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Abstract: Water leakage from aging water and wastewater pipes is a persistent problem, necessitating
the improvement of existing leak detection and response methods. In this study, we conducted an
analysis of essential features based on data collected from leak detection sensors installed at water
meter boxes and water outlets of pipelines. The water pipeline data collected through the vibration
sensor were preprocessed by converting it into a tabular form by frequency band and applied to
various machine learning models. The characteristics of each model were analyzed, and XGBoost was
selected as the most suitable leak detection model with a high accuracy of 99.79%. These systems can
effectively reduce leak detection and response time, minimize water waste, and minimize economic
losses. Additionally, this technology can be applied to various fields that utilize water pipes, making
it widely applicable.

Keywords: water leak detection; deep learning; machine learning; time-frequency analysis

1. Introduction

The detection of leaks is a crucial issue in today’s world, as it has the potential to
affect the environment, human safety, and result in economic losses. Leaks of water, gas,
electricity, and oil can occur in various forms, and hence, the detection of leaks is crucial in
industrial, commercial, and residential areas. The objective of leak detection is to detect
and control leaks in a timely manner to create a safe environment and minimize losses.
Leak detection technologies can be broadly classified into physical and electronic methods.
Physical methods are traditional and require experienced professionals, making them
labor-intensive, time-consuming, and costly. Electronic methods, on the other hand, use
modern technologies such as sensor technology, data analytics, and artificial intelligence
(AI) to detect and analyze leaks. Therefore, electronic leak detection using AI is receiving a
lot of attention from researchers.

AI-based leak detection systems can quickly determine the source and location of
a leak by analyzing data collected from various sensors and suggesting the best course
of action to resolve it. IoT technology can be utilized to monitor leaks in real-time and
respond automatically in conjunction with a centralized control system. However, there are
still significant challenges to be addressed in the development of leak detection technology,
such as improving the accuracy and sensitivity of detection sensors, ensuring performance
in various environments, and developing efficient data processing and analysis methods.
Additionally, aging water pipelines consisting of a mixture of metal and non-metal pipes,
coupled with various noises, including environmental, electrical, and natural sounds,
make it difficult to detect leaks. There is an urgent need to develop technology that can
accurately detect leaks in such a complex environment. In this paper, we propose a leak
detection model that can overcome these challenges and show high performance in various
environments. The proposed model is designed to address the aging problem and various
noises in water pipes with a mixture of metal and non-metal pipes. We compare the
proposed model with representative machine learning and deep learning models such as
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K-Nearest Neighbor, decision tree, random forest, extra trees, LightGBM, XGBoost, and
CatBoost. Our results show that the XGBoost model achieved the highest performance
with an accuracy of 99.79%.

The key contributions of the paper are

• Introduction of a Novel Leak Detection Model: The paper proposes a new leak detec-
tion model specifically designed to address challenges associated with aging water
pipelines made of a combination of metal and non-metal materials. This model also
effectively handles various types of noise, including environmental, electrical, and
natural sounds, which can interfere with leak detection.

• Comprehensive Model Comparison: The proposed model was rigorously compared
with several representative machine learning models, including K-Nearest Neighbor,
decision tree, random forest, extra trees, LightGBM, XGBoost, and CatBoost.

• Applicability in Diverse Environments: The results underscore the model’s capability
to accurately detect and pinpoint leaks in water pipelines that comprise a mix of
different materials and are subjected to various noises. This is crucial for the efficient
management and upkeep of water supply systems.

This paper is organized to provide detailed information about leak detection data
and machine learning models for it. The paper begins with an “Introduction” and re-
views the existing literature in the field in the “Related Works” section. Section 3, “Water
Leakage Detection Framework”, systematically explores the data collected from water
pipeline vibration sensors, preprocessing, and different machine learning models. The
“Experimental Results” section details the detailed evaluation of the models across multiple
experiments. The paper concludes with a “Conclusions” that summarizes the main results
and implications of this study.

2. Related Works

Recently, advancements in sensor technology have led to the proliferation of diverse
sensors, enabling efficient data acquisition via sensor networks [1,2]. Specifically, this
section aims to review the extant literature pertaining to leak detection methodologies.
This paper reviews water pipeline leakage detection techniques, which can be classified
into three categories: software-based, hardware-based, and conventional methods; it then
presents a comparative study of vibration sensors for water pipeline leakage detection
and validates a water pipeline testbed using vibration sensors [3]. Liu et al. propose a
water pipeline leakage detection method based on machine learning and wireless sensor
networks (WSNs) that employs a leakage triggered networking method to reduce energy
consumption and a leakage identification method using intrinsic mode function (IMF),
approximate entropy (ApEn), principal component analysis (PCA), and a support vector
machine (SVM) to enhance the precision and intelligence of leakage detection [4]. Ferei-
dooni et al. propose a fast hybrid method using AI algorithms and hydraulic relations for
detecting and locating leaks and identifying the volume of losses material in large scale
water distribution networks (WDN) [5]. Luong et al. propose a data renovation method to
improve the generalization ability of training data for an intelligent leak detection system
based on statistical parameters extracted from acoustic emission signals [6]. Nkemeni et al.
present a fully distributed solution for leak detection in a water distribution network using
a distributed Kalman filter (DKF) that improves the accuracy of leak detection and power
consumption in WSN applications [7]. Shukla et al. present a deep learning algorithm
that uses scalogram images of vibration signals collected from accelerometers attached
to the pipeline surface to detect leakages in water pipelines with up to 95% accuracy [8].
Mysorewala et al. present a feasibility study of leak detection in wall-mounted water
pipelines through vibration measurements using low-power accelerometers; they offer a
cost-effective and energy-efficient scheme to detect and classify leaks by optimally placing
sensor nodes at carefully selected locations [9].

Wang et al. present an experimental study on water pipeline leak detection using in-
pipe acoustic signal analysis and artificial neural network (ANN) prediction to investigate
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the effects of leak size, pipeline pressure, and flow velocity on the characteristic of acoustic
signal and to improve the accuracy of leak recognition [10]. Guo et al. propose a time–
frequency convolutional neural network (TFCNN) model for detecting leaks in water
distribution systems based on acoustic signals, which improves the accuracy and stability
of leakage detection even under low signal-to-noise ratio conditions [11]. Ravichandran
et al. present an acoustic leak detection system for distribution water mains using machine
learning methods, specifically a multi-strategy ensemble learning approach, which has
demonstrated significant improvement in performance, resulting in a reduction of false
positive reports by an order of magnitude [12]. Zhou et al. propose a novel ensemble
transfer learning one-dimension convolutional neural network (TL1DCNN) approach for
pipeline leak detection and localization, which integrates the results of a set of base learners
to achieve superior performance compared to traditional methods and other deep learning
methods [13]. Liu et al. describe a novel approach to leak detection in water pipes using
a Maximum Entropy version of the Least Square Twin K-Class Support Vector Machine
(MLT-KSVC) algorithm. This approach assigns different weights to leak samples based
on the MaxEnt model, reducing the impact of outliers on the classification process and
improving accuracy compared to other methods [14].

Pipelines are one of the least expensive means of transporting fluids over long dis-
tances and distributing fluids in large areas and cities. As such, monitoring these pipelines
to predict and detect leakage accurately and promptly and to determine the location of
the leak is of importance. Sekhavati et al. provides a review and comparative study of
computational methods for pipeline leakage detection and localization, discussing the
strengths, weaknesses, and limitations of five types of methods: mass/volume balance,
negative pressure wave, pressure point analysis, statistical methods, and real-time transient
modeling [15]. Tariq et al. present a study on the application of cost-effective MEMS-based
accelerometers for leak detection in real water distribution networks, where experiments
were conducted over ten months, and machine learning models were developed to im-
prove leak detection accuracy [16]. Tijani et al. propose a reliable technique for pipeline
leak detection using acoustic emission signals and deep learning to extract leak-related
discriminant features from acoustic images obtained from time series acoustic emission
signals using continuous wavelet transform [17]. Ahmad et al. propose a reliable technique
for pipeline leak detection using acoustic emission signals and deep learning to extract
leak-related features from acoustic images obtained from time series acoustic emission
signals using continuous wavelet transform [18]. Xu et al. propose a method for identifying
leaks in water pipes using an explainable ensemble tree model of vibration signals based
on the wave propagation model and the leakage noise mechanism [19].

Deep learning techniques and algorithms are emerging as a disruptive technology with
the potential to transform global economies, environments, and societies. Fu et al. provide
a critical review of the role of deep learning in urban water management, examining its cur-
rent applications and potential future directions to address key challenges in the field [20].
Yu et al. present a study on the effectiveness and practicability of using machine learning
models to identify leaks in real pipe networks by classifying vibration signals collected
by piezoelectric accelerometers installed in water distribution systems over several cities
of China [21]. Zhang et al. describe the development of a convolutional neural network
(CNN)–based model to classify acoustic wave files collected by the South Australian Water
Corporation’s (SA Water’s) smart water network (SWN) over the city of Adelaide for pipe
leak and crack detection with an accuracy of 92.44% [22]. Vanijjirattikhan et al. present
the development of an AI-based water leak detection system with cloud information man-
agement that can systematically collect and manage leakage sounds and generate a model
used by a mobile application to provide operators with guidance for pinpointing leaking
pipes [23]. Choudhary et al. present a novel 1-D convolution neural network (1DCNN)
model for leak detection, location, and size estimation in a smart water grid (SWG) that
uses IoT sensors and devices to monitor water transportation; their method showed better
accuracy compared to other state-of-the-art machine learning techniques [24].
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Water leakage in the supply system is a silent problem that costs billions of dollars
yearly. This paper is a systematic review of forty-seven articles on water leakage detection
and location research, with the aim of identifying new technology, trends, and possible
future directions in the field [25]. Shen et al. present a study on a tree-based machine
learning method for pipeline leakage detection in water distribution systems, where the
authors develop and compare three machine-learning-based models using on-site leak
detection signals; they find that the AdaBoost model had the lowest false positive rate,
and the recall rates of the random forest and AdaBoost models were 100% and 99.52%,
respectively [26]. Choi et al. propose a convolutional neural network (CNN) model to
detect and classify water leakage in pipelines using vibration data collected by leakage
detection sensors, demonstrating superior performance over a support vector machine
model in terms of F1-score and Matthew’s correlation coefficient [27]. Yussif et al. present a
study that proposes a low-cost approach to locating leakages in urban water distribution
networks using acoustic signal behavior and machine learning, achieving high validation
accuracy with the developed models [28]. Ullah et al. propose a machine-learning-based
platform for detecting pipeline leaks of various pinhole sizes using acoustic emission sensor
channel information and achieves an exceptional overall classification accuracy of 99% [29].

3. Water Leakage Detection Framework

In contemporary industrial settings, machine learning models have become indispens-
able tools, finding applications across a multitude of domains. Within the ambit of this
paper, we undertake a systematic comparative analysis of several machine learning models
with the specific aim of identifying the most adept model for leak detection. The procedural
flow of our proposed methodology is illustrated in Figure 1.
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In our study, a comprehensive set of 512 features was distilled from the data amassed
through vibration sensors affixed to the water pipelines, leveraging time-frequency domain
feature extraction techniques. We incorporated several features for model training, which
included the site number, sensor number, and date of leak detection, all of which serve
as identification information. Additionally, aggregate values such as leak rate and leak
level were introduced as features. Furthermore, we utilized the maximum number of leak
detections, represented across 20 columns, as an additional feature. Proceeding to the next
phase, we juxtaposed the performance of eight distinct machine learning models. In the
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concluding phase, these models underwent a rigorous evaluation, validation, optimization,
and hyperparameter tuning process to ascertain their efficacy and precision.

3.1. Water Pipeline Leak Vibration Dataset

Water pipeline leak detection is a critical aspect of water infrastructure manage-
ment. The timely detection of leaks can help prevent water loss, reduce repair costs, and
prevent damage to infrastructure. However, traditional leak detection methods can be
time-consuming and costly. As a result, there is a growing interest in the development of
machine learning models for water pipeline leak detection. To develop accurate and reliable
machine learning models, it is important to have high-quality training data. The water
pipeline leak detection dataset provides a valuable resource for developing such models.
However, the dataset may contain biases that can affect the performance of the models.

To address this issue, domain experts examined data bias through time-frequency
analysis and clustering of vibration detection sensor data. Time-frequency analysis is a
signal processing technique used to analyze non-stationary signals in the time-frequency
domain. Clustering is a machine learning technique used to group similar data points
together. The domain experts used these techniques to identify patterns and structures
in the data that may not be visible to the naked eye, which helped reduce data bias and
improve the accuracy of the machine learning models. In addition, leak detection experts
identified and labeled leak sounds through precise reading of leak points. This process
provided accurate labeling information for each case in the dataset, which is essential for
developing machine learning models for water pipeline leak detection.

The dataset used in this paper is water pipe leak vibration data, which consists of
30,000 cases using leak detection sensors installed at more than 11,000 locations. The
dataset comprises various sounds related to outdoor leak, indoor leak, electric noise, other
noise, and normal noise. The judgment criterion for water leakage is a sensor installed at
the water outlet that detects water leakage, and a water leakage detection specialist will
investigate the leakage on site. If a leak occurs outdoors, it is recorded as an ‘outdoor leak’,
and if a leak occurs indoors, it is recorded as an ‘indoor leak’. If there is no sign of a leak,
but certain noises such as mechanical or electrical sounds are generated, it is recorded as
‘Electric noise’, and if other types of noise are generated, it is recorded as ‘Other noise’.
If no other leak is detected, it is recorded as ‘Normal noise’. The acquisition of data is
based on water pipeline leak vibration data, followed by confirmation of the acquired
data through leak detection, data refinement, and classification by class. The refined data
include labeling information for each class, as shown in Table 1. This labeling information
provides a valuable resource for developing machine learning models for water pipeline
leak detection.

Table 1. Water pipeline leak detection dataset summary.

Water Pipe Status Type Leak Class Train Data Test Data

Metallic Pipes: Steel Pipe (SP),
Stainless Steel Pipe (STS),

Ductile Cast Iron Pipe (DCIP)
Non-metallic Pipes:

Polyethylene (PE), Polyvinyl
chloride (PVC)

Leak detection

Outdoor leak (out) 17,539 2192

Indoor leak (in) 13,273 1659

Electric noise (noise) 5029 629

Other noise (other) 7019 878

Undetected Normal noise (normal) 19,704 2462

Total 2 5 62,564 7820

There are various types of leaks that can occur in water supply systems, and it is
important to identify and categorize them accurately. Table 2 contains a detailed description
of the water pipeline leak detection data. The dataset includes various items such as site
number, sensor number, leakage vibration size detected by frequency, maximum detection
frequency, and maximum detection size.
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Table 2. Format and description of water pipeline leak detection data.

Name Column Description Format or Range Type

Site no. site
Site number where the leak
detection sensor is installed

(identifier 1)
S-00000000 string

Sensor no. sid Leak detection sensor number
(identifier 2)

S-00000
00000
00000

string

Date of leak detection ldate The date the leak event was
detected (identifier 3) YYYYMMDD string

Leak rate lrate

Daily dawn hours for a total of
10 leak detection leak detection

and set a schedule threshold
over a certain threshold and

display the result as a
probability (Automatically

create a leak detection sensor)

0~90 int

Leak level llevel

Daily at dawn a total of
10 water leak detection leak

detection, and if the threshold
over a certain threshold and

display the average value.
(Automatically create a leak

detection sensor)

0~5000 int

Leak Detection
Classification leaktype Indicates whether a leak is

detected.

outdoor leak (out),
indoor leak (in),

electric noise (noise),
other noise (other),

normal noise (normal)

string

Leak Detection
Frequency Range

(512 columns)

0 Hz Leakage vibration magnitude
detected at frequency 0 Hz 0 int

10 Hz Leakage vibration magnitude
detected at frequency 10 Hz 0~5000 int

. . . . . . . . . . . .

5120 Hz Leakage vibration magnitude
detected at frequency 5120 Hz 0~5000 int

Maximum by number
of leak detections

(20 columns)

MAX0 Maximum frequency Hz
detected in one leak detection 0~5120 int

MAX1 Maximum leak size detected at
one leak detection 0~5000 int

. . .
Maximum frequency Hz and

maximum leak size detected in
the number of leak detections

0~5000 int

MAX18 Maximum frequency Hz
detected in 10 leak detections 0~5120 int

MAX19 Leak detection 10 times
maximum leak size 0~5000 int

3.2. Leak Data Analysis and Preprocessing

In this paper, the dataset utilized for analysis comprises sensor information, vibration
data with a frequency of 10 Hz, and aggregate data. The vibration data with a frequency of
0 Hz were excluded as they possessed identical values. The sensor information was
preprocessed based on the model characteristics, and ten leak detection checks were
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conducted for two hours each day during the early morning hours. The average value
and aggregate value of the size that responded above a specific threshold were included as
features. Figure 2 presents the vibration data visualized by five classification criteria, while
Figure 3 illustrates the max 1–19 values, representing the highest frequency and maximum
leak size detected in one leak detection. The visualization presented in Figure 4 pertains to
the correlation analysis of the vibration data collected at a frequency of 10 Hz.
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3.3. Leak Detection Models
3.3.1. K-Nearest Neighbor

The K-Nearest Neighbor (KNN) algorithm is a non-parametric, instance-based learn-
ing methodology used for classification and regression tasks [30]. Rooted in the principle
of similarity, KNN determines an input instance’s output based on the majority label or
mean value of its ‘K’ most similar instances from the training dataset. The algorithm’s
simplicity is a significant advantage, requiring no explicit training phase. However, KNN’s
computational complexity increases linearly with the size of the training dataset, making
it less ideal for large datasets. Despite its simplicity, KNN can achieve high accuracy in
scenarios where decision boundaries are irregular. Given its instance-based nature, KNN
inherently supports multi-class classification. In this paper, a KNN model was used to
interpret and analyze water and sewer vibration sensor data.

3.3.2. Decision Tree

Decision trees are a popular machine learning algorithm that can be used for both
classification and regression tasks [31]. The algorithm works by recursively partitioning
the input space into smaller subsets as shown in Figure 5, based on the value of the input
features, until a stopping criterion is met. The decision to split a node based on a feature
j and threshold t can be represented using a split criterion. For classification, the Gini
impurity is commonly used:

Gini(D) = 1−
k

∑
i=1

p2
i (1)

where D represents the data subset at the node, p2
i is the proportion of samples of class i in

D, and k is the number of classes. The aim during the split is to find a feature and threshold
that minimizes the weighted average of the Gini impurity of the child nodes. Decision trees
have several advantages, including their interpretability, ease of use, and ability to handle
both numerical and categorical data. In this paper, we used the decision tree model for the
interpretation and analysis of water and sewerage vibration sensor data in a table structure.
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3.3.3. Random Forest and Extra Trees

Random forest is an ensemble learning method that combines multiple decision trees
to improve their performance [32]. It works by constructing a large number of decision
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trees, each trained on a different random subset of the training data and a random subset of
the input features. The outputs of the individual trees are then aggregated to make a final
prediction as shown in Figure 5. The key idea behind random forest is that by aggregating
the outputs of multiple decision trees, the overall prediction becomes more robust and less
prone to overfitting. For a classification problem with N classes, the random forest output,
Y, for an input vector X is

Y(X) = arg max
j

T

∑
i=1

I(hi(X) = j) (2)

where T is the number of trees in the forest, and hi(X) is the class predicted by the ith tree.
I(·) is the indicator function, which is 1 if the condition inside is true, and 0 otherwise.
Random forest has several advantages over single decision trees, including improved
accuracy, robustness to noise and outliers, and the ability to handle high-dimensional data.
In this paper, we use a random forest model to experiment with the importance of attributes
and the efficiency of parallelization.

Extremely randomized trees (extra trees) [33] represent a form of ensemble learning
technique grounded on decision trees, drawing parallels to the well-established random
forest algorithm. The extra trees classifier constructs a multitude of decision trees and
amalgamates their outputs to enhance prediction accuracy. Distinctively, in contrast to
the random forest, extra trees introduce a greater degree of randomization in the selection
of node splits. This distinct feature facilitates the generation of a more heterogeneous set
of trees, thereby augmenting the model’s robustness and capacitating it to encapsulate a
broader spectrum of characteristics.

3.3.4. Gradient Boosting

Gradient boosting is an ensemble machine learning technique that seeks to optimize a
differentiable loss function through iterative refinement of predictions [34]. It builds an
additive model in a stage-wise fashion, where each subsequent model corrects the errors of
its predecessor. At each iteration, it fits a decision tree to the negative gradient (residual
errors) of the loss function. Given a dataset {(x1, y1), . . . , (xN , yN)}, where yi can be 0 or 1,
the prediction of the ensemble at iteration m for an input vector x in terms of log odds is

Fm(x) = Fm−1(x) + v·hm(x) (3)

where Fm−1(x) is the prediction of the ensemble up to the (m− 1)th model, hm(x) is the
prediction of the mth tree, and v is the learning rate. The central idea revolves around
strengthening a weak learner, typically a decision tree, into a robust model by aggregating
the outcomes of several trees. Hyperparameters, such as learning rate and tree depth, play
pivotal roles in controlling overfitting and the algorithm’s speed. Unlike random forest,
which builds trees in parallel, gradient boosting builds trees sequentially. We used the
gradient boosting method for leak detection as a basic model for boosting methods.

3.3.5. LightGBM

LightGBM is one of the implementations of the Gradient Boosting Decision Tree
(GBDT) algorithm developed by Microsoft. It shows high performance on large datasets
and has faster training speed and lower memory usage compared to other GBDT imple-
mentations. This performance improvement is possible because LightGBM uses various
optimization techniques [35].

The key idea of LightGBM is to divide the entire dataset into small datasets called
“leaves” to efficiently process them. LightGBM constructs trees based on these leaves.
LightGBM uses a leaf-wise method, which selects the leaf node with the largest information
gain when determining the tree structure as shown in Figure 6. LightGBM also supports
both feature parallelism and data parallelism. Feature parallelism is a method of creating
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multiple trees for one dataset by using different features for each tree. In this paper, we
used the LightGBM model, which provides high efficiency and fast processing speed using
table-structured water and sewer vibration sensor data.
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3.3.6. eXtreme Gradient Boosting (XGBoost)

XGBoost, which stands for eXtreme gradient boosting, is a popular distributed gra-
dient boosting library introduced by Tianqi Chen in 2014 [36]. The library extends the
traditional gradient boosting algorithm by incorporating overfitting regularization, en-
abling it to process large amounts of data accurately and quickly. XGBoost can effectively
solve various problems through parallel tree boosting as shown in Figure 7, making it a
widely used algorithm in machine learning competitions and real-world applications. The
prediction of the ensemble at iteration m for an input vector x is

ŷ(m)
i =

m

∑
k=1

fk(xi) (4)

where ŷ(m)
i is the predicted value for observation i at iteration m. fk(x) is the predic-

tion of the kth tree. The model is highly customizable, allowing users to specify various
hyperparameters to optimize model performance.
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In this study, we utilized the fast learning speed and high performance of the XG-
Boost model to train it for water and sewage leak detection. The XGBoost algorithm was
employed to analyze a large dataset of water and sewage system data, which included a
variety of parameters such as flow rates, pressure readings, and other key indicators of
system performance. Through the use of XGBoost, we were able to effectively identify
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patterns and anomalies in the data that could indicate the presence of leaks or other issues
in the system.

3.3.7. CatBoost

CatBoost, developed by Yandex, is a state-of-the-art gradient boosting algorithm de-
signed explicitly for efficiently handling categorical features without the need for extensive
preprocessing [37]. The prediction of the ensemble at iteration m for an input vector x is

ŷ(m)
i = ŷ(m−1)

i + α· fm(xi) (5)

where ŷ(m)
i is the predicted value for observation i at iteration m. fk(x) is the prediction of

the mth tree, and α is a learning rate. Distinctively, it utilizes an approach termed “ordered
boosting” to mitigate overfitting, alongside a pooling technique to process categorical
variables directly. Oblivious trees, a variant of decision trees with the same feature for splits
at each level, form its foundational model structure, enhancing efficiency and reducing
overfitting likelihood. Furthermore, the algorithm incorporates L2 regularization, further
ensuring model robustness.

4. Experimental Results
4.1. Experimental Environments

In this study, vibration sensors were installed in water meter boxes and valve rooms
to collect data for leak detection purposes. The water pipes used in the experiment were
categorized into two types: metallic pipes and non-metallic pipes, and differences in
vibration detection sensors were observed between them. Metallic pipes were found to
transmit vibrations for a longer period, and clear signals could be obtained even at high
frequencies. This characteristic makes leak detection in metallic pipes relatively accurate.
On the other hand, non-metallic pipes are less effective in transmitting vibrations, and
their frequency characteristics are different, making them more challenging to detect. Two
types of vibration sensors were used in the experiment: LTE equipment and embedded
equipment. These sensors were installed approximately 150 to 300 m apart in water meter
boxes and valve rooms. Figure 8 shows the structure of the equipment used to collect the
dataset for the leaky small-flow and water pressure monitoring system. Figure 9 displays
the sensor models used for dataset collection and leak detection. The equipment and
systems are utilized to detect vibrations in both metallic and non-metallic pipes to identify
leaks accurately.

Water supply pipelines are essential infrastructure that transports water from a source
to a destination. Various types of pipes are used in these pipelines, and they can be
categorized into two types: metal pipes and non-metal pipes. Each type of pipe has
different characteristics that affect its performance and accuracy of leak detection sensors.

Metal pipes are widely used in water supply pipelines. Enamel Coated Steel Pipe
(ECSP) is highly resistant to corrosion, while Liquid Epoxy Coated Steel Pipe (LECSP)
has improved corrosion prevention and durability. Cast Iron Pipe (CIP) is known for its
heavy weight and high strength, while Ductile Iron Pipe (DIP) is popular for its improved
toughness. Galvanized Steel Pipe (GSP) is a steel pipe with enhanced corrosion resistance,
and Copper Pipe (CP) has excellent conductivity and heat resistance. Stainless Steel Pipe
(SSP) has high corrosion resistance and durability, but its use is limited due to its high cost.



Sensors 2023, 23, 8935 12 of 20Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 8. Flow and water pressure monitoring structure. 

 
Figure 9. Flow and water pressure monitoring sensors. 

Water supply pipelines are essential infrastructure that transports water from a 
source to a destination. Various types of pipes are used in these pipelines, and they can be 
categorized into two types: metal pipes and non-metal pipes. Each type of pipe has differ-
ent characteristics that affect its performance and accuracy of leak detection sensors. 

Metal pipes are widely used in water supply pipelines. Enamel Coated Steel Pipe 
(ECSP) is highly resistant to corrosion, while Liquid Epoxy Coated Steel Pipe (LECSP) has 
improved corrosion prevention and durability. Cast Iron Pipe (CIP) is known for its heavy 
weight and high strength, while Ductile Iron Pipe (DIP) is popular for its improved tough-
ness. Galvanized Steel Pipe (GSP) is a steel pipe with enhanced corrosion resistance, and 
Copper Pipe (CP) has excellent conductivity and heat resistance. Stainless Steel Pipe (SSP) 
has high corrosion resistance and durability, but its use is limited due to its high cost. 

Non-metallic pipes are also used in water supply pipelines. Polyvinyl chloride (PVC) 
is lightweight and corrosion-resistant, while impact-resistant water pipe (IRWP) is im-
pact-resistant. Polyethylene (PE) is corrosion-resistant and lightweight, while Hume Pipe 
(HP) is made of concrete and has a sturdy structure. 

Figure 8. Flow and water pressure monitoring structure.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 8. Flow and water pressure monitoring structure. 

 
Figure 9. Flow and water pressure monitoring sensors. 

Water supply pipelines are essential infrastructure that transports water from a 
source to a destination. Various types of pipes are used in these pipelines, and they can be 
categorized into two types: metal pipes and non-metal pipes. Each type of pipe has differ-
ent characteristics that affect its performance and accuracy of leak detection sensors. 

Metal pipes are widely used in water supply pipelines. Enamel Coated Steel Pipe 
(ECSP) is highly resistant to corrosion, while Liquid Epoxy Coated Steel Pipe (LECSP) has 
improved corrosion prevention and durability. Cast Iron Pipe (CIP) is known for its heavy 
weight and high strength, while Ductile Iron Pipe (DIP) is popular for its improved tough-
ness. Galvanized Steel Pipe (GSP) is a steel pipe with enhanced corrosion resistance, and 
Copper Pipe (CP) has excellent conductivity and heat resistance. Stainless Steel Pipe (SSP) 
has high corrosion resistance and durability, but its use is limited due to its high cost. 

Non-metallic pipes are also used in water supply pipelines. Polyvinyl chloride (PVC) 
is lightweight and corrosion-resistant, while impact-resistant water pipe (IRWP) is im-
pact-resistant. Polyethylene (PE) is corrosion-resistant and lightweight, while Hume Pipe 
(HP) is made of concrete and has a sturdy structure. 

Figure 9. Flow and water pressure monitoring sensors.

Non-metallic pipes are also used in water supply pipelines. Polyvinyl chloride (PVC)
is lightweight and corrosion-resistant, while impact-resistant water pipe (IRWP) is impact-
resistant. Polyethylene (PE) is corrosion-resistant and lightweight, while Hume Pipe (HP)
is made of concrete and has a sturdy structure.

The different characteristics of water pipes affect the performance and accuracy of
leak detection sensors. Therefore, it is necessary to evaluate and improve the performance
of leak detection sensors by considering the type of water pipe. Table 3 shows the length
(in meters) of water pipes in South Korea as of 2020, which can be used to evaluate the
performance and applicability of leak detection sensors in each type of pipe.
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Table 3. Distances by water and sewer pipes in South Korea (2020).

Classification Type Distance (m)

Metallic Pipes

ECSP 975,242

LECSP 9,983,024

CIP 12,379,317

DIP 56,089,910

GSP 762,782

CP 273,259

SSP 25,565,017

Non-metallic Pipes

PVC 24,061,418

IRWP 29,260,560

PE 44,812,817

HP 35,990

Other Pipes OTH 16,023,203

Total 228,322,539

4.2. Model Evaluation

In this study, we employed eight models. These include the nearest neighbor (KNN),
decision tree, random forest, additive tree, and gradient boosting models from Scikit-learn
(version 1.2.2) [38]. Additionally, we used LightGBM (version 3.3.5) [39], XGBoost (version
1.7.6) [40], and CatBoost (version 1.2) [41] from their individual libraries. The dataset was
partitioned into 62,564 instances for the training phase and 7820 instances designated for
evaluation. However, to optimize our experimental setup, we amalgamated both sets,
resulting in a consolidated dataset of 70,384 instances. Subsequently, we reallocated the
instances using an 8:2 split, aiming to augment the evaluation data volume. This restructur-
ing yielded a training dataset of 56,307 instances, while the evaluation set encompassed
14,077 instances. For the modeling process, we employed multi-label classification tech-
niques across all models. To ensure rigorous and comprehensive assessment, the training
and evaluation phases were conducted employing a stratified K-Fold cross-validation
approach, with a chosen K value of 10. In the present study, the target variable, denoted as
“leaktype”, is categorically encoded as follows: ‘in’ is represented by the value 0, ‘noise’ is
represented by the value 1, ‘normal’ is represented by the value 2, ‘other’ is represented by
the value 3, and ‘out’ is represented by the value 4. In the present study, the experimental
procedures are categorized into four distinct sections based on the features employed. A
comprehensive overview of these divisions is provided in Table 4.

Table 4. Features used in the model per experiment.

No. Features Target

E1 Leak Detection Frequency Range (512 columns)

Leak
Detection

Classification
(leaktype)

E2 Leak detection frequency range (512 columns) + Maximum by number
of leak detections (20 columns)

E3 Leak rate + Leak level + Leak detection frequency range (512 columns)
+ Maximum by number of leak detections (20 columns)

E4
Site number + Sensor number + Date of leak detection + Leak rate +

Leak level + Leak detection frequency range (512 columns) +
Maximum by number of leak detections (20 columns)
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4.2.1. Experimental Results for E1

For the E1 experiment, solely frequency-specific data derived from the vibration sensor
were employed for leak detection as features. The outcomes of this experiment are delin-
eated in Table 5. A perusal of Table 6 reveals that the K-Nearest Neighbors (KNN) model
outperforms other models in terms of accuracy and computational efficiency. Figure 10
elucidates the classification efficacy of the KNN model. While the classes ‘in’, ‘normal’, and
‘out’—pertinent to the leakage status—demonstrate commendable performance, the ‘noise’
and ‘other’ classes exhibit suboptimal results.

Table 5. Compare performance by model for the E1 experiment.

Model Accuracy AUC Recall Precision F1 Kappa MCC Training Time
KNN 0.9133 0.9818 0.9133 0.9135 0.9133 0.8857 0.8857 2.1840

XGBoost 0.8917 0.9836 0.8917 0.8913 0.8903 0.8561 0.8567 41.6480
MLP 0.8788 0.9759 0.8788 0.8810 0.8789 0.8402 0.8407 19.7120

Random Forest 0.8780 0.9807 0.8780 0.8794 0.8755 0.8372 0.8387 2.8340
LightGBM 0.8765 0.9797 0.8765 0.8764 0.8748 0.8358 0.8366 8.3830
CatBoost 0.8708 0.9781 0.8708 0.8700 0.8684 0.8280 0.8290 60.2310

Extra Trees 0.8389 0.9724 0.8389 0.8443 0.8335 0.7834 0.7872 2.8490
Decision Tree 0.7705 0.8529 0.7705 0.7708 0.7706 0.6973 0.6973 2.2730

Gradient
Boosting 0.6978 0.9089 0.6978 0.7016 0.6791 0.5899 0.5979 94.0720

Table 6. Compare performance by model for the E2 experiment.

Model Accuracy AUC Recall Precision F1 Kappa MCC Training Time
Random Forest 0.9115 0.9892 0.9115 0.9113 0.9099 0.8823 0.8830 2.8770

XGBoost 0.9008 0.9860 0.9008 0.9017 0.9001 0.8685 0.8691 46.6050
LightGBM 0.8971 0.9850 0.8971 0.8981 0.8962 0.8635 0.8642 8.7430
CatBoost 0.8933 0.9846 0.8933 0.8928 0.8920 0.8585 0.8590 61.5220

Extra Trees 0.8655 0.9797 0.8655 0.8668 0.8611 0.8199 0.8221 2.7550
MLP 0.8472 0.9701 0.8472 0.8532 0.8478 0.7992 0.8004 24.8520

Decision Tree 0.8076 0.8789 0.8076 0.8079 0.8077 0.7463 0.7463 2.1420
KNN 0.7532 0.9201 0.7532 0.7532 0.7521 0.6738 0.6744 2.2280

Gradient
Boosting 0.7360 0.9302 0.7360 0.7494 0.7231 0.6439 0.6526 100.9720
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4.2.2. Experimental Results for E2

The E2 experiment incorporated the features from E1, augmented with the maximum
number of leak detections, spanning 20 columns. The comparative performance of var-
ious models for this experiment is presented in Table 6. Intriguingly, the integration of
aggregated maxima led to a decrement in the KNN model’s performance. Conversely, the
random forest model emerged as the most efficacious. Figure 11 delineates the class-wise
classification performance of the random forest model for the E2 experiment. Figure 12 un-
derscores the significance of features for the random forest model, indicating a predilection
of the model towards maximum value features introduced in the E2 experiment.
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4.2.3. Experimental Results for E3

The E3 experiment was characterized by the inclusion of leak rate and level. Over a
span of 2 h during the early morning hours, 10 leak detection assessments were executed
daily. Results surpassing a predefined threshold were represented as the leak probability
(lrate), while the mean value of the responses was denoted as the leak level (llevel). Table 7
encapsulates the model performance metrics for the E3 experiment, with the random forest
model exhibiting superior performance. Upon analysis of the experimental results, it is
evident that there exists a modest enhancement in overall performance relative to the E2
experiment. Figure 13 shows the classification performance of the random forest model in
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the E3 experiment. Compared to the E2 experiment, there is a slight increase overall, except
for class 3, “Other noise”.

Table 7. Compare performance by model for the E3 experiment.

Model Accuracy AUC Recall Precision F1 Kappa MCC Training Time
Random Forest 0.9221 0.9911 0.9221 0.9225 0.9212 0.8967 0.8972 2.5410

XGBoost 0.9030 0.9868 0.9030 0.9035 0.9023 0.8715 0.8720 38.0860
CatBoost 0.8972 0.9857 0.8972 0.8973 0.8963 0.8637 0.8642 61.6760

LightGBM 0.8962 0.9853 0.8962 0.8970 0.8954 0.8624 0.8630 8.6350
Extra Trees 0.8960 0.9859 0.8960 0.8969 0.8938 0.8616 0.8627 2.2420

MLP 0.8473 0.9723 0.8473 0.8533 0.8462 0.7981 0.8000 28.6360
Decision Tree 0.8321 0.8949 0.8321 0.8321 0.320 0.7785 0.7785 1.7550

KNN 0.7506 0.9185 0.7506 0.7507 0.7497 0.6705 0.6710 2.2210
Gradient
Boosting 0.7369 0.9300 0.7369 0.7541 0.7239 0.6448 0.6547 99.8280

Sensors 2023, 23, x FOR PEER REVIEW 16 of 20 
 

 

Table 7. Compare performance by model for the E3 experiment. 

Model Accuracy AUC Recall Precision F1 Kappa MCC Training Time 
Random Forest 0.9221 0.9911 0.9221 0.9225 0.9212 0.8967 0.8972 2.5410 

XGBoost 0.9030 0.9868 0.9030 0.9035 0.9023 0.8715 0.8720 38.0860 
CatBoost 0.8972 0.9857 0.8972 0.8973 0.8963 0.8637 0.8642 61.6760 

LightGBM 0.8962 0.9853 0.8962 0.8970 0.8954 0.8624 0.8630 8.6350 
Extra Trees 0.8960 0.9859 0.8960 0.8969 0.8938 0.8616 0.8627 2.2420 

MLP 0.8473 0.9723 0.8473 0.8533 0.8462 0.7981 0.8000 28.6360 
Decision Tree 0.8321 0.8949 0.8321 0.8321 0.320 0.7785 0.7785 1.7550 

KNN 0.7506 0.9185 0.7506 0.7507 0.7497 0.6705 0.6710 2.2210 
Gradient Boosting 0.7369 0.9300 0.7369 0.7541 0.7239 0.6448 0.6547 99.8280 

 
Figure 13. Classification performance results of the Random Forest model in E3 experiment. 

Furthermore, Figure 14 accentuates the paramount importance of the newly incorpo-
rated leakage rate (lrate) in E3, suggesting that the random forest model predominantly 
classifies based on the leakage rate and maximum value features. 

 
Figure 14. Feature importance of the random forest model in E3 experiment. 

4.2.4. Experimental Results for E4 
For the E4 experiment, additional identification parameters were incorporated, 

namely the location of the leak detection sensor (site), the sensor’s unique identifier (sid), 
and the date of the leak detection event (ldate). Table 8 presents the performance metrics 
for the E4 experiment, highlighting the enhanced efficacy of both the tree and boost mod-
els, with the XGBoost model being preeminent. Figure 15 showcases the stellar classifica-
tion performance of the XGBoost model for the E4 experiment. 

Figure 13. Classification performance results of the Random Forest model in E3 experiment.

Furthermore, Figure 14 accentuates the paramount importance of the newly incorpo-
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4.2.4. Experimental Results for E4

For the E4 experiment, additional identification parameters were incorporated, namely
the location of the leak detection sensor (site), the sensor’s unique identifier (sid), and
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the date of the leak detection event (ldate). Table 8 presents the performance metrics for
the E4 experiment, highlighting the enhanced efficacy of both the tree and boost models,
with the XGBoost model being preeminent. Figure 15 showcases the stellar classification
performance of the XGBoost model for the E4 experiment.

Table 8. Compare performance by model for the E4 experiment.

Model Accuracy AUC Recall Precision F1 Kappa MCC Training Time
XGBoost 0.9979 1.0000 0.9979 0.9979 0.9979 0.9973 0.9973 37.9660

LightGBM 0.9971 1.0000 0.9971 0.9972 0.9971 0.9962 0.9962 8.7510
CatBoost 0.9950 0.9998 0.9950 0.9951 0.9950 0.9934 0.9934 60.6540
Gradient
Boosting 0.9909 0.9999 0.9909 0.9912 0.9910 0.9881 0.9881 100.3840

Decision Tree 0.9878 0.9927 0.9878 0.9878 0.9878 0.9839 0.9839 1.3310
Random Forest 0.9828 0.9994 0.9828 0.9828 0.9827 0.9773 0.9774 2.4130

Extra Trees 0.9721 0.9987 0.9721 0.9721 0.9718 0.9631 0.9632 2.0980
KNN 0.8296 0.9541 0.8296 0.8296 0.8291 0.7751 0.7753 2.2800
MLP 0.4084 0.6336 0.4084 0.4084 0.3289 0.2402 0.2990 16.3160
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Figure 16 delineates the feature importance for the XGBoost model in the E4 exper-
iment, emphasizing the primacy of the leak rate (lrate), followed by the sensor number
(sid). Notably, in contrast to the random forest model, the maximum value feature is of
diminished importance in the XGBoost model.
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5. Conclusions

In this study, our primary objectives revolved around extracting salient features from
an expansive set of data, gathered via vibration sensors on various water pipe types under
diverse leakage conditions. These data were then meticulously organized into a tabulated
format, enabling us to identify and refine the most effective machine learning algorithm
for water leak detection. Our evaluations revealed that the XGBoost model excelled in
this domain, boasting a remarkable accuracy of 99.79% in detecting water leaks through
vibration sensors. This achievement markedly surpasses conventional methods that depend
on manual inspections or acoustic sensors, both of which are often susceptible to errors and
ambient noise disruptions. Notably, our model adeptly identifies leaks in water pipelines
composed of both metallic and non-metallic elements—a recurrent challenge in older water
distribution systems.

The implications of our research are profound for the realm of water leak detection.
By introducing a cutting-edge machine learning approach, we offer a potent solution,
effectively addressing the limitations inherent in current detection techniques. The benefits
of adopting this model are manifold, promising not only a significant reduction in water
wastage but also a marked decrease in environmental impact, financial expenditure, and
potential safety hazards stemming from unnoticed leaks. Moreover, the versatility of our
proposed model allows its potential deployment in related sectors, including the gas, oil,
and chemical industries. As we chart our future research path, our focus will shift towards
optimizing the model for seamless execution on edge computing devices and delving
deeper to ascertain its capability in pinpointing the root causes of water leaks.
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