bias values.
num_epochs: Total training epochs.
num_batches: The number of batches included in an epoch.
train_features: SVM training data (excluding categories), the type is an array.
train_labels: Corresponding to train_features, representing the category of training data, the type is also an array.

Process:
preprocess_data(X) # Preprocess the dataset.
initialize_parameters (wc, bc, WQ, WK , WV , w f , b f , wd, bd, wl , bl) # Initialize weight parameters.
for epoch in range(num_epochs):

total_loss = 0
for batch_data, batch_labels in train_data_iterator:

predictions = pretraining_CTSF (batch_data)
loss = compute_loss(predictions, batch_labels)
total_loss += loss
backpropagation(loss)
update_parameters(wc, bc, WQ, WK , WV , w f , b f , wd, bd)

end for
average_loss = total_loss/num_batches

end for
for batch_data, batch_labels in train_data_iterator:

batch_features = pretraining_CTSF.extract_features(batch_data) # Obtain data from the pre-training part.
train_features.append(batch_features)
train_labels.append(batch_labels)

end for
svm_CTSF (train_features, train_labels) # update wl and bl

Output:
predictions = svm_CTSF.predict(test_features)

4. Experimental Setup and Discussion

In this study, the X-IIoTID dataset from the Industrial Internet domain was employed
to evaluate various performance metrics of the CTSF framework. CNN, RNN, CNN-
RNN, and CNN-Transformer (improved) models were selected as control groups. These
currently advanced models were also tested using the same dataset with consistent baseline
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parameters to derive performance metrics. Finally, a comparative analysis was conducted
between the mentioned models and the CTSF framework to demonstrate the superiority of
our proposed approach. Section 4.1 presents the basic information about the dataset and its
preprocessing procedures. Section 4.2 outlines the basic parameter settings for the CTSF
model and the control group models. Section 4.3 introduces the evaluation metrics for the
models. Section 4.4 presents the analysis and discussion of the experimental results.

4.1. Dataset Description and Preprocessing

The X-IIoTID datasets, specifically intrusion datasets agnostic to connections and
devices [40–43], were used to capture the heterogeneity and interoperability of IoT systems.
These datasets encompass behaviors of emerging IoT connection protocols, recent device
activities, diverse attack types and scenarios, and various attack protocols. They define at-
tack classes and incorporate multi-view attributes including network traffic, host resources,
logs, and alerts. In this study, we selected a subset of the X-IIoTID dataset, containing
40,000 instances, each with 62 features, and the distribution of different classes is illus-
trated in Figure 5. During the dataset preprocessing phase, we removed columns named
‘is_SYN_with_RST’ and ‘Bad_checksum’ where all values were ‘False’. From columns
labeled ‘class1’, ‘class2’, and ‘class3’ (‘class1’, ‘class2’, and ‘class3’, respectively, represent
‘normal and attack’, ‘normal and sub-category attack’, and ‘normal and sub-sub-category
attack’.), we chose ‘class2’ as the label data. Subsequently, the data features were standard-
ized. The processed dataset, after these procedures, took the shape of (40,000, 57). Finally,
we employed the shuffle method to randomize the entire dataset and split it into training,
validation, and testing sets in proportions of 80%, 10%, and 10%, respectively.
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4.2. Parameter Settings of CTSF and Control Models
4.2.1. Parameter Settings of CTSF

Prior to training CTSF, we reshaped the data to (40,000, 1, 57) to facilitate its passage
through Conv1D for feature extraction.

The size and shape of the convolution kernel played a critical role in the CTSF, as the
convolution operation involved sliding the kernel over the input data to extract features.
This was essential because it directly affected how the model perceived and captured
features from the input data. The CNN in the pre-training part of CTSF consisted of seven
convolutional blocks, each comprising their own convolutional layer and max-pooling
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layer. The max-pooling layers in all seven blocks shared the same parameters (stride = 2,
padding = 0). The size of the convolutional kernels within each convolutional block
was set to 2, and the padding parameter was uniformly configured as 1. The parameter
configurations for each convolutional block were as follows. in the first convolutional
block, the convolutional layer had an input channel of 1 and an output channel of 2. In the
second convolutional block, the convolutional layer featured 2 input channels and 4 output
channels. Subsequently, the convolutional layers in the following blocks had an input
channel count that was double that of the previous layer, with the output channel count
also being double that of the previous layer.

The sizes of the convolutional layers mentioned above were all set to 2, which was
highly advantageous for extracting local features from the input data, thereby maximizing
and enhancing CTSF’s capability to extract local features effectively. If the size of the
convolutional kernels is set larger than 2, theoretically, the local feature extraction capability
of CTSF may not meet expectations. In the pre-training phase, to ensure that the input data
could be passed through the CNN to the Transformer, the shape of the data coming out of
the CNN had to have a third dimension of 1. Therefore, we configured the CNN part with
7 convolutional layers and 7 pooling layers. Each convolutional layer was accompanied
by a max-pooling layer for feature reduction. After passing through the CNN section, the
shape of the input data became (batch_size, 128, 1).

The pre-training section of CTSF’s Transformer consisted of a positional encoder, an
encoder, an improved decoder, and a fully connected layer. The following are the parameter
settings for each component:

1. The parameter d_model in the positional encoder was set to 200, representing the
extension of each feature of the input data to 200 dimensions. The dropout parameter
was set to the default value of 0.1, and the max_len parameter limited the maximum
number of features in the input data, which was set to the default value of 5000 in
this study.

2. The parameter d_model in the encoder was set to 200, consistent with the d_model
parameter in the positional encoder; the nhead parameter was set to 2, indicating that
there were 2 parallel heads in the multi-head attention layer to concurrently extract
features from the input data; the nhid parameter was set to 2, indicating that the entire
encoder consists of two encoder layers; the dropout parameter was set to 0.2 to ensure
that the overall framework did not overfit as much as possible. The shape of the input
data changed to (batch_size, 128, 200) after passing through the encoder section.

3. The improved decoder consisted of a meticulously designed fully connected layer with
an input feature dimension of 200 and an output feature dimension of 128, denoted as
in_features and out_features, respectively. After passing through the decoder section,
the shape of the input data changed to (batch_size, 128, 128).

4. The section of fully connected layers consisted of a total of five layers. The param-
eters for the first fully connected layer: in_features with a value of 128 × 128 and
out_features with a value of 1000. The second layer had 1000 as in_features and 500 as
out_features. In the third layer, the in_features parameter was set to 500, and the
out_features parameter was set to 200. For the fourth layer, in_features was 200 and
out_features was 50. Finally, in the fifth layer, in_features was 50 and out_features
was 10; here, 10 represents the number of classes for initialization classification. The
activation functions employed were ReLU for the first four layers and softmax for the
final layer.

The classification component of CTSF employed an SVM classifier for final categoriza-
tion. Throughout the experimentation process, the kernel parameter was set to ‘rbf’, ‘poly’,
‘linear’, and ‘sigmoid’ for training. Section 4.4 demonstrates the classification performance
of CTSF using various kernel functions.
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4.2.2. Parameter Settings of CNN-Transformer (Improved)

The parameters of CNN-Transformer (improved) were identical to those of CTSF’s pre-
training phase. The reason for setting up this model as a control group was to demonstrate
the effectiveness of the operation in CTSF where ample pre-training using the softmax
function was performed on the data before passing the initialized classification data to
the SVM.

4.2.3. Parameter Settings of CNN-RNN

CNN-RNN comprises a CNN section, an RNN section, and a fully connected layer
section. The parameters of the CNN section were the same as those of the CNN part
in CTSF’s pre-training phase. After passing through the CNN section, the input data’s
shape became (batch_size, 128, 1). The RNN section’s input_size parameter was set to 1,
indicating that the input data had 128 features, each with a one-dimensional dimension.
The hidden_size parameter was set to 150, representing 150 hidden layers in the RNN. The
num_layers parameter was set to 2. The RNN section used the result of the last hidden
layer and squeezed the output data using the squeeze function to make it two-dimensional.
Finally, the input data’s shape became (batch_size, 150). The fully connected layer section
comprised three fully connected layers. The in_features and out_features parameters of
the first fully connected layer were set to 150 and 100, respectively. The parameters of the
second fully connected layer were 100 and 50. The parameters of the third fully connected
layer were 50 and 10.

4.2.4. Parameter Settings of CNN

CNN comprises a CNN section and a fully connected layer section. The parameters
of the CNN section were the same as those of the CNN part in CTSF’s pre-training phase.
The fully connected layer section included three fully connected layers. The in_features
and out_features parameters of the first fully connected layer were set to 128 and 100,
respectively. The parameters of the second fully connected layer were 100 and 50. The
parameters of the third fully connected layer were 50 and 10.

4.2.5. Parameter Settings of RNN

RNN comprises a RNN section and a fully connected layer section. Before training
the RNN model, we preprocessed the dataset into a shape of (40,000, 57, 1) to ensure
smooth forward propagation in the RNN. The parameters of both components of this
model remained consistent with those in the corresponding segments of the CNN-RNN
model.

The training parameters of CTSF and the control group models are presented in
Table 3.

Table 3. Training parameters for CTSF and control models.

Model Batch Size Optimizer Epochs Learning Rate Gamma Step_Size SVM C SVM
Degree

CTSF 32 Adadelta 500 0.01 0.65 50 1 3
CNN-Transformer

(improved) 32 Adadelta 500 0.01 0.65 50 NULL NULL

CNN-RNN 32 Adadelta 500 0.01 0.65 50 NULL NULL
CNN 32 Adadelta 500 0.01 0.65 50 NULL NULL
RNN 32 Adadelta 500 0.01 0.65 50 NULL NULL

4.3. Model Evaluation Metrics

The confusion matrix is a table commonly used in data science and machine learning
to summarize the prediction results of classification models. It is represented by an n-by-n
matrix, where records from the dataset are aggregated based on two criteria: ‘True Class’
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and ‘Predicted Class’, with n representing the number of classes in the dataset. Taking
binary classification as an example, the structure of the confusion matrix is illustrated in
Table 4.

Table 4. Confusion matrix.

Total (P + N)
Predicted Condition

Postive (PP) Negative (PN)

Actual condition
Postive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

• Accuracy is used to measure the prediction accuracy of a classification model, which
is the ratio of correctly predicted samples to the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

• Precision measures the model’s ability to correctly predict positive instances among
the predicted positives, i.e., the ratio of true positive instances to the total number of
predicted positive samples.

Precision =
TP

TP + FP
(20)

• Recall measures the model’s ability to identify positive samples, i.e., the ratio of true
positive instances to the total number of actual positive samples.

Recall =
TP

TP + FN
(21)

• F1 Score: an evaluation metric that comprehensively considers both precision and
recall, calculated as the harmonic mean of precision and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(22)

4.4. Analysis and Discussion of Experimental Results

CTSF’s performance using different kernel functions is presented in Table 5, while the
performance of the control group models is shown in Table 6.

Table 5. Performance of CTSF using different kernel functions.

Linear rbf Sigmoid Poly

PRE RC F1 PRE RC F1 PRE RC F1 PRE RC F1

Normal 0.951 0.968 0.959 0.950 0.970 0.960 0.848 0.822 0.835 0.913 0.942 0.927
C and C 1 0.995 0.997 0.981 1 0.990 0.985 0.958 0.972 0.995 1 0.997

Exfiltration 1 0.998 0.999 1 0.997 0.998 0.929 0.988 0.958 0.997 0.997 0.997
Exploitation 0.980 0.980 0.980 1 0.943 0.970 0.962 0.777 0.860 0.989 0.913 0.95

Lateral_movement 0.996 0.991 0.993 0.994 0.994 0.994 0.882 0.891 0.887 0.989 0.994 0.991
RDOS 0.994 0.998 0.996 1 0.996 0.997 0.998 1 0.999 1 0.983 0.991

Reconnaissance 0.977 0.966 0.972 0.976 0.973 0.974 0.935 0.933 0.934 0.958 0.942 0.950
Tampering 0.992 0.994 0.993 0.994 0.994 0.994 0.952 0.948 0.950 0.994 0.997 0.995

Weaponization 0.996 0.994 0.995 0.998 1 0.999 0.986 0.972 0.979 0.989 0.996 0.992
crypto-ransomware 0.667 1 0.800 1 1 1 0 0 0 0.5 1 0.667

macro avg 0.960 0.990 0.970 0.990 0.990 0.99 0.85 0.83 0.84 0.93 0.98 0.95
weighted avg 0.990 0.990 0.990 0.990 0.990 0.99 0.93 0.93 0.93 0.98 0.98 0.98

Accuracy 0.98825 0.9885 0.9365 0.97925
Training Time(s) 55,755.99 55,753.90 55,752.77 55,751.52
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Table 6. Performance of the control model.

CNN-Transformer
(Improved) CNN-RNN CNN RNN

PRE RC F1 PRE RC F1 PRE RC F1 PRE RC F1

Normal 0.947 0.938 0.943 0.877 0.941 0.908 0.816 0.901 0.856 0.930 0.962 0.946
C and C 0.990 1 0.995 0.995 0.991 0.993 0.972 1 0.986 0.987 1 0.993

Exfiltration 1 1 1 0.998 0.996 0.997 0.994 0.998 0.996 1 1 1
Exploitation 0.964 0.987 0.976 0.962 0.793 0.870 0.915 0.606 0.729 0.962 0.906 0.934

Lateral_movement 0.994 0.991 0.993 0.994 0.989 0.992 0.976 0.976 0.976 0.988 0.996 0.992
RDOS 1 0.997 0.998 0.995 0.991 0.993 1 0.993 0.996 1 0.991 0.995

Reconnaissance 0.959 0.964 0.962 0.935 0.924 0.929 0.920 0.824 0.869 0.969 0.944 0.957
Tampering 1 0.997 0.998 0.997 0.991 0.994 0.977 0.991 0.984 1 1 1

Weaponization 0.996 0.998 0.997 0.998 1 0.999 0.934 0.998 0.965 1 1 1
crypto-ransomware 1 1 1 0 0 0 0 0 0 1 1 1

macro avg 0.99 0.99 0.99 0.88 0.86 0.87 0.85 0.83 0.84 0.98 0.98 0.98
weighted avg 0.99 0.99 0.99 0.97 0.97 0.97 0.95 0.95 0.95 0.98 0.98 0.98

Accuracy 0.9858 0.9728 0.9475 0.9847
Training Time(s) 55,750 25,805 17,515 17,915

The confusion matrices of CTSF using various kernel functions for classification are
displayed in Figure 6. The confusion matrices of the other models in the comparative
experiments are presented in Figure 7. In these matrices, ‘Exfiltration’, ‘Exploitation’,
‘Lateral_movement’, ‘Reconnaissance’, ‘Weaponization’, and ‘crvpto-ransomware’ are ab-
breviated as ‘Exf’, ‘Exp’, ‘L_m’ ‘Rec’, ‘Wea’, and ‘c-r’, respectively, for clarity.
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In Tables 5 and 6, the metrics Precision (PRE), Recall (RC), and F1-score (F1) are
abbreviated. From Table 5, it can be concluded that the CTSF framework achieves the
highest accuracy of 0.9885 when using the “rbf” kernel function and the lowest accuracy
of 0.9365 when using the “sigmoid” kernel function. Figure 8 provides visualizations
of CTSF’s performance using different kernel functions. The visualizations reveal that
the decision boundary for the “Normal” class is less accurate when the “sigmoid” kernel
function is used. In Table 4, the highest accuracy within the control groups is achieved by the
CNN-Transformer (improved) model, with an accuracy of 0.9858. All three metrics related
to the crypto-ransomware class reach 1, same as the results obtained by CTSF (with rbf);
this indicates that the specialized design of the CTSF pretraining section equips the overall
framework with a robust capability for detecting small-sample classes. Furthermore, the
accuracy of the CNN-Transformer (improved) model is lower than that of CTSF using both
the “rbf” and “linear” kernel functions. Since the parameters of CTSF’s pretraining section
are identical to those of the control group’s CNN-Transformer model, this data corroborates
the effectiveness of CTSF’s design (CTSF first pretrains the initialization classification
results and subsequently passes them to SVM for final classification). Furthermore, from
Table 5, we can observe that CTSF, using the ‘rbf’ kernel function, took 55,753.90 s to
train for 500 epochs. Table 6 displays the training time for the models in the comparative
experimental group, with the fastest training time achieved by the CNN model at 17,515 s.
In fact, from the above data, it can be observed that while CTSF exhibits advantages in
recognizing small sample classes and overall classification accuracy, it is not lightweight.
We will delve into this limitation in more detail in Section 5.
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Regarding the class “crvpto-ransomware”, which contains only 21 instances in this
dataset, the CNN-RNN and CNN models exhibit poor performance, highlighting their
limitations in handling small-sample data. On the contrary, the CTSF, CNN-Transformer
(improved), and RNN models, employing non-”sigmoid” kernels, perform better with this
class, demonstrating their efficacy in handling small-sample data.

Furthermore, Table 5 indicates that with identical CNN parameters, CNN-Transformer
(improved) outperforms CNN-RNN in terms of classification accuracy. This suggests
that our proposed improved version of Transformer excels in capturing global features
compared to RNN.

Finally, Table 7 presents a comparison between CTSF and various benchmark mod-
els [40] on different attack class detection rates in X-IIoTID datasets. As per Table 7, CTSF
achieved a detection rate of 1 for the “C&C” class, significantly higher than other benchmark
models. Similarly, the “Weaponization” and “crypto-ransomware” classes also achieved
a detection rate of 1. Additionally, while CTSF’s detection rate for some classes may be
slightly lower than that of some models, its detection rates exhibit smoother fluctuations for
all classes, avoiding scenarios where a high detection rate for one class is accompanied by a
low detection rate for another class. Lastly, for the small-sample class “crypto-ransomware”,
CTSF’s detection rate surpasses that of all benchmark models, indicating its advantage in
accurately detecting such classes.
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Table 7. Comparison results of various benchmark models and CTSF in different attack class detection
rates for X-IIoTID datasets.

Model C and C Exfiltration Exploitation Lateral_Movement RDOS Reconnaissance Tampering Weaponization Crypto-
Ransomware

DT 0.8966 0.8976 0.9852 0.9948 0.9999 0.9922 0.9947 0.9997 0.9986
NB 1 0.9823 0.5267 0.0834 0.9906 0.0150 0.9912 0.9867 0.9962

KNN 0.8096 0.7140 0.9128 0.9862 0.9999 0.9688 0.7868 0.9985 0.9960
SVM 0.8194 0.8394 0.8987 0.9983 0.9996 0.9170 0.9891 0.9996 0.9992
LR 0.5801 0.4634 0.7842 0.9809 0.9983 0.8666 0.7407 0.9907 0.9986

DNN 0.7716 0.9991 0.8129 0.9769 0.9996 0.9585 0.9815 0.9994 0.8188
GRU 0.8826 0.9993 0.8623 0.9789 0.9998 0.9886 0.9918 0.9997 0.9694
CTSF

(with rbf) 1 0.997 0.943 0.994 0.996 0.973 0.994 1 1

5. Conclusions and Future Work

In this paper, we propose a novel network framework, named CTSF, for Industrial
Internet intrusion detection. The CNN in the pretraining part of CTSF is employed to extract
local features from input data as comprehensively as possible. The Transformer in the
pretraining part, tailored for Industrial Internet intrusion detection datasets, is an improved
version that abandons the decoder’s self-attention mechanism due to the one-dimensional
nature of label data in network traffic. This modification not only reduces the number of
training parameters but also enhances the extraction of global features from input data.
Ultimately, CTSF passes the well-pretrained data to SVM and selects an appropriate kernel
function for classification.

To validate the efficacy of this framework in addressing intrusion-detection challenges
in the context of Industrial Internet, we performed performance testing on a subset of
X-IIoTID datasets, comparing it with advanced models as benchmarks. The experiments
demonstrate that CTSF not only achieves a high accuracy but also accurately identifies
suitable decision boundaries and correctly classifies instances, even in scenarios involv-
ing imbalanced or small sample data. Despite achieving high accuracy and excellent
performance on small sample data, CTSF is not as lightweight in terms of computational re-
sources. Heavier models typically require more computational resources to operate, which
can potentially lead to higher hardware requirements, thereby increasing maintenance
and operational costs. Furthermore, deploying less lightweight models into Industrial
Internet systems may necessitate additional engineering resources, as they may require
more extensive configuration and fine-tuning. Furthermore, the Industrial Internet en-
vironment also demands real-time capabilities, and the training and inference times of
non-lightweight models can potentially become an issue. Therefore, looking ahead, we
have the following considerations:

1. In CTSF, local and global features of data are extracted using CNN and an enhanced
Transformer. While this paper has improved and optimized the traditional Trans-
former decoder for the characteristics of Industrial Internet traffic data, making it
more lightweight, CTSF as a whole is still not sufficiently lightweight. Next, we
plan to explore optimization algorithms to further enhance the pre-training phase of
CTSF, aiming to reduce its resource consumption while maintaining its accuracy and
detection rate.

2. In the pretraining phase, we can achieve parallel computing by adopting parallel
training and parameter asynchronous updating methods. Distributing computational
tasks to edge devices or within a distributed computing environment alleviates the
burden on individual devices and reduces latency. Parallel and distributed computing
can decompose the training tasks of large-scale models into multiple smaller tasks
which are executed concurrently across various computing nodes, significantly reduc-
ing training time and enhancing training efficiency. It is worth noting that ensuring
load balance among different nodes is a challenge in distributed computing. Some
nodes may become busier than others, leading to performance imbalances. By taking
into account both the benefits and challenges, and implementing appropriate opti-
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mization strategies, such as employing more efficient communication protocols and
using suitable load balancing algorithms, the scalability and performance of the CTSF
framework can be improved.

3. Utilizing pruning algorithms to reduce the CTSF’s size. These algorithms can identify
and remove connections or layers that contribute minimally to the CTSF’s accuracy.
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